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groups. The method presented here is useful also for the calculations of the eigenvalues of Casimir 
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I. INTRODUCTION 

Since 1971, we have known that the fundamental inter
actions can be described in a renormalizable manner l with 
the inclusion of the non abelian local symmetry idea. How-

-) Supported by TBT AK, The National Science and Technology Council of 
Turkey. 

ever, there is another point which spoils renormalizability. 
This originates from a certain type of Feynman diagram and 
is consequently called "anomaly." There are two ways to 
prevent these triangle or ABJ anomalies2 in a gauge model, 
one of which is the intrinsic L-R symmetry mechanism. In 
the absence of this mechanism, the representation content of 
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the model should be chosen in such a way that its total con
tribution to anomalies would be equal to zero. Therefore, the 
calculation of the contribution for each irreducible represen
tation has renewed interese to the extent of the plethora of 
gauge models. This contribution is called "the anomaly 
number" of the corresponding irreducible representation. In 
this work, we give a simple formula for this anomaly number 
which operates all representations. Our basic framework for 
this is the novel method for the representation theory of 
groups that we recently proposed.4 We must further empha
size that this simple method will prove useful also for the 
calculations of the eigenvalues of the Casimir invariants5 

with rank higher than 3. 

II. ANOMALY NUMBER OF THE IRREDUCIBLE 
SU(N + 1) REPRESENTATIONS 

The ABJ anomaly of a representation V of the Lie alge-
bra 

[Ta (V), Tb(V)] = ifabe Te (V) 

is defined to be 

(2.1) 

A (V)abe = TRI Ta(V)(Tb(V)Te(V) + Te (V) Tb (V))) , 
(2.2) 

where Ta (V)'s are the generators of this Lie algebra in the 
representation V. The main motivation here is the represen
tation independence of A (V )abe up to a factor A (V). 6 Hence, 
this factor A (V) is determined with respect to a reference 
representation Vo as being 

A (V)abe = A (V) . A (VO)abc (2.3) 

and is called "the anomaly number" of the representation V. 
The reference representation Vo is conventionally chosen to 
be the fundamental representation of the group. 

In the first place, the fact that the real representations 
have always zero anomaly number is clear in view of defini
tion (2.2). Consequently, only the representations of 
SU(N + 1) and spinorlike representations7 ofSO(4N + 2), 
N = 1,2, ... are subjects of the anomaly number calculations. 
It is a remarkable fact that E6 has no anomaly in spite of the 
fact that it may have complex representations. 

We now calculate the anomaly numbers of the elemen
tary representations8 ofSU(N + 1). To calculate anA (V), the 
restriction of the definition (2.2) to the Cartan subalgebra of 
the group is sufficient. Then the expression (2.3) will give 

'\' abc A (V) '\' abc .::.. f1A f1A f1A = .::.. f1A f1A f1A , (2.4) 
AEV AEVo 

where the weights f1 A a are defined as 

H(V)~B f1AaOAB' A,B= 1,2, ... ,dim V (2.5) 

for the elements H (v)a of the Cartan subalgebra of the 
group. We formulate the weights for all irreducible 
SU(N + 1) representations in Ref. 4 in terms of the weights 
of the fundamental representation Vo. We now take the 
expression (2.4) in the form of 

I (M,f1A)3 =A (V) I (M,f1A)3, (2.6) 
AEV AEVo 
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where the weight M is an appropriate one which we choose, 
say, as being the first weight f11 of the VO' From now on, 
definition 

N 

(f1A>f1B) = I f1A af1B a (2.7) 
a=l 

are also adopted for any A, BE V. On the other hand, we 
know from Ref. 4 that all weights of the elementary repre
sentations V(An) ofSU(N + 1), where n = 1,2, ... , N, can be 
expressed in the common form 

f1ij + f1i2 + ... + f1in (2.8) 

because the principal dominant weight of V (An) is expressed 
as 

(2.9) 

Here the indices iI' i2, ... , in take the values from 1 to N + 1 
while they all are different from each other within the same 
weight. With the aid of the scalar product (2.7), the expres-
s10n 

( f1 A , f1 B) = 0 AB - l/(N + 1) (2.10) 

is clear. Then, the expression (2.6) immediately leads us to 

A [V(An)] A (An) = (N - 2)! (N + 1 - 2n), 
(N - n)!(n - I)! 

(2.11) 

which is the principal result of this article. Let us remark 
here that the following relation is also valid: 

A (AN + 1- n) = -A (An). (2.12) 

We now see from these two expressions that A (,,1,2) = 1 for 
N = 4. This is the cancellation mechanism of the standard 
SU(S) model, which is shown first by Bouchiat et al. 9 

III. GENERALITIES 

As is seen, our work does not terminate with a number 
of tables. The method presented in the last section would be 
applied equally well for the composite irreducible represen
tations ofSU(N + 1) and also for the Casimir invariants of all 
orders. What is needed in these computations is only the 
"orbital decomposition" of a composite representation. A 
composite representation originates from a dominant weight 
A havingseveralsubdominantweightsA i • Then, thedecom
position of the representation V (A ) to the Weyl orbits W (A i) 
of each subdominant weight becomes 

V(A) = W(A) + I m(Ai)W(Ai)' (3.1) 

where m(A i )'s are the multiplicities of the subdominants. 
For instance, the computation of the quadratic and 

quartic indices, 10 which are defined to be 

12(V) = I (f1,f1) 
/-lEV 

and 

14(V) = I (f1, f1)2, 
!lEV 

are very clear in view of such an orbital decomposition. One 
remark for this is that all weights of a Weyl orbit have the 
same length with their dominant weight. Hence, for the re
presentation having orbital decomposition (3.1), the qua-
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dratic and quartic indices will be obtained for n = 1, 2 as in 
the following: 

i 2n = dim W(A). (A,A)n 

+ L m(A;). dim W(A;). (A;.A;t· 
; 

In Ref. 4, we show that the dimension formulas for the Weyl 
orbits are simple permutational computations in the light of 
a lemma for the weights of a Weyl orbit. On the other hand, 
we know that the scalar products between fundamental 
dominant weights will be calculated by the aid of the inverse 
Cartan matrix. Let us consider now the representation V (..1,2) 
of E6• II Its orbital decomposition is 

V(A2) = W(A 2) + 5W(A 5 ), 

and hence its indices are simply 

i 2n = 216X(1O/3)2n + (351 - 216) X (4/3)2n 

(3.2) 

for n = 1, 2. This naive computation works similarly for all 
representations provided that the corresponding orbital de
composition is known. The cases for which the dimension of 
the corresponding representation is great is not a point here. 

We think that there is no need to repeat the computa
tions of the last section for composite or reducible SU(N + 1) 
representations. However, such an explicit example may be 
given for E6. This is interesting because E6 representations 
have no anomaly, even when they are complex. This fact can 
be investigated by the branchings SU(3)xSU(3)XSU(3) of 
irreducible E6 representations. 12 We now explicitly calculate 
that a complex representation of E6 has always zero anomaly 
number. There is an important remark here: every Weyl or
bit always has zero anomaly number for E6 and, consequent
ly, every representation does the same thing. Let us consider 
again the representation V(A 2 ) of E6 • We will now see that 
V(A 2 ) has no anomaly number because the orbits W(A 2 ) and 
W (..1,5) have zero anomaly number in spite of the fact they are 
complex. For this, we need only the suborbital decomposi
tions of these orbits because the Weyl orbits other than 
SU(N + 1) expose a suborbital structure. 13 We have shown 
in Ref. 13 that the weights of the orbit W (..1,5) can be grouped 
as 

SW(A5) = ..1,6 - t'I' 

SW(A2 - ..1,6) = t'l + ti - ..1,6' 

SW(A5 - ..1,6) = - t'I' 

while the ones for W(A 2 ) as 

SW(A2) = t'l + <1' 
SW(A I + ..1,4 - ..1,6) = t'l - ti - t'3 + ..1,6' 

SW(U I - ..1,6) = 2t'l - ..1,6' 

SW(A3 + As - U 6) = t'l + t'2 + t'3 - (4 - ..1,6' 

SW(Aj + ..1,4 - U 6) = t'l - ('2 - t'3' 

SW(A2 - U 6 ) = {'j + ('2 - U 6 • 

(3.3) 

(3.4) 

Consequently, the dimensions of the orbits are, respectively, 

6 + 15 + 6 = 27, 

15 + 60 + 6 + 60 + 60 + 15 = 216. 
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In these expressions, allt' indices take the values from 1 
to 6 and the corresponding definitions are 

1 =..1,1' 

2 = -A j +..1,2' 

3 = -..1,2 +..1,3' 

4 = - ..1,3 + ..1,4 + ..1,6' 

5 = -..1,4 +..1,5 +..1,6' 

6 = -..1,5 +..1,6' 

(3.5) 

when they are expressed in terms of fundamental dominant 
weights A; of E6• Their scalar products are subjects of the 
relation 

(3.6) 

These can be investigated directly by the inverse Cartan ma
trix of E6• 

We now calculate, for example, the anomaly of W(A 5 ), 

just as in Sec. II. This anomaly will consist of three contribu
tions coming from each suborbit in (3.3): 

L (1, t13 =A (..1,5) +A (..1,2 -..1,6) +A (As -..1,6)' 
,EW(A,) 

where 

The result is 

'" (1 (.)3 - 13 + 10 _ 23 - 0 L.J ' -9 9 9-' 
.EW(A,) 

where each contribution is calculated with the aid of (3.6). 
The same result would be obtained for any orbit of E6 • 
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A collection.if of algebras with anticommuting basal elements is investigated. It is shown that the 
collection.if includes the quaternions, the octonions, the "algebra of color," as well as other 
algebras familiar to the physicist. Each algebra.if is a quadratic, Jordan-admissible algebra and 
possesses a norm that is a generalization of the Minkowski metric. Using a Cayley-Dickson-like 
process, each such algebra A in .if can be embedded into a larger algebra A that is also in the 
collection.if. These algebras should provide candidates for models to describe observables, color, 
and other phenomena encountered in particle physics. 

PACS numbers: 02.1O.Tq, 02.1O.Ws 

I. INTRODUCTION 

Let .s# denote the collection of algebras A such that 
each A in .s# is an algebra over a field f/> not of characteristic 
two. Furthermore, each such algebra A has a basis! e, U I' U 2, 

... , Un J over f/> such that e is the identity of A and 
UjUj = - UjU j if i=/-j, i,j = 1,2, ... , n, (1.1) 

and, for each i = 1,2, ... , n 
u~ = aje, ajEf/>, (1.2) 

and each a j is equal to + 1 or - 1. 
Hamed and Salingaros I construct all algebras in .s# 

which can arise in physics for n = 3. They are (i) the quater
nions, (ii) the dihedral Clifford algebraNI , which is related to 
the real 2-spinors, and (iii) the algebra of Pauli matrices SI' 
which is related to the complex 2-spinors. Wene2 shows that 
the algebra of color (see Domokos and Kovesi-Domokos3

) is 
also in .s# for n = 6. There are many more algebras in .s# of 
interest to physicists besides these four. 

We show in Sec. II that the so-called Cayley-Dickson 
process can be used to construct algebras in the collection 
.s#. As a result, we note that most of the algebras used by 
physicists and constructed by the Cayley-Dickson process 
are in .r#. 

Section III is a discussion of the more significant prop
erties of the algebras in.s#. All the algebras in.s# are Jordan
admissible and a physical interpretation of this property is 
discussed. 

Section IV gives necessary and sufficient conditions 
that these algebras be flexible. 

II. A GENERALIZATION OFTHE CAYLEY-DICKSON 
PROCESS 

Let AE.s# and xEA. Let -: A_A be given by, for 

x = xoe + l:7,:.:-/ XjU j' 
x = 2xoe-x 

n-I 

(2.1) 

= xoe - L XjU j. (2.2) 
i=l 

By the (generalized) Cayley-Dickson process construct 
an algebra A (u) of dimension 2n over f/> having A as a subal
gebra (with eEA ) as follows: A (u) consists of all ordered pairs 
x = (a I' a2), a I' a2 in A, addition and multiplication by sca
lars defined componentwise, and multiplication defined by 

(2.3) 

for all a I' a2 , a3 , a4 in A and some fJ,Ef/>. Then e = (e, 0) is an 
identity element of A (u),A' = !(a,O)laEA J is a subalgebra of 
A (u)isomorphictoA,v = (0, e) isan element of A (u)suchthat 
v2 = fJ,e, and A (u) is the vector space direct sum 

A (u) = A + vA '. (2.4) 

If we identify A ' with A, the elements of A (u) are of the form 

x=a l +va2 , a l ,a2 inA, 

and multiplication is given by 

(2.5) 

(a l + va2)(a3 + va4 ) = a l a3 + fJ,a4a2 + v(a l a4 + a3a2)· 

(2.6) 

Theorem 2.1. If A is in.s#, then so areA ( - 1) and A (1). 
Proof A basis for A ( - 1) over f/> is 
e, ve, Uj> VUj> i = 1,2, ... , n - 1. 

By direct computations we see that 
(ve)2 = fJ, = - 1, 
(VU j )2 = fJ,uJi j = - fJ,a j = aj' 
(VU;)(VUj ) = - (VUj )(Vu j ), 
(VUj)Uj = - uj(vuJ 

Similarly for A (1). 
If we begin with the real numbers JR, JR( - 1) is simply 

the complex numbers C, JR( - 1)( - 1) = JR( - 1, - 1) is the 
quaternions, JR( - 1, 1) the split quaternions, JR( - 1, - 1, 
- 1) the octonions, and JR( - 1, - 1, - 1, - 1) the seden

ions. Since JR is (trivially) in .s#, so is each of these algebras. 
Conway4 derived the Dirac equation and fine structure 

in terms of quaternions in 1948. Hamed and Salingaros I 
demonstrate how the quaternions may arise in physics. The 
reader who is unfamiliar with the applications of the octon
ions in physics is referred to the article by Sorgsepp and 
L6hmus.5 For a discussion of the 16 dimensional sedenions 
see Sorgsepp and L6hmus.6 Brown? determines specific con
ditions that the 16-dimensional algebras be division alge
bras. 

The algebra JR( 1) is the only abelian Clifford algebra 
other than JR and JR( - 1). Salingaros8 constructs the alge
bras JR(I, - 1) and JR(I, - 1, 1). The algebra R(I, - 1) is 
isomorphic to the split quaternions, and R(I, - 1, 1) is iso
morphic to the split octonions. The split quaternions and 
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space-time symmetries are discussed by Jantzen.9 The article 
by Sorgsepp and L6hmus 10 is a nice introduction to the real 
algebras constructed via the Cayley-Dickson process. 

Each algebra A in .rI is a quadratic algebra in the sense 
of Theorem 2.2. 

Theorem 2.2. Let A be an algebra in .rI. Then A has an 
identity e and each x in A satisfies 

x 2 = 2t (x)x - q(x)e, (2.7) 

where t (x) and q(x) are elements of (/>. 
n 

Proof Let x = xoe + L XiU i· Then 
i= 1 

x2 
= 2xoX + [ Ctlx~ai) - X6 ]e. (2.8) 

The trace ofx, t (x), is a linear functional onA. The trace 
is called associative if 

t ((xy)z) = t (x(yz)). 

The trace induces a trace form t (x,y) on A via 

t (x,y) = t (xy) 

(2.9) 

(2.10) 

for all x, yin A. Likewise the norm q(x) defines a symmetric 
bilinear form q(x,y) on A: 

q(x,y) = q(x + y) - q(x) - q(y). (2.11) 

Say q(x) is nondegenerate if q(x,y) is. 
Let Ctf be a quadratic algebra and let -: Ctf ---+ Ctf be 

given by 

x = 2t(x)e - x (2.12) 
for all x in Ctf. We can repeat the previous construction to get 
Ctf 1J1) for fLE(/>. The following two theorems describe the rela
tion of Ctf 1J1) to Ctf . 

Theorem 2.3. Let Ctf be a quadratic algebra and fL = O. 
Then Ctf (0) contains an ideal N such that N 2 = 0 and 

Ctf(O)~Nffi Ctf(O)/N, 

where YJ (0)1 N is is isomorphic to Ctf. 
Proof The set N = [VC!CEYJ J is an ideal and N 2 = O. 
Theorem 2.4. Let Ctf be a quadratic algebra over (/> and 

fL E(/>, fL =I- O. 
(i) Ctf 1J1) is a quadratic algebra over (/> and the linear 

form t can be extended to Ctf 1J1) via 

t (c i + VC2) = t (cd. (2.13) 

Similarly, q(x,y) can be extended to CtfIJ1) by 

q(C I + VC2)(C3 + VC4) = q(c l , c 3) - q(c2, c4). (2.14) 

(ii) If Ctf has anyone of the properties: 

(1) t (xy) = t (yx), 

(2) t ((xy)z) = t (x(yz)), 

(3) C(i is flexible, 

(4) q is nondegenerate, 

(5) t (x,y) is nondegenerate, 
then Cff 1J1) has the same property. 

(iii) If C-C is an involution in Cff I then 
CI + VC2-CI - VC2 is an involution in CffIJ1). 

Proof This isjust Theorem 3.6 on page 218 of Braun 
and Koecher. II 
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III. THE ALGEBRAS IN ,yf 

Theorem 2.2 says that each algebra A in .rI is quadratic. 
Each quadratic algebra of dimension 3 or more over its cen
ter is a central simple algebra; a quadratic algebra of dimen
sion 5 or more over its center must be non associative. All 
quadratic algebras are strictly power associative. Giirsei 2 

proposed that the nonobservability of isolated quarks must 
be associated with a non associative algebra. 

If B is an algebra over (/>, let B + denote the vector space 
B over (/> with a new multiplication, 0, given by 

aob = !(ab + ba) (3.1) 

for all a, bEE. If B + is a Jordan algebra, we say that B is 
Jordan-admissible. Jordan 13 and Jordan, von Neumann, and 
Wigner l4 first showed that the set of observables form a Jor
dan algebra under the product (3.1). Faulkner,15 starting 
with much weaker assumptions, shows that the set of obser
vables has the structure of a quadratic Jordan algebra under 
the product (3.1) and is a normed linear space over the real 
numbers R. If B + is a simple Jordan algebra, B is called J
simple. The classical discussions of Jordan algebras are 
Braun and Koecher ll and Jacobson. 16 

All quadratic algebras are Jordan-admissible and, 
therefore, all algebras in .rI are quadratic, Jordan-admissi
ble. 

Many of the algebras in .rI arise in relativistic mechan
ics (see Kyrala l7 and Giinaydin and Giirsey I8). We observe 
that if A is an algebra in .rI, and x is an element of A, 

n - 1 

x=xoe+ LXiUi' 
i= 1 

The norm of x, q(x), is given by 
n-l 

q(x) = X6 - L x~a" 
i=l 

(3.2) 

(3.3) 

where each a i is + lor - 1. Recalling the Minkowski met
ric 

(3.4) 

whereR is a vector in 3-space, (3.3) is a Minkowski-like met
ric on a n + 1 space. 

The Cayley-Dickson process will allow one to con
struct algebras in .rI of very large dimensions. That algebras 
of large dimensions will probably be needed to describe ob
served phenomena is generally acknowledged. A specific ex
ample would be an algebra to model the hypercolor instan
tons in Weinberg l9

; with five hyperquarks for each of three 
colors and the corresponding anticolor components and a 
colorless natural element; such an algebra would require a 
basis of at least 31 elements. Horwitz and Biedenham20 show 
that a Hilbert space over the real Clifford algebra C7 (a 128-
dimensional algebra over R) can provide models for the uni
fication of weak, electromagnetic, and strong interactions 
utilizing the exceptional Lie groups. 

We can attach yet another algebra to B. Denote by B -
the algebra with the same vector space as B but with a new 
product [ , ] defined by 

[a, b] = !(ab - ba), (3.5) 

where juxtaposition denotes the product of ab in B. If B - is a 
Lie algebra, B is said to be Lie-admissible. The reader is 
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referred to Myung, Okubo, and Santilli21 for applications of 
Lie-admissible algebras in physics. Since the octonions are 
not Lie-admissible, the algebras in d are not, in general, 
Lie-admissible. 

IV. THE FLEXIBLE ALGEBRAS IN .sf 

Albere2 showed that each flexible, quadratic, J-simple 
algebra has a basis Uo = e, U I , U2, ... , Un' where 

ui = aie for a i #0, aiE<I> 

and uiuj = - ujui for i#j, i,j = 1,2, ... , n. If the field <I> is 
algebraically closed, the ui's can be chosen so that the ai's 

are all + 1. Particularly, over the field C, the norm (3.3) 
becomes 

n-I 

q(x) =x6 - Ixi. (4.1) 
i= 1 

We determine the flexible algebras in d and give neces-
sary and sufficient conditions that an algebra in d be J
simple. 

If B is an algebra of dimension n over <1>, let UO, U I' U2' ... , 

Un _ I be a basis of B over <1>. Then the multiplication in B is 
completely determined by the n3 multiplication constants 
Y ijk which appear in the products 

n-I 

uiuj = L YijkUk' YijkE<I>. (4.2) 
k~O 

If A is an algebra in the collection d, set e = uO' then write 
(1.1) as 

Yijk = -Yijk' i#j,i,j= 1,2, ... ,n, k=O,I, ... ,n 
(4.3) 

and (1.2) gives 
Yiik = 80k a i , i, k = 0, 1, ... , n. (4.4) 
We recall that an algebra B is said to be flexible if, for 

each x, yER we have 

(x, y, x) = (xy).x - x(yx) = 0. 

Expression (4.4) is equivalent to 

(x,y, z) = - (z,y, x) 

for all x, y, zER. We have the following: 

(4.5) 

(4.6) 

Theorem 4.1. Let A be an algebra in d. The following 
are equivalent: 

(i) A is flexible. 
(ii) The trace form T(x,y) = T(xy) is symmetric and as

sociative. 
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(iii) (a) YijO = Yiji = Yijj = 0, i=fj, i,j = 1, ... , n 
(b )aiYjki = a k Yijk , i#j, i,j, k = 1, ... , n 
where a is satisfied if k = i or k = j. 

Proof (i)¢:>(ii). See Braun and Koecher. II 
(i)¢:>(iii). See Albert.22 
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Theorem 4.2. Let A be an algebra in d. Then A is J
simple if and only if t (x) is associative and q(x) is nondegener
ate. 

Proof Braun and Koecher, II p. 217. 

CONCLUSION 

We have seen that many of the models used in physics are 
members of the collection ,rff of algebras. This collection 
should continue to provide models that reflect the Jordan 
algebra structure of observables. 

Additionally, the Cayley-Dickson process can be used 
to construct new algebras with these same properties and 
that contain algebras with desirable properties. 
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Double-Gel'fand boson polynomials and the permutation group 
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Double Gel'fand polynomials of boson operators spanning the irreducible representation [m] of 
U(n) in U(n)* U(n) have been obtained using symmetrized linear combinations ofWigner operators 
of the permutation group. The normalized coefficients which occur in the polynomial 
representation have been expressed as linear combinations of the Young orthogonal 
representation matrix elements. 

PACS numbers: 02.20. + b, 05.30.Jp 

1. INTRODUCTION 

The problem of boson polynomial representation of 
double Gel'fand states is one which has been extensively 
studied by Louck, Biedenharn, Moshinsky, and others, 1-3 

over the last few years. These polynomials, which play an 
important role in generating a tensor algebra for unitary 
groups, are canonical basis states spanning an irreducible 
representation (irrep) [m] of either U(n) ® U(n), such that the 
product representation induces the symmetric representa
tion [N,O, .. ,O] ofU(n2). Basically the problem consists of 
determining the coefficients of the monomial terms 

1T'/J = 1 (a /r/l 0) occurring in the boson polynomial (cf. Ref. 4 
for notation) representation of the above states. Various 
schemes exist for determining these coefficients. A standard 
procedure4 is to express these coefficients as matrix elements 
over a Gel'fand basis of a product of unit tensor operators. 
For a special class of terms such that a/ = 0 or 1 for all [a] 
and any i,j = 1, ... ,n, these matrix elements have been 
uniquely identified with the real orthogonal representation 
matrices of the permutation group S N' on the subindices of 
either the upper or lower indices of the defining tensor mon
omials: 

{ T (1 10)=TjJ
2···jN 10)= lIn d: 10) 

(11 ','2°"'N 'k' 
k=1 

1 ,il 'i2'···'iN ,n, 
(1 ) 

The natural question which arises is whether such a corre
spondence exists with a subset of permutations of S N for 
cases where a/ > 1. If so, the next point to consider is 
whether, using the representations of SN' a computationally 
simpler scheme results. In a recent paper, Antillon and Selig
man5 examined a number of alternative schemes for obtain
ing these coefficients and interrelationships among them. 
Though these alternatives recognize the dualism between 
unitary and permutation groups, they do not provide a direct 
answer to the above question. 

In the present paper, we have attempted to utilize the 
dualism explicitly to generate an orthonormal double Gel
'fand basis using doubly symmetrized linear combinations of 
the elements {e;.'; Ir,s = 1, ... jm} of the algebra of SN for the 
representations [m]. An immediate fallout of this approach 
has been to identify the required coefficients as linear combi
nations of the representation matrix elements [P];.'; of SN 
over all P leading to the given monomial structure. These 

ideas have been developed in Sec. 2 and illustrated with ex
amples. A brief discussion of the method is presented in Sec. 
3. 

2. DOUBLE GEL'FAND POLYNOMIALS 

Consider the set of tensor monomials defined by Eq. (1), 
which are of rank N in both upper and lower sets of indices 
and span a representation space ofU(n2). In view of the com
mutation relations satisfied by the boson operators 

[
_. 1 £ £i/ [_. -/ ] [. /] ° (2) {P;, ak ] = Uik U , (p;,a k = £1;, ak = , 

we find that a simultaneous permutation of the upper and 

lower indices of T~:::t leaves the monomial invariant: 

PT:~IIO) = T~~lIO) 
= T j

P< I Ip<2)"':ip<N) 10) = TUllO). 
J~lJ'p(21""p\N) (I) (3) 

This implies that only the symmetric representation [N, 
0, ... ,0] ofU(n2) results from these tensor monomials. How
ever, if the permutations Pore act only on the upper orlower 
indices, respectively, we obtain the results 

PTilIO) = e-ITilIO), (4a) 

£Ti~110) = P -ITilIO), (4b) 

following Eq. (3). The results of (4a) and (4b), in tum, lead to 
the fact that the Nth rank tensor space of upper and lower 
indices of Ti~l are reducible and generate the irreps [m] of 
U(n). The reduction can be effected using suitable linear 
combinations of the Wigner operators of SN,6 defined in a 
normalized form as 

e;.'; = ~ I)P];.';P, \j NT P 
(5) 

where P is either P or £ and [P];.'; is the rsth element of the 
Young orthogonal representation matrix of PES N for the ir
rep [m] of dimensionality 1m' Before examining the neces
sary linear combinations which generate the canonical basis 
for [m]X [m]C[N,O, ... ,O] ofU(n2)!U(n) ® U(n), consider the 
functions 

(r) 

[ni] 

(s) 

(6) 

where the bar on [ni] is used to indicate that the P are being 
used. Using Eq. (4a), we obtain 
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(r) 

Un] 
(s) 

TIl1)={lim "'[p]mp-ITIl110) (11 N' L rs- (II 
. P 

= {lim "'[P ]mpTIl1 10) 
N ' L sr- III 

• p 

(s) ) 
[111] Tlh1 , 
(r) 

(7) 

thus showing that only one set of basis states resulting from 
the use of either P or £. is at most linearly independent. 

Operating a permutation Q on the right of the semico
lon on the state defined by Eq. (6), we get the result: 

r~] Q Till) = {lim "'[P ]mpQ- T 1l1 10) (11 N' L rs III 
~ • p 

(r) ) 
[ni] Ti~l . (8) 

(t) 

J;" 

I [Q]:; 
t~1 

Thus, the basis defined by Eq. (7) transforms according to the 
Young orthogonal representation [m] of SN' 

Similarly, the action of Q yields 

r~] QTlh1) = r~] QTl~l) 
(s) (r) 

~ {Ii 2j,IP 1~!'QTi~IO) 
1m (s) ) 

= t?1 [Q];:; [111] TiiJ1 

(t) 

(t) ) 
[ni] Ti~l . (9) 

(s) 

1m 

= I [Q];:; 
t~ I 

Thus a result similar to that ofEq. (8) again follows. Similar 
analyses and conclusions could be carried out for Q and Q 
acting from the left. 

We _~lOw consider T:~l ofEq. (1), which is invariant un
der any QESN " ®SN', ® ... ®SN'n and QESN, ®SN, 

® ... ®SNn' where 
n n 

INk = INk =N. (10) 
k~1 k~1 

This indicates that the indices i k , j k appear N k> N k 
times, respectively, in the monomial. Using the results of 
Eqs. (8) and (9), it then follows that not all the basis states 
defined by Eq. (7) are linearly independent. In fact, all those 
standard Young tableaux (r) related by any 
QES N' ® S N' ® ••• ® S N' yield only one independent state ,2 n 

and, similarly, all those (s) related by QESN ®SN ® ... ®SN 

also yield just one state. Using argum~nts devel~ped in ea;~ 
lier papers,7.8 we can identify each of these sets leading to 
single Weyl tableaux. The question then arises as to what 
tableaux indices (r) and (s) to choose to indicate the Weyl 
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states (m.) and (m 2 ) of[m]. This has been considered in detail 
in the earlier paper7 on Gel'fand basis. An extension of it 
leads us to define a doubly symmetrized Wigner operator as 
a linear combination 

(11 ) 

where the summations are over all Young tableaux (r), (s) 
yielding the Weyl tableaux (m I) and (m2)' respectively. A 
simple algorithm has been developed earlier7,8 for determin
ing a~m,I' etc., using the in variance properties 

e~;:',lIm,IQ = e~,lim,i' 

Q- em - em 
Im,lim,1 - (m,lim,l' 

QESN, ®",®SNn' 

QESN , ® ... ®SN' . 
, n 

(12) 

( 13) 

Using these, we write the double Gel'fand state as 

(m l
) ) 

[m] TiiJ1 

(m 2 ) 

~ [,~, N,!,~, N',!j-U'ra;;m"a,m"I-'{Ii 
X I [P ];.';PTiiJ1IO). (14) 

p 

We can now demonstrate that the above basis transforms as 
a set of basis states of the irrep [m] under the action of the 
generators E

cd or Ecd of either component ofU(n) ® U(n). 
These generators are defined as (cf. Ref. 9, p. 122) 

n 

Ecd = I a~a~, (ISa) 
k~1 

(c,d = 1, ... ,n). 

(ISb) 

Considering the action of E cd of Eq. (15a) on the state de
fined by Eq. (14), we find 

(m l ) 

[ni] 

where 

N= [)JIN<tIIN/!]-1/2(a~m'la;m'I)-I. (17) 

Observe that the right side ofEq. (16) is zero if Nd = O. This 
follows from the definition of E cd in Eq. (ISa). If Nd =f 0, then 
Ecd replaces, symmetrically, indexed by c, one at a time, so 
that we get Nd identical terms with d---+<:, but not necessarily 
in the proper ordering defining a Tihl as in Eq. (1). A cyclic 
matching permutation, however, restores the order so that 
we have 

(m l ) 

E cd [in] 

(18) 
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where the tensor monomial TW has all occupancies ik ,jk the 
same as in Tlhl, except for c and d. For c and d, we have 
N'c = N'c+ I' and N'd = N'd - 1. Vsing the procedure 
that is the inverse of the one leading to Eq. (14), we can 
express the right side ofEq. (18) as 

(19) 

Since the states II:J) are generated using the same Young 
diagrams as for [m], which are stable under E cd, these are the 
basis states for the irrep [m] ofV(n) over the upper label of 
T~~l. An exactly identical procedure can be carried out for 
Ecd ofEq. (ISb), leading to the fact that the lower states II:J) 
provide basis for the irrep [m] ofV(n) over the lower set of 
labels of Tl~l. Furthermore, considering the elementary gen
erators E c.c + I and Ec•c + I , the equality can be demonstrated 
of the transformation coefficient in Eq. (19) to that of matrix 
elements of the elementary generators, calculated according 
to the prescription given in an earlier paper.8 Thus Eq. (14) 
defines the double Gel'fand states terms of boson polynomi
als. 

The occurrence of repeated indices in the upper and 
lower indices of Tl~1 can create difficulties in assessing the 
effect of P on the ordering of the upper indices. It is then 
more convenient to recast the right hand side ofEq. (14), 
using a set of matrices [a(P)] Xi, defined as 

[a(P)] v1 = [a(P)] UJ,···jN) 
)/1 (/I/"" N ) 

=[a]~[p-I]~[a]W (20) 

Here [a] ;V is an (n X N) matrix with zeros everywhere except 
unit entries at (iI' 1), (i2' 2), ... ,(iN,N); [P -I]Z is an (N XN) 
matrix having zeros everywhere except unit entries at (1, 
P -1(1)), (2, P -1(2)), ... ,(N, P -I(N)), and [a]~ is an (N Xn) 
matrix with zeros everywhere except unit entries at (1 ,j d, (2, 
j2),···,(N,jN)' In terms of these [a(P)lY.i, we can reexpress Eq. 
(14) as 

(m l ) 

[ni] 

(m 2 ) 

where ~ (P) is the (i,11th element of [a(P)] Xi. 
Two cases of the matrices [alP)] occurring in Eq. (21) 

need consideration. Firstly, if we consider a subset of mono
mials ofEq. (1) satisfying l<il d~ < """ dN<n, 
141 <j2""" <jN<n, we find that each PESN leads to distinct 
arrangements of the indices in Tl~1. This, in turn, means that 
there are N! terms in each such boson polynomial and each 
coefficient is just [P] ~ apart from an overall normalization 

constant ~/m/N!. This result is similar to the one estab
lished by Louck and Biedenharn.2 The second case is that of 
the more general set of monomials Tl~1 ofEq. (1) with ik,jk 
(k = 1, ... ,n) occurring, respectively, N k , N' k times. In this 
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case, both lower and upper indices admit invariance groups 
of permutations as in Eqs. (12) and (13), respectively. This 
leads to the fact that a number of [a(P )] become identical and 
the corresponding coefficients of the monomials are linear 
combinations of Young representation matrices of S N' Since 
these coefficients occur explicitly in the boson polynomials, 
it is necessary to identify the sets of permutations leading to 
distinct T){ In order to do this, we proceed as follows: 

(i) Determine the invariance group of permutations 
QESN, ®SN, ® ••• ®SN

n 
as defined in Eq. (12) and their right 

coset permutations in SN' 

(ii) Group these cosets into sets that lead to distinct ar
rangements of indices in T~hl taking into consideration the 
boson character of the a/ 

(iii) Operate with the permutations of Step (i) from the 
left on each of the elements of the sets defined as in Step (ii) to 
generate distinct arrangements of the upper indices of Tih1 

for a given ordering of the lower ones. Each set of these 
permutations {Pka Ik = 1, ... ,na } results in a single [a] ma
trix. 

As an illustration of this procedure, consider 
T i~~~ = a2

1a2 2a3 2a/ ofV(3) ® V(3). The in variance group as 
in Step (i) isS2 XS2: Ie, (12), (34), (12)(34)J. The right coset 
permutations of this group may be chosen as Ie, (13), (14), 
(23), (24), (13)(24)). Vsing Step (ii), these are grouped as Ie, 
(23)J, I (13)), II 14, (13 )(24) ) , and I (24)J. Operating on these 
sets from the left with Ie, (12), (34), (12)(34)), as in Step (iii), 
we obtain the results: 

IPI! = Ie, (12), (34), (12)(34), (23), (123), (243), (1243)), 

[P2 ) = [(13), (132), (143), (1432)), 

[P3 ) = 1(14), (142), (134), (1342), (13)(24), (1324), (1423), 

(14)(23)), 

[P4 ) = 1(24), (124), (234), (1234)). 

It can be readily verified using Eq. (20), that these sets yield 
the following [a]-matrices: 

[a,] ~G 

[a,] ~G 
respectively. 

o 

o 

~} 

D· 

[a,] ~G 
0 

2 

0 

[a.] ~G 
0 

0 

2 

Representing such sets of permutations as in Step (iii) by 
I Pka Ik = 1, ... ,na ), we can reexpress Eq. (21) as 

[ni] T:~1 = N 1M LA ;:;(a) IT (tI;tiIO), (22) (mIl ) J1i 
Nl lal IJ~ I 

(m 2 ) 

where N is as defined earlier in Eq. (17), a/ is the (i,j) element 
of [a] with 

[a] = [a(Pkal] (k = 1, ... ,na ), (23) 

and 

A~(a)= I [Pka]~' (24) 
k~1 
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Before leaving this topic, it is worth illustrating the 
present approach using a simple example. Consider the basis 
state 

( 12) 
2 

[ 210] 

( 11) 
2 

T I22 
112 

ofU(3) ® U(3) expressed in Weyl tableaux notation. The 

T m are symmetric under lU) and ( 23) so that symmetriza
tion as in Eqs. (12) and (13) yields 

[21J _ [21J _ I [21J + .J3 [21J e 12 11 - e 12 12 - 2e l212 e1312 • 
12 112 1 12 13 2 3 2 2 3 

Choosing r = s = 12 for the representation [2, 1] of S3' we 
3 

have 

a [2,IJ - 1 and a[2,IJ = 1 1212 - '2 1211 , 
3 2 3 2 

( 12) 
2 2 

[ 210] TI22 
112 

111 J 
2 

2 2 

3. DISCUSSION 

The approach outlined in Sec. 2 leading to the results of 
Eqs. (22)-(24) needs essentially the representation matrices 
of S N' Procedures for handling general transpositions 10 and 
cyclic permutations 11. 12 have now been programmed so that 

determining A ;; (a) of Eq. (24) is not too difficult a task. 
These coefficients are, apart from an overall multiplicative 
factor, identical with 

(

(m l )) 

C [m] (a) 

(m 2 ) 

obtained by Louck and Biedenham. 2 Thus, the matrix ele
ments of products tensor operators ofU(n) over Gel'fand 
basis are basically linear combinations of Young orthogonal 
representations matrices over (Pka ) Ik = 1, ... ,na ) satisfying 
Eq. (23). This result which is the generalization of the one 
obtained earlier2 for TiiJ1 (1 <;;;i l < i2 < ... < iN <;;;n; 
1 <J I <j2 < ... <j N <;;;n), will, we hope, lead to a better under
standing of the nature of the tensor operators of U(n). The 
interrelations obtained by Antillon and Seligman5 between 
various procedures for obtaining the coupling coefficients 

(
(mIl) 

C [m] (a) 

(m 2) 
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which yields the normalization factor of Eq. (17) to be 

N= [2!2!]-1/20 X l)-I= 1. 

The in variance permutations as in Step (i) are Ie, (12)) and 
the right cosets of these in S3 are Ie, (13), (23)) . As per Step 
(ii), these can be grouped as (e, (23)) and I (13) I. Operating on 
these sets from the left with ( e, (12) ) , as in Step (iii), we obtain 

IPd = fe, (12), (23), (123)), 

IP21 = {(13), (132)). 

The distinct [a] matrices corresponding to these permuta
tions are 

[a,] ~ G 0 n [a,] ~ G ~ n 
Using the representation matrices for [2, 1] of S3,6 we readily 
obtain from Eq. (24) the result 

A I~g(al) = 1, A Im(a2) = - 1 
3 3 3 3 

so that using Eq. (22) we have 

hold true in the present context also, since we have shown 
that it is related to one of them. 

It should be pointed out that the present use of dualism 
between SN and U(n) to generate double Gel'fand states is 
not entirely new. Bohr and Mottelson (cf. Ref. 9, pp. 130-
131) dealt with a simple case of special Weyl tableaux states 
using such a dualism. Moshinsky3 used this dualism in gen
erating the special Gel'fand basis for the irreps ofU(n). More 
recently, Patterson and Harter l3,14 have used unnormali~ed 
seminormal projection operators of S N to generate cano.mcal 
Weyl boson and fermion polynomials. These p~lynomlals 
have to be individually normalized after collectmg terms 
since the seminormal operators differ from permutation op
erators through a positive constant Crs and no prescription 
has been given for determining them. Furthermore, an ex
plicit identification of the permutations {Pka J Ik = 1, ... ,nu 1 
satisfying such an equation as our Eq. (23) has also not been 
carried out in their analysis; accordingly, a direct correspon
dence of their approach with other5 is difficult. 

ACKNOWLEDGMENTS 

Our sincere thanks to Dr. J. D. Louck for his help in a 
clear understanding of the problem and to Dr. G. G. Sahas
rabudhe for his help in the early stages of the study. 

IJ. D. Louck, Am. J. Phys. 38,3 (1970). 
2J. D. Louck and L. G. Biedenham, J. Math. Phys. 14,1336 (1973). 

R. S. Nikam and C. R. Sarma 420 



                                                                                                                                    

3M. Moshinsky, I. Math. Phys. 7, 691 (1966). 
41. D. Louck, Proceedings of Conference VII. International Colloquium on 
Group Theoretical Methods in Physics (Springer-Verlag, Berlin, 1978). 

5A. Antillon and T. H. Seligman, I. Math. Phys. 23, 473 (1982). 
61. G. Kaplan, Symmetry of Many Electron Systems (Academic, New York, 
1975). 

7G. G. Sahasrabudhe, K. V. Dinesha, and e. R. Sarma, I. Phys. A 14, 2189 
(1981). 

"e. R. Sarma and G. G. Sahasrabudhe, I. Math. Phys. 21, 638 (1980). 

421 J. Math. Phys., Vol. 25, No.3, March 1984 

9 A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. I (Benjamin, New 
York,1969). 

lOS. Rettrup, Chern. Phys. Lett. 46, 59 (1977). 
"G. G. Sahasrabudhe, K. V. Dinesha, and e. R. Sarma, Theoret. Chim. 

Acta 54, 333 (1980). 
12S. Rettrup and C. R. Sarma, Theoret. Chim. Acta 46, 73 (1977). 
13e. W. Patterson and W. G. Harter, J. Math. Phys. 17, 1125 (1976). 
14C. W. Patterson and W. G. Harter, I. Math. Phys. 17, 1137 (1976). 

R. S. Nikam and C. R. Sarma 421 



                                                                                                                                    

Infinitesimal operators and structure of the representations of the groups 
SO*(2n) and SO(2n) in a U(n) basis and of the groups SU*(2n) and SU(2n) in an 
Sp(n) basis 

A. U. Klimyk and A. M. Gavrilik 
Institute/or Theoretical Physics, Kieu-130, USSR 

(Received 13 October 1982; accepted for publication 18 February 1983) 

The infinitesimal operators of the most degenerate representations of the groups SO*(2n) and 
SU*(2n) are found in a discrete basis. The structure (composition series) of these representations is 
studied. The classification of unitary irreducible representations of these groups which belong to 
most degenerate series is given. The infinitesimal operators ofirredicuble unitary representations 
ofSO(2n) in a U(n) basis and ofSU(2n) in an Sp(n) basis are found for the cases of highest weights 
(M, M, 0, ... , 0), M>O. 

PACS numbers: 02.20.Qs 

I. INTRODUCTION 

This paper deals with the representations of the groups 
SO*(2n) and SO(2n) in a U(n) basis, and of the groups 
SU*(2n) and SU(2n) in an Sp(n) basis. 

The compact groups SO(n) and SU(n) are of great im
portance for different branches of physics (elementary parti
cle theory, atomic physics, nuclear physics, and quantum 
chemistry). Higher unitary groups describe internal symme
tries of elementary particles and their interactions, and the 
representations of these groups provide us with the corre
sponding quantum numbers. Different compact groups and 
their representations are involved in the nonabelian gauge 
theories which have been intensively developed during the 
last decade. Namely, the groups SU(n) and SO(n) underlie 
various models of grandunificating the fundamental forces 
(see, for example, Refs. 1-3). These groups also appear natu
rally in the extended supergravities.4

-
6 

Considering physical applications of group representa
tions we need various bases (corresponding to different sub
group reductions) of carrier spaces. For example, the reduc
tion SO(1O):JSU(5) is used to embed the Georgi-Glashow 
model into the Fritzsch-Minkowsky model. In our paper the 
unitary irreducible representations ofSO(2n) are considered 
in a Urn) basis and that ofSU(2n) in an Sp(n) basis. The 
highest weights are (M,M,O, ... ,O), M = 0,1,2, .. ·. 

On the other hand, the fact that the noncom pact groups 
SO*(2n) and SU*(2n) have almost not been applied by physi
cists can be explained by complexity and poor knowledge of 
their representations. However, even the appearance of the 
groups SU*(6) and SO*(12), SO*(12):JU(6), as global sym
metries 7 of the extended N = 6 supergravity in five- and six
dimensional space-time, respectively, supplies a good exam
ple of possible applications of these noncom pact groups. 

Here we shall investigate the representations of the 
most degenerate series (MDS) of the groups SO*(2n) and 
SU*(2n). The information on the degenerate series represen
tations and their intertwining operators is contained in Refs. 
8 and 9. We shall construct explicitly infinitesimal operators 
of the MDS representations of these groups in discrete bases. 

The formulas we obtain for the infinitesimal operators ap
pear rather simple, and therefore the representations become 
visible and available for physical applications. Furthermore, 
the MDS representations of the groups SO*(2n) and SU*(2n) 
possess the feature that the spectrum of their restriction to 
the maximal compact subgroups U(n) and Sp(n), respective
ly, is simple (this fact is not valid for more general represen
tations of these groups). It is this property which makes the 
use of the MDS representations of these groups in the dyna
mical group schemes possible. 

Relative simplicity of the infinitesimal operators of the 
MDS representations allows us to study their structure and 
to obtain in the matrix form all the intertwining operators. 
By means of the latter we extract all the unitary representa
tions which are contained in the MDS representations. In 
fact, we obtain the classification of the irreducible most de
generate unitary representations of SO*(2n) and SU*(2n). 

In addition, we use the representations ofSO*(2n) and 
SU*(2n) to derive the infinitesimal operators of the unitary 
irreducible representations of the group SO(2n) with highest 
weights (M,M,O, ... ,O) in a Urn) basis and ofthe group SU(2n) 
with highest weights (M,M,O, ... ,O) in an Sp(n) basis. For this 
purpose we use the method developed in Refs. 10-13. Let us 
note that the formulas for infinitesimal operators of the re
presentations ofSO*(2n), SO(2n), SU*(2n), and SU(2n) ob
tained here are valid for every K basis, where K = U(n) for 
SO*(2n) and SO(2n), and K = Sp(n) for SU*(2n) and SU(2n). 

We remark that physicists sometimes denote the sym
plectic group Sp(n) as Sp(2n). Here we accept the notation 
and description of these and all other groups used by Helga
son in Ref. 14. The concepts and statements of the represen
tation theory of semisimple Lie groups can be found in Ref. 
15. 

Considering the groups SO*(2n) we put n > 4 whereas 
for SU*(2n) we put n > 2. The groups SO*(2n), n<4, and 
SU*(2n), n<2, are isomorphic to other groups14 and their 
MDS representations have already been studied. Let us note 
that some of our results concerning SU*(2n) have been ob
tained independently (by other methods) by A. Guille
monat. 16 
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II. THE REPRESENTATIONS OF THE MOST 
DEGENERATE SERIES OF THE GROUPS SO*(2n) and 
SU*(2n) 

The group SO*(2n) consists of the matrices ofSO(2n, C) 
which leave invariant the skew-Hermitian form l4 

-ZIZn+1 +Zn+I Z I- z ;in+2 

+ Zn + 2Z2 - ••• - znz2n + z2n zn' 

The group SU*(2n) consists of the matrices ofSL(2n, C) 
which commute with the following transformation l4 of the 

space C 2n
: 

¢: (ZI' ... , Zn' zn+ I' ... , Z2n) 

----+-(Zn+l' ... ,Z2n' -Z1' "0' -zn)' 

The Lie algebra so*(2n) consists of the matrices l4 

(1 ) 

where ZI are skew-symmetric complex n X n matrices and 
Z2 Hermitian complex n X n matrices. The Lie algebra 
su*(2n) consists of the matrices 14 (1) for which ZI and Z2 are 
complex n X n matrices with Tr(Z I + Z I) = O. 

The maximal compact subgroup K ofSO*(2n) is iso
morphic to U(n). The group U(n) is embedded into SO*(2n) 
in the following manner: If A + iBEU(n), where A and Bare 
real matrices, then 

A + iB-( _; ~ )ESO*(2n). (2) 

The maximal compact subgroup K ofSU*(2n) coincides with 
Spin). 

Let G denote one of the groups SO*(2n), SU*(2n). Let g 
be a Lie algebra of G and f a Lie algebra of K. The algebra g 
has the Cartan decompositionl4 g = f + 1'. For g = so*(2n), 
l' consists ofthe matrices 14 

(
iXI iX2) . r-1 . ., Xl>X2Eso(n), I ='-J -1. 
IX2 -IXI 

(3) 

For g = su*(2n), l' coincides with the set of matrices 14 

( 
iZI Z2) - .- , ZIE su(n), Z2E so(n, C). 

-Z2 -IZI 
(4) 

Let G = ANK be an Iwasawa decomposition 15,17 of G, 
where A is a commutative subgroup and N a nilpotent sub
group. We shall consider the MDS representations of G. To 
construct them, we use the maximal parabolic subgroup 

P=ANMI(K) =AINIMI, 

where A and N are the same as in the I wasawa decomposi
tion' A I is a one-dimensional subgroup of A, to be defined 
below, MIn A = 1, and NI eN. The MI is a maximal con
nected subgroup of G such that mla l = alm l for every 
alEA I and mIEMI. For MI(K) we haveMI(K) = MInK. 

The subgroup A can be defined as A = exp a, where a is 
a Lie algebra of A. For G = SO*(2n) we can choose a to con
sist of the matrices (3) forwhichX2 = OandXI = diag(RI' ... , 
R nI2 ), if n is even, and XI = diag(O, R I' ... , R(n _ 1)12)' if n is 
odd. Here 

R. =( ° 
J _ tj 

(5) 
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For Al = exp a l the Lie algebra a l consists of the matrices 
tHI' tE R, with 

HI = diag( 0, ... ,0,( _ ~ ~).o, ... o,G - ~)). (6) 

It is easy to verify that M I -SO*(2n - 4)XSU(2)XAI' 
MI(K)-U(n - 2) X SU(2). 

For G = SU*(2n) we can choose a to consist of the ma
trices 

(7) 

for which tl + t2 + ... + tn = O. The Lie subalgebra al con
sists of the matrices tHI' tER, with 

(
-1 -1 -1 -1) HI = diag -- ,", --" -- ,", -- ,1 . (8) 

n-I n-I n-I n-I 

Now we have thatMI = SU*(2n - 2)XSp(I)XAI' 
MI(K) = Spin - I)XSp(I). 

The subgroup A of G can be represented as A = A IA2' 
whereA2 = exp a2 , and a2 consists of the matrices of a which 
are orthogonal to al (with respect to the Cartan-Killing bi
linear form). In other words, a2 consists of the matrices of a, 
for which the last coordinate tj is equal to O. It is clear that 
every element hE A can be decomposed uniquely into the 
product h = hlh2' hIEAI' h2EA 2• 

We consider the one-dimensional representation 

hlnlml-exp[A. (log hI)]' hIEAI' nlE N I , mlE M I , 

of the parabolic subgroup P, where A. is a complex linear 
form on a l. If hI = exp tHI' then 

exp[A. (tHtl] = exp ut, UE C. (9) 

These representations of P are used to construct the MDS 
representations 1T). of G. They act in the space L ~ (K ) which 
consists of the functionsfE L 2(K) satisfying the condition 

f(mk) = f(k), mE MI(K). 

The operators 1T). (g), gE G, act upon L ~ (K) as 

1T). (g)f(k) = exp[A. (log htl] f(kg), 

(10) 

(11) 

where hlEAJ and kgE K are defined by the Iwasawa decom
position ofthe element kg: kg = hnkg = hlh2nkg, hEA, 
h2E A 2, nE N. According to Eq. (9), 1T). are defined by one 
complex number u. For pure imaginary u - p the represen
tations 1T). form the principal unitary MDS (for definition of 
p, see Lemma 1 below). 

III. PRELIMINARIES 

In order to evaluate the infinitesimal operators for the 
representations 1T)., we shall make use of the Lemma 5.2 of 
Ref. 10. This lemma will be reproduced here. Let B (.,.) be a 
Cartan-Killing form on g, and fJ a Cartan involution related 
with the Cartan decomposition g = f + l'-k + p. Then 

(x,y) = -cB(x,fJy), c>O, (12) 

is a scalar product 14 on g. The adjoint representation of Gin g 
will be denoted by Ad. Now Lemma 5.2 of Ref. 10 for the 
representations 1T). can be formulated as follows. 

Lemma 1: The infinitesimal operators 1T). (Y), YE l'e (l'e 
is the complexification ofl'), of the representation 1T). act 
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upon the infinitely differentiable functions of L ~(K) as 

17,dY)f(k) = «Ad k)Y, H)A (H)f(k) 

- «(Ad k )Y,p) f(k) 

+ HQ,«(Ad k )Y, h )]f(k), (13) 

where H is a normalized element of a" h is an element of a, 
such that a(h ) = 1 [a is a simple restricted root '5 of the pair 
(g, ad], Qis identical to the operator Q, of formula (5) of Ref. 
12,p is half the sum ofthe positive restricted roots of the pair 
(g, ad (including multiple roots), and [.,.] denotes the com
mutator. Here (g, ad=(g, ad. 

Now we have to choose a basis of the space L ~ (K). This 
space has a basis which consists of all the matrix elements of 
irreducible unitary representations of K, which satisfy the 
condition (10). It is clear that this condition is satisfied by the 
matrix elements of those representations of K, which contain 
the identity representation of M, (K ). 

Lemma 2: The identity (one-dimensional) representa
tion of U(n - 2) X SU(2) is contained in the representations 
ofU(n) with highest weights (m l ,m2 ,0,m3,m4 ), 

m, - m 2 = m3 - m 4 • (Here ° denotes the part of the highest 
weight which consists of zeros.) The multiplicity of the iden
tity representation is equal to 1. 

Proof The reduction U(n):JU(n - l):JU(n - 2):J··· in 
the Gel'fand-Zetlin patterns shows that the identity repre
sentation ofU(n - 2) is contained in the representations of 
U(n) with highest weights (m"m 2,0,m3,m4 ). Let us consider 
all the Gel'fand-Zetlin patterns of the form 

m; ° o 
o 

m' 2 

From the action of the diagonal infinitesimal operators Ejj 

onto these patterns we can easily find the irreducible repre
sentations of the subgroup 

urn - 2)XU(1)~diag(U(n - 2), U, u-'), uEU(l), 

with the identity component for U(n - 2), which are con
tained in the representation ofU(n) with highest weight 
(m"m 2,0,m3,m4 ). Since the reduction SU(2):JU(1) is well 
known, this result can be easily generalized to the reduction 
U(n):JU(n - 2)XSU(2). This gives the assertion of the 
lemma. 

Lemma 3: The identity representation of Sp(n - 1) 
XSp(l) is contained in the representations ofSp(n) with 
highest weights (m, m, 0). The multiplicity is equal to 1. 

The proof is given in Ref. 7. (This lemma follows also 
from Theorem 4.1 of Chap. X in Ref. 14 since K / M, (K ) is a 
symmetric space.) 

The irreducible representation ofU(n) with highest 
weight (m"m Z,0,m3,m4 ) and ofSp(n) with highest weight (m, 
m, 0) will be denoted by [M]. This implies that M is the 
corresponding highest weight. Let fl be an orthonormal vec
tor ofthe carrier space of[M], which is invariant with respect 
to M,(K). Its uniqueness follows from the Lemmas 2 and 3. 
Let us choose an arbitrary, but fixed, orthonormal basis in 
the carrier space of [M]. Denote the elements of this basis by 
1.2" ). The functions 
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(dim [M ])'/2(fll [M](k )1.2" ) = (dim[M] )'/2D X,2'(k) 
(14) 

satisfy the condition (10). The set of all functions (14), for all 
[M] and.2", forms an orthonormal basis of L ~ (K). The basis 
functions (14) will be denoted henceforth by IM,.I). The re
striction of 17" onto K acts upon L ~ (K ) according to the 
formula 17" (ko)f(k) = f(kko). Therefore, l7"IK does not 
change Min IM,.2" ). The representation 17,,1 K contains (with 
unit multiplicity) all the irreducible representations [M] of 
Lemma 2 for G = SO*(2n)andofLemma3forG = SU*(2n), 
and only these. 

Now use Lemma 1 to derive an explicit expression for 
the infinitesimal operators 17). (Y) in the basis IM,.I ). The 
scalar product (12) is given by 

(X, Y) = b Tr Xyr, (15) 

where we choose b = i for so*(2n) and b = ~ for su*(2n). 
Let G = SO*(2n). Determine the matrices Hand h of 

Lemma 1. According to Eq. (15), 

H=h=H
" 

(16) 

where HI is given by Eq. (6), and a simple restricted root a of 
the pair (so*(2n), a,) is defined by a(h ) = 1. The formula 
a(h ') = (ha , h '), h 'Eal' defines the correspondence between 
a and the element haEa l. It is clear that ha = HI' 

Now let G = SU*(2n). We find that 

(
n-I)'12 n-I 

H= -n- HI' h =-n-H" ha =H
" 

(17) 

where HI is given by Eq. (8), and a simple restricted root a is 
defined by a(h ) = 1. 

Now we consider the summandsofEq. (13). It is easy to 
verify that (see Ref. 12) 

«(Ad k )Y, H)A (H) = «(Ad k )Y, h)A (ha ), (18) 

«(Ad k )Y,p) = ~(r + 2s)(ha , ha )«(Ad k )Y, h), (19) 

where r is the multiplicity of the root a and s the multiplicity 
of the root '5 2a. The Lie algebras so*(2n) and su*(2n) are of 
the types DIll and All, correspondingly. Using the root sys
tems of these algebras (see Ref. 15, pp. 30-32, and Table 3 of 
Ref. 10) we find that 

!1-!(r + 2s)(ha' ha ) 

= {: - 3/2 for so*(2n), 

for su*(2n). 
(20) 

Since we consider the degenerate series of representations, 
the chain (2) of subgroups in Ref. 12 reduces to 

Urn) = K -KI-:JK2 = M,(K) 

= urn - 2) X SU(2) for SO*(2n), 

Sp(n) =K -KI-:JK2 =MI(K) 

= Spin - I)xSp(l) for SU*(2n). 

Moreover, in the case of the group SO*(2n) there is the sub
groupK ~ = Urn - 2)XU(2) between the subgroupsK, and 
K z [see the chain (3) of subgroups in Ref. 12]. In the case of 
the group SU*(2n) the subgroup K i is absent [as for the case 
of the group SL(n,R ) in Ref. 13]. These chains of subgroups 
are used to define eigenvalues of the operator Q. The opera-

A. U. Klimyk and A. M. Gavrilik 424 



                                                                                                                                    

tor Q acts upon the state 1M, .I ) as 

Q 1M, .I ) = q(M) 1M, .I ), (21) 

where q(M) is a number. From Eqs. (13), (18)-(21) it follows 
that 

11",dY)IM,.I) = [A (ha ) -Il +!Q - ~q(M)] 
X«(Adk)Y,h)IM,.I). (22) 

IV. INFINITESIMAL OPERATORS FOR THE 
REPRESENTATIONS 11"). of SO*(2n) 

Since [k, p] C P, a finite-dimensional representation of 
K = U(n) is realized in Pc' In order to find this representa
tion, we use the transformation q;: g---+'Tg'T- I

, where 

iEn ) 

-iEn 

and En is the unit n X n matrix. Under q; the matrices (2) of K 
transform into the matrices 

0) . . , A + IBEU(n), 
A+IB 

(23) 

and the matrices (3) ofp transform into the matrices 

( 
0 iX I - X2) (24) 

iXI +X2 0 . 
Using the realizations (23) and (24) of K and p, we find by 
direct evaluation that the representation Ad of K = U(n) in 
Pc is a direct sum of two irreducible representations of K with 
highest weights (1,1,0) and (0, - 1, - 1). In order to con
struct the space Pc, we have to complexify the matrices (24). 
Every element of Pc can be decomposed uniquely into a sum 
of matrices (g ~), (~~), where X and Yare complex skew-sym
metric n X n matrices. The representations ofU(n) with high
est weights (1,1,0) and (0, - 1, - 1) are realized in the spaces 
PI and P2 of matrices (~~) and of matrices (ga\ respectively. A 
similar situation appears in Ref. 18 for the group SpIn, R ). 

By direct computation one can find the correspondence 
between the basis elements of PI and P2' and Gel'fand-Zetlin 
patterns for the representations (1,1,0) and (0, - 1, - 1), re
spectively. For example, the Gel'fand-Zetlin pattern 

[' (25) 
o 

o 

corresponds to the matrix (~~), where X = E21 - E 12• Here 
Ei} is the matrix with elements (Ei) )SI = O;sOjl' The Gel'fand
Zetlin pattern 

(26) 

corresponds to the matrix (ga'), where Y = E21 - E 12• Under 
q; the matrix HI = h, Eq. (6), transforms into a sum of the 
matrices corresponding to the Gel'fand-Zetlin patterns (25) 
and (26). 

Elements of an orthonormal basis of the space P I (which 
may be different from the Gel'fand-Zetlin basis) will be de-
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noted by 1.+, and of the space P2 by I s-, S = 1,2,oo.,dim p. 
Now we apply the formula (22) to Y = I s±. The expres

sion «(Ad k)I'+ , h) is a matrix element of the representation 
ofU(n) with highest weight (1,1,0). Since IM,.I) in Eq. (14) is 
the matrix element of the representation [M] ofU(n), then 

«(Ad k)I.+, h )IM,.I) 

= L (dim[M ]ldim[M'])I12 
M',I' 

X (M, n; [1, 1), h 1M', n ) 
X (M',.I 'IM,.I; p,1 J, 1.+) IM',.I '), (27) 

where (",1",) are Clebsch-Gordan coefficients (CGC's) for 
the tensor product of the irreducible representations ofU(n) 
with highest weights M = (m l,m2,0,m3,m4 ), 

m l - m 2 = m3 - m 4 , and (1,1,0). [The second representa
tion is denoted by [1,1) in Eq. (27).] Let us note that the 
multiplicities in this tensor product do not exceed 1. The first 
CGC in Eq. (27) does not change n since h is invariant with 
respect to MI (K ). For I s- we have to replace the representa
tion p,1) in Eq. (27) by (0, - I, - 1)=[ - 1, -1). 

The summation in Eq. (27) extends over all vectors 1M', 
.I') for which the CGC's are nonzero. Because ofthe first 
CGC,M'isoftheform(m;,m~,O,mi,m~),m; -m~ =mi 
- m~. It is a consequence of an invariance of the vector 1M', 
n ) with respect toMI(K). Using the Clebsch-Gordan series 
for the tensor product [M] ® [1,1) [see Eq. (3.5) in Ref. 10], 
we find that the summation in Eq. (27) extends over the fol
lowing, M' = (m;, m~, 0, mi, m~): 

(ml + I, m 2 + 1,0, m 3, m 4 ), (ml + 1, m 2, 0, m3 + 1, m 4 ), 

(m l, m 2, 0, m3 + 1, m 4 + 1), (m l, m 2 + 1,0, m 3, m4 + 1). 
(28) 

For I s- we have the tensor product [M] ® [ - 1, - I) and 
the summation extends over the following M': 

(ml - 1, m 2 - 1,0, m 3, m 4 ), (ml - 1, m 2, 0, m3 - 1, m 4 ), 

(m l, m 2, 0, m3 - 1, m 4 - I), (m l, m 2 - 1,0, m 3, m 4 - I). 
(29) 

WesubstituteEq. (27) intoEq. (22). Now the operator Q 
acts upon the vectors IM',.I '). We have to evaluate the 
numbers 

Hq(M') - q(M)] (30) 

for allM' from Eqs. (28) and (29). The formula (50) of Ref. 12 
can be used to find them. We use the notations from there 
and refer the reader to Ref. 12 for the meaning of these nota
tions. For our case A I = (m I' m 2, 0, m 3, m 4 ) and 
A 2 = m l + m 2 + m3 + m 4 • [Since K i 
= U(n - 2)XU(2)-MI(K)XU(I), then A 2 is the highest 

weight for the group MI (K) X U( I). The identity representa
tion corresponds to MI (K ). Therefore, we leave inA 2 only the 
weight corresponding to the subgroup U(l).] The values of 
all summands of the formula (50) in Ref. 12 for our case are 
given in Table I. 

Now we introduce for IM,.I) the notation IJ,S,S';.I), 
where 

J=m l -m2 =m3-m4 , S=m l +m2, 

S'= -m3 -m4 • 
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TABLE I. Quantities for determining the operator Q for the case of the group SO*12n). 

A' +r' 

m, + I, m 2 + I, m" m4 

m" m 2, m J + I, m4 + I 
m, + I, m2, m J + I, m4 

m" m2 + I, m J , m4 + I 
m l - 1, m 2 - 1, m 3 , m4 

m"m"m,-I,m4 -1 
m, - I, m" mJ - I, m4 

m l , m 2 - 1, mJ , m4 - 1 

(A' +p', r') 

m,+m2 +n-2 
mJ + m 4 - n + 2 
m,+m,+1 
m, + m4-1 

-m,-m,-n+2 
- m, - m4 + n - 2 
-m,-m,-I 
-m, - m4 + I 

Using Eqs. (27), (22), and Table I, we obtain the explicit ex
pressions for the infinitesimal operators: 

1T)..(I/ )IJ, S, S';.I) 

= I (£7 + S + S')C~~!·2S'(.I" s)IJ, S + 2, S';.I') 
I' 2 

"'( S+S' ) JSS' + L £7- -- -2n+4 C JSS " 2(.I',S) 
I' 2 

X IJ, S, S' - 2; .I ') 

+ I (£7 + J - n + 3)C~!~'s+ I S' _I (.I', S) 

I' 

X IJ + 1, S + 1, s' - 1;2') 

+ I(£7-J-n + I)C~.5'~'S+ls,_d.I',s) 
I' 

xIJ-l,S+ I,S'-I;.I'), 

1T).. (1,- )IJ, S, S';.I) 

="'(£7_
S + S

' ) L - 2n + 4 C~~S"2S'(.I', S) 
I' 2 

X IJ, S - 2, S '; .I ') 

(32) 

+ I (£7 + S + S')c~n: +2(2', s)IJ, S, S' + 2;2') 
I' 2 

+ I(£7-J-n+ I)C~.5'~'s_ls'+d.I',s) 
I' 

xIJ-l,S-I,S'+ 1;2') 

+ I(£7+J-n+3)C~!~'S_IS'+I(.I',s) 
I' 

X IJ + 1, S - 1, s' + 1;2 '), (33) 

where C~,~~; (.I', s) is a numerical coefficient at IM',.I') in 

(27) which includes COC's and a dimensionality multiplier. 
The summation in Eqs. (32) and (33) extends over all.I' for 
which CGC's are nonzero. 

It is clear that the restriction 1T).. IUln) decomposes into a 
direct sum of all irreducible representations of U(n) with 
highest weights (m l ,m2,0,m3,m4), m 1 - m 2 = m3 - m4. Ac
cording to this fact the corresponding parameters J, S, and S ' 
run over all nonnegative integers of the same evenness, such 
that J "S, J "S '. Evenness of S + S' and S - J follows from 
the relations S - J = 2m2 and S + S' = (m 1 - m2 ) 

- (m3 - m4) + 2m2 - 2m4 = 2(m2 - m4). The range of (J, 
S, S ') will be used in what follows. 
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(r', r')12 (A' +p', ?)12 

1m, + m, + m3 + m4 )12 
1m, + m, + m, + m4 )12 
1m, + m, + m, + m4 )12 
1m, + m 2 + mJ + m4 )12 

-1m, +m2 +m J +m4 )/2 
-1m, +m2 +m J +m4 )12 
- 1m, + m2 + m, + m4 )12 
- 1m, + m, + mJ + m 4 )/2 

(?, ?)/4 

V. INFINITESIMAL OPERATORS FOR THE 
REPRESENTATIONS 1T). of SU*(2n) 

The derivation is similar to that in the case of the group 
SO*(2n). Therefore, we give only the most important argu
ments. Now the irreducible representation of K = SpIn) with 
highest weight (1,1,0) ( 1,1] is realized in Pc' This follows, 
for example, from comparing of dimensionalities. Elements 
of an orthonormal basis of Pc will be denoted by Ej • Since h is 
not an orthonormal element, we substitute instead of h in Eq. 
(22) the expression h = [(n - l)1n]1/2H [see Eq. (17)]. Now 
for the matrices Ej we can write down the relation similar to 
Eq. (27). For convenience we shall refer to this relation as to 
Eq. (27'). This relation contains the CGC's ofSp(n) for the 
tensor product [M] ® ( 1,1 J, M = (m,m,O). Multiplicities in 
this tensor product do not exceed 1. In Eq. (27') the summa
tion extends over the following M' = (m',m',O): 

(m + 1, m + 1,0), (m - 1, m - 1,0), (m, m, 0). (34) 

The subgroup K ~ is absent in the case of the group SU*(2n). 
Therefore, instead of Table I we have a simpler one (see Ta
ble II). 

From Eqs. (22) and (27') and Table II we obtain the 
explicit formula for the infinitesimal operators 1T).. (Ej ) in the 
basis IM,.I )-lm,.I): 

1T)..(Ej )lm,.I) = I (£7 + m)C;;; + I (.I ',j)lm + 1,2') 
I' 

+ I (£7 - m - 2n + l)C;;; _ I (.I ',j) 
I' 

X 1m - 1, .I') 

+ I (£7 - n)C;;;(.I ',j)lm,.I '), (35) 
I' 

where 

C;;;.(.I,j) = ([(n - I)ln]dim[m,m,O]!dim[m',m',O] J 1/2 

X (m, fl; p,1 J, Him', fl) 

X (m',.I'lm,.I; p,Ij,Ej)' (36) 

TABLE II. Quantities for determining the operator Q for the case of the 
group SU*12n). 

A +r (A+p,r) (r, r)12 

m + I,m+ 1,6 m+n-l , 
l 

m-I,.m-I,O -m-n+l I 
m,m,O 0 0 

A. U. Klimyk and A. M. Gavrilik 426 



                                                                                                                                    

It is clear that the restriction 1T;.lsp(o) decomposes into a di
rect sum of all irreducible representations ofSp(n) with high
est weights (m,m,O), m = 0,1,2,.··. 

VI. THE STRUCTURE OF THE REPRESENTATIONS 1T;. 

OF THE GROUPS SO*(2n) AND SU*(2n) 

Now we shall determine the subset of irreducible repre
sentations from among the set of representations 1T;., and 
investigate the structure of the reducible representations 1T;.. 

The procedure to be followed is completely analogous to that 
which was followed in Ref. 10 in the case of the groups U(n, 1) 
and SOo(n, 1). It will be more convenient to use the notation 
1TJ for the representations 1T;., where a is defined by Eq. (9). 
The parameter a runs over all complex numbers. 

Consider the representations 1T
J of the group SO*(2n). 

Theorem 1. The representation 1T
J ofSO*(2n) is irredu

cible if and only if a is not an integer or a equals to n - 2 or 
n - 1. 

The irreducibility of these representations 1T
J is proved 

in the same manner as in the cases of the groups U(n, 1) and 
SOo(n, l)(see Chap. 7 in Ref. 10), and we omit the proof. The 
reducibility of other representations 1T

J will be shown below. 
It is known (see Refs. 9 and 10) that for real a the repre

sentations 1TJ and 1T- J + 20 - 3=1T - J + 2p (p was defined in 
Lemma 1) are reducible or irreducible simultaneously. 
Moreover, if 1Ta and 1T -- a + 20 - 3 are irreducible, then they are 
equivalent; if they are reducible, then they consist of the 
same irreducible representations of SO*(2n) (see Chap. 5 in 
Ref. 10). Thus it is sufficient to consider the representations 
1T<J, a<,n - 3/2. 

Now we investigate the representations rr<> of SO*(2n) 
for which a is an integer and a < n - 3/2. Let us equate the 
coefficients in parentheses on the right-hand side ofEqs. (32) 
and (33) to 0: 

a + (S + S')I2 = 0, (37) 

a - (S + S ')12 - 2n + 4 = 0, (38) 

a+J-n + 3 =0, 

a-J - n + 1 =0. 

(39) 

(40) 

Above it was shown that (S + S ')12;;'0. Since a < n - 3/2, 
Eq. (38) cannot be fulfilled. Equation (40) can be valid only 
for a = n - 1, J = 0; the coefficient a - J - n + 1 stands at 
the vectors IJ - 1, S + 1, S' - 1;.1' ') and IJ - 1, S - 1, 
S' + 1;.1") in Eqs. (32) and (33). SinceJ;;'O, these vectors at 
J = 0 makes no sense. Hence we do not need Eq. (40) to study 
the structure of the reducible representations 1T;. . 

Now we give a graphic picture of the range of (J,S,S '). 
SinceSandS' enter Eqs. (32) and (33) as (S + S')I2, we con
sider the plane ((S + S ')I2,J). The integersS,S', andJ are of 
the same evenness, and (S + S ')/2;;.J. Therefore, the range of 
(J, S, S ') extends below the line OA in Fig. 1, including this 
line. It is clear that every admissible point ((S + S ')/2, J) 
corresponds to a number of points (J, S, S '), namely (J, S + p, 
S' - p), I pi = 0, 1,2, "', give the same point ((S + S ')I2,J). 

Case 1: a is an integer and a<,O. The lines corresponding 
to Eqs. (37) and (38) are shown in Fig.!. They divide the set 
of points ((S + S ')12, J) into three parts. We denote these 
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J A 

o 5+S' 
2 

FIG. 1. Structure of the representation rr" of SO*(2n) if (]' is a nonpositive 
integer. 

domains (parts) by D F, DO, D d. The points which lie on the 
boundaries belong to that domain which contains the arrow 
pointing to the boundary. Note that at a = 0 the line (37) 
reduces to the point (0,0). 

Now consider the points from the domain D F. From 
Eqs. (32) and (33) it is easy to see that the first summand of 
Eq. (32) and the second summand ofEq. (33) (and only these) 
increase the sum (S + S ')/2 in the vector IJ,S,S';.1' ). These 
summands vanish at - a = (S + S ')12 (see Fig. 1). Hence, 
the operators 1T''(I s± ) cannot transform the vectors IJ,S,S'; 
.1'), ((S + S ')/2, J)ED F, into the vectors IJ,S,S';.1'), 
((S + S ')12, J)ED DuD d. This means that the vectors IJ,S,S '; 
.1' ), ((S + S ')12, J)ED F, form a basis of the subspace of 
L ~ (K), which is invariant with respect to 1TV s± ), 

s = 1,2, ... ,dim p. Hence, rr<> realizes the finite-dimensional 
representation of SO*(2n) in this subspace; we denote it by 
D~. It is clear from Eqs. (32) and (33) that the operators 
1TJ(J s± ) can transform the vectors IJ,S,S';.1'), ((S + S ')/2, 
J)ED 0, into the vectors IJ,S,S ';.1' ), ((S + S ')12, J)ED F. 

From Eqs. (32) and (33) it is easy to see that the third 
summand ofEq. (32) and the fourth summand ofEq. (33) 
(and only those) increase the value of(S + S ')12 in the vector 
IJ,S,S'; .1' ). These summands vanish at J = - a + n - 3 
(see Fig. 1). Therefore, on the vectors IJ,S,S ';.1' ), ((S + S ')/2, 
J)E D FU DO, the representation rr<> realizes the subrepresen
tation; we denote it by D ~F. The quotient representation 
D~F/D~ will be denoted by D~, and the quotient represen
tation rr<> / D ~F by D ~ . 

The representations D ~, D ~, and D ~ are irreducible. 
The situation is completely similar to the case of the group 
U(p, q) in Ref. 19. Therefore, we omit the proof. 

The representations 1T" in this case have the following 
structure: 

* 
(41) 

o 
where * denotes a nonzero matrix. 

Case 2: a is an integer, and 0 < a < n - 3/2. In this case 
Eq. (37) cannot be fulfilled. Therefore, now we have the situ-
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ation shown in Fig. 2. The set of points ((S + S ')/2, J) is 
divided into two domains D 0 and D d. If u = n - 3, then the 
domain D 0 reduces to a line. The representation rr'" realizes 
on the vectors /J,S,S'; ~), ((S + S')/2, J)El)0, irreducible 
representation. We denote it by D ~. The quotient space rrO' 

/ 

D ~ will be denoted by D ~. It is irreducible. The representa
tion r in this case has the structure 

(42) 

The irreducible representations r (see Theorem 1) and 
the representations D~, D~, D ~ of the group SO*(2n) (for 
the same or different u) are pairwise infinitesimally nonequi
valent. The prooffollows from a comparison ofU(n) spectra 
of these representations. 

Now consider the representations of the group SU*(2n). 
Theorem 2: The representation rrO' ofSU*(2n) is irredu

cible if and only if 17 is not an integer, or 17 is equal to one of 
the integers 1,2, ... , 2n - 1. 

The proof is completely analogous to that of Ref. 10 for 
the groups Urn, 1) and SOo(n, 1) (see also Sec. 2 in Ref. 19). 

For real 17 the representations rand rr - 0' + 2n are simul
taneously irreducible or reducible.9

•
10 In the first case they 

are equivalent; in the second case they consist of the same 
irreducible representations of SU*(2n). 

Now we consider the representations r ofSU*(2n) for 
which 17 is a nonpositive integer. They are studied by means 
of the infinitesimal operators (35). Now the infinitesimal op
erators are simpler than in the case of SO*(2n). On the vec
tors 1m, ~), m = 0,1,2, ... , - u, the representation r real
izes the irreducible representation ofSU*(2n). We denote it 
by D ~. It is clear that this representation is finite-dimension
al. The quotient representation r / D ~ is also irreducible. 
We denote it by DO'. Now the representation rrO' of SU*(2n), 
where a is a nonpositive integer, has the structure 

(D~ * ). 
o DO' 

The irreducible representations rrO' (see Theorem 2) and 
the representations D ~ , DO' are pairwise infinitesimally non
equivalent. 

J 

o 

A 

5+5' 
-2-

FIG. 2. Structure of the representation 1f' ofSO*(2n) if a is an integer, 
O<a<n -~. 
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VII. MOST DEGENERATE UNITARY SERIES (MDUS) OF 
REPRESENTATIONS OF SO*(2n) AND SU*(2n) 

The group SO *(2n): Now we extract the unitary repre
sentations and the representations which can be made uni
tary (unitarizable representations) from among the set 91 of 
the irreducible representations r and the representations 
D~, D~. These representations can be found by the unitari
zation procedure (see Refs. 8 and 9 and also Sec. 4 of Chap. 5 
in Ref. 10). According to this procedure, we have to find the 
intertwining operators II -II (a) for every pair rrO'

, 

rr - 17 + 2n - 3. Then we introduce the new basis 

IJ S S"~)' =II, /2 IJ S S"~) " , " , (43) 

into Eqs. (32) and (33). The representations which admit uni
tarization are unitary in this basis. It is easy to find that the 
unitarity condition is 

rr(Y)* = - rr(y), YE p. (44) 

The intertwining operator II (a) for the representations rr" 
and rr - 0' + 2 .. - J is defined as 

II (u)rrO' = rr -" + 2" .- 3 II (17), (45) 

where it is understood that both sides of this relation have to 
act upon IJ,S,S'; ~). For matrix elements of II (17) we have 
(see Refs. 8-10) 

(J, S, S'; ~ III (17) IJ" Sl' S;; ~,) 

= a(J, S, S')8]J 8ss 8s's.8II , 
I 1 1 I 

where a(J,S,S ') is independent of~. 
Substituting Eqs. (32) and (33) into Eq. (45) and compar

ing the coefficients at the same basis vectors, we obtain the 
system of equations for the matrix elements a (J,S,S '). Solving 
these equations, we derive that 

a(J, S + 2j, S') 

= a(J, S, S' + 2j) 

= jfi - 17 + 2n - 3 + (S + S')I2 + r a(J, S, S'),(46) 
r ~ a 17 + (S + S ')12 + r 

a(J, S - 2j, S') 

= a(J, S, S' - 2j) 

=jft' -a-(S+S')I2+ 1 +r a(J,S,S'), (47) 
r ~ 0 a - (S + S ')/2 - 2n + 4 + r 

a(J + j, S - j, S' + j) 
= a(J + j, S + j, S' - j) 

=jfi -a+J+n+r a(J.S,S'), 
r~017+J-n+3+r 

a(J - j, S - j, S' + j) 
= a(J - j, S + j, S' - j) 

=jfi -u-J+n-2+r a(J,S,S'). 
r=O u-J-n+l+r 

Assigning a value to a(J, S, S ') for fixed J = Jo, S = So, 

(48) 

(49) 

S' = S b, from Eqs. (46)-(49), we can find uniquely the value 
of a(J, S, S ') for every (J, S, S '). Note that the intertwining 
operator is defined uniquely up to a numerical constant. If 
we fix a(Jo, So. S b), then this constant is also fixed. 
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Theorem 3: The following representations ofSO*(2n) 
from the set 91 admit unitarization: 

(a) The representations rr", for which 0' - n + 3/2 are 
pure imaginary (principal MDUS); 

(b) the representations 1T
r7

, 0 < 10' - n + 3/21 < 3/2 
(supplementary MDUS); 

(c) all the representations D~, 0' an integer satisfying 
0' < n - 3/2 (discrete MDUS); 

(d) the representation D ~ ~ n _ 3 (ladder representation). 

rr"(/ / )IJ, S, S'; ~)' 

Proof If a representation admits unitarization, then the 
condition (44) is fulfilled in some basis. We have / s± E Pc and 
/ s± e p. It is easy to verify that the condition (44) implies 

rr"(/ .+ )* = - rr"(/ s- ). (50) 

This condition is directly verified for the representations (a) 
with the use ofEqs. (32) and (33). The representations (b), (c), 
and (d) are unitary in the new basis (43). From Eqs. (32), (43), 
and (46)-(49) we find that 

= f;[ (0' + S ~ S')( - 0' + S ~ S' + 2n - 3) r2C~~!'2S'(~" s)IJ, S + 2, S'; ~')' 

+ f; [(0' + S ~ S' - 1)( - 0' + S ~ S' + 2n - 4) r2 
C ~ ~ f _ 2 (~ " s) IJ, S, S' - 2; ~ ')' 

+ L [(0' +J - n + 3)( - 0' +J + nW/2C~!~'s+ IS'- d~', s)IJ + 1, S + 1, S' - 1; ~')' 
I' 

+ L [(0' +J - n + 2)( - 0' +J + n - I)]1/2C~-=-~'s+ 1 S'-I (~', s)IJ - 1, S + 1, S' - 1; ~'>', (51) 
I' 

rr"(/ ; ) IJ, S, S '; ~ >' 

= -f;[( _O'+S~S' +2n_4)(0'+S~S' -I)r2C~~~'2s,(~"s)IJ,S-2'S';~')' 

_ f; [( - 0' + S ~S' + 2n - 3)(0' + S ~ S') r2c~n:+2(~" s)IJ, S, S' + 2;~')' 

- L [( -O'+J +n -1)(O'+J -n + 2W/2C~~~~_ls'+d~',s)IJ -I,S-I,S' + I;~')' 
r 

- L [(-O'+J +n)(0'+J-n+3)]I/2C~-:S;s_ls'+I(~',s)IJ + I,S-I,S'+ I;~')'. (52) 
I' 

Now we can easily verify that the representations of the 
theorem are the only representations which satisfy the con
dition (50). The theorem is proved. 

The group SU *(2n): This group (as every linear semisim
pIe Lie group) has the principal MDUS (see, for example, 
Refs. 8-10). The representations rr", 0' = n + iw, w real, form 
the principal MDUS. These representations are unitary, and 
one does not need the unitarization procedure. 

Let us construct the intertwining operator II =ll (0') for 
the pair rr" and 1T- r7 + 2n. We have that 

(m, ~ Ill(O')lm', ~') = a(m)Omm,OII" (53) 

By the same procedure as in the case of the group SO*(2n) we 
find 

( + .) i rr-
1 -0'+2n+m+r ( ) 

am J= am. 
r~O O'+m+r 

(54) 

VIII. INFINITESIMAL OPERATORS OF UNITARY 
IRREDUCIBLE REPRESENTATIONS OF SO(2n) IN A U(n) 
BASIS AND OF SU(2n) IN AN Sp(n) BASIS 

Consider the finite-dimensional representations D:, 
0' = 0, - 1, - 2 .... , of the groups SO*(2n) and SU*(2n) (see 
Sec. 6). It is clear that these representations lead to the irre-

429 J. Math. Phys., Vol. 25, No.3, March 1984 

ducible representations ofSO(2n) and SU(2n) (see Sec. 1 and 
Table 1 in Ref. 12). According to Theorem 5.13a in Ref. 10, 
the representation D: of SO(2n) and of SU(2n) has highest 
weight ( - 0', - 0', 0). The weights are written down in the 
coordinate system (ml' m 2, ... ), for which m l">m2"> .. ·. 

From the results of Sec. 6 we can determine the U(n) 
spectrum of the representation D: ofSO(2n) and the SpIn) 
spectrum of the representation D: ofSU(2n). Namely, the 

restriction D : I Uln) is characterized by all triples (J, S, S ') of 
nonnegative integers of the same evenness,for which J<,S, 
J <,S " and (S + S ')12<, - 0'. Every triple (J, S, S') corre
sponds to the irreducible representation ofU(n) with highest 
weight (mit m 2 , 0, m 3, m4)' where integers m i are defined by 
Eq. (31). The representation D: of SU(2n) decomposes into a 
direct sum of irreducible representations of SpIn) with highest 
weights (m, m, 0), m = 0,1,2, ... , - 0'. 

Equations (32), (33), and (35) define infinitesimal opera
tors of the representations D: of SO(2n) and SU(2n). But 
they do not satisfy the unitarity condition [which is similar 
to Eq. (44)]. In order to satisfy this condition, we have to 
introduce the new basis (43). In the new basis the infinitesi
mal operators of the irreducible unitary representation of 
SO(2n) with highest weight (M, M, 0) act as 
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I k+ IJ, S, S';~) 

= f>[(M - S ~S')(M + S ~S' + 2n - 3)r2c~g'2S'(~" k)IJ,S + 2,S';~') 

+ ~ i[ (M - S~S' + 1)(M + S ~S' + 2n - 4)r2C~g:_2(~" k)IJ,S,S' - 2;~') 

+ L i[(M - J + n - 3)(M + J + n)] 1/2C~!~'s+ 1 S' _ 1 (~', k )IJ + 1, S + 1, S' - 1; ~ ') 
x' 

+ L i[(M - J + n - 2)(M + J + n - 1)] 1/2C~-S'~'S+ 1 s' _ 1 (~', k )IJ - 1, S + 1, S' - 1; ~ '), 
x' 

I k-IJ, S, S '; ~ ) 

= _ ~i[(M- S~S' + 1)(M+S~S' +2n-4)r2C~f:'2S,(~"k)IJ,S-2,S';~') 

_ ~i[ (M - S ~S')(M + S ~S' + 2n - 3)r2C~g:+2(~" k)IJ,S,S' + 2;~') 

- L i[(M -J + n - 2)(M +J + n - 1)]l/2C~:f~_lS'+ l(~" k)IJ - 1, S - I,S' + 1;~') 
x' 

- L i[(M - J + n - 3)(M +J + nW/2C~s+s;S_l S'+ l(~" k)IJ + 1, S - 1, S' + 1; ~'). 
x' 

The infinitesimal operators of the irreducible unitary representation of SU(2n) with highest weight (M, M, 0) act as 

Ejlm, ~) = L i[(M + m + 2n)(M - m)] 1/2C:;: + 1 (~',j)lm + 1, ~ ') 
x' 

- L i[(M + m + 2n - I)(M - m + 1)] 1/ 2C:;: _ 1 (~',j)lm - 1, ~ ') 
x' 

- L(M+n)C:;:(~',j)lm,.2"'). 
X' 

(55) 

(56) 

(57) 

Note that CGC's for the group U(n) which are con
tained in Eq. (27) [and, therefore, in Eqs. (32), (33), (51), (55), 
and (56)] are known for the Gel'fand-Zetlin basis from Ref. 
20. Unfortunately, CGC's for the group Sp(n) which are con
tained in Eqs. (35) and (57) are not known. They can be evalu
ated using the results of Ref. 21. They will be given in a 
separate paper. 
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Dyson representation of SU(3) in terms of five boson operatorsa
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A representation ofSU(3) in terms of five boson operators is proposed. It is a generalization of the 
Dyson-Maleev type representation used in nuclear physics with two boson operators related to 
the integers that label the irreducible representation ofSU(3). 

PACS numbers: 02.20.Qs, 11.30.Jw 

I. INTRODUCTION 

Several representations ofSU(3) in terms of boson oper
ators have been proposed in the past, but none of them use as 
many boson operators as the maximal number of commut
ing observables of the algebra. For any Lie group, the maxi
mal number of commuting observables is {) = (r + d )/2 
where r is the rank of the group and d is the dimension of the 
adjoint representation (number of the parameters of the 
group). For SU(3), {) = (2 + 8)/2 = 5. Since there is no five
dimensional irreducible representation ofSU(3), the repre
sentation by means of five boson operators will not be linear. 
The Dyson-Maleev-Gelfand types of representations I in 
terms of differential operators are of this type. For their im
portance in nuclear physics we refer the reader to a review 
article by A. Klein. z In this note we propose a representation 
ofSU(3) in terms of five commuting boson operators al> az, 

a3, bl' bz that satisfy [a j , a/ ] = [bob / ] = {)ij' 
[aOaj ] = [bobj ] = [aobj ] = [aob / ] = O. The b j will be 
chosen such that the eigenvalues of b / bj give the labels p 
and q of the irreducible representations ofSU(3). 

II. CONSTRUCTION OF THE REPRESENTATION 

The most commonly chosen basis for the SU(3) algebra 
is the set of operators F j that satisfy [FoE}] = i/;jkFk' In 
addition, in the fundamental representation of the algebra 
we also have the anticommutator algebra 
[FoE} 1 =! {)ij + dijkFk' In terms of 3 X 3 matrices, the F j 

are represented by ,.1,;12 where Aj are the well-known Gell
Mann matrices. We will realize .he algebra using a different 
basis related to the above operators as I ± = FI ± iFz' U ± 

= F6 ± iF7' V ± = F4 ± iF5' 13 = F3, Y = 2!VJF8• We will 
proceed analogously to the 2-boson representation ofSU(2) 
given in Ref. 3 which generalizes the Dyson-Maleev-Gel
fand representation to all irreducible representations. Be
sides regarding the irreducible representation labels as eigen
values of b / bj , we also represent the commuting step-up 
operators of the algebra by different creation operators a/ 
and derive the rest of the representation from the commuta
tion relations of the SU(3) algebra. Our procedure parallels 
the work of I. Bars4 on the representations of the noncom
pact group SL(3,C) based on the Z-operator formalism pro
posed earlier. 5 Here we summarize the procedure: 

( 1) Set V + = at, 
(2) [U +, V +J = 0 suggests U + = a2+, 

al Research supported in part by the U.S. Department of Energy under Con
tract No. DE-AC02-76ER03075. 

(3) [1+, V +1 = 0 and [1+, U +] = V + suggests 
1+ = ata2 - a3+ 

(4) [13' 1+1 = 1+, [13' U +] = -!U + and [13' V +] 
= ! V + suggests 

13 = !(a l+ a l - a2+ a z) + a3+ a3 + clb t bl + czb t bz + C3, 
where CH CZ' c3ER, 

(5) [1+, L] = 213, [13' Ll = - L, [U +, L] = 0 and 
[I _, V +1 = U + suggests 
1_ = at a l + (a3+ a3 + 2clb t b l + 2c2b 2+ b2 + 2c3 )a3 , 

(6) [V+, U_l =1+, [13' U_J = !U_, [1+, U_l = 0 
suggests U _ = a3+ a l + (a3+ a3 - at a2 - at a l 

+ dlb t bl + dzb 2+ bz + d3)aZ' where d l, dz, d3ER, 
(7) [U _, Ll = V_implies 

V_ = - [atal +a2+aZ+a3+a3+(2cl-dIlbtbl 
+ (2cz - dz)b t b2 + 2c3 - d3]a l 

- (a 3+ a3 + 2c lb t bl + 2czb t bz + 2c3)aZa3· 
This form satisfies the following relations: 

[13' V_l = - !V_, [L, V_l = [U_, V_l = 0, 
[1+, V_l = - U_, [U+, V_l =L, 
(8) [U+, U_l = ~ Y -13 implies Y = atal + ata2 

+ j (c i - dl)b t bl + j(cz - dz)b t bz + j(c3 - d3) and the 

following are satisfied: 

[Y,13] = [Y, I ± ] = 0, [Y, U ± ] = ± U ± ' 

[Y, V±] = ± V± and[V+, V_J=~Y+I3' 
To find the arbitrary coefficients Cj , dj we demand that 

the labels of the representationp, q( = 0,1,2, ... ) be the eigen
values of b 1+ b l , b 2+ b2 , respectively. We find the quadratic 
Casimir operator Cz = };F~ and set it equal to 
j(pZ + qZ + pq + 3(p + q))togetc i = C2 = !,c3 = ,-,dz = 1, 
d l = d 3 = O. As a result we have (denoting the operators 
b t bl by P and b 2+ bz by Q): 

V_= -(atal+a2+aZ+a/a3+P+3)al 

- (a3+ a3 + P + Q + 3)aZa3, 

U+ =a2+, 

U_ = a3+al + (a/a3 - ataz - al+a l + Q)az, 

1+ = at a2 - a3+ , 

1_ =a2+a l + (a 3+a3 +P+ Q+ 3)a3, 

13 = !(a l+ a l - a2+ az) + a 3+ a3 +!(p + Q + 3), 

Y= ata l + a2+aZ + j(P- Q + 3), 

and the Casimir operators are 

(1) 
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C3 = dijkFiFjFk 

= 2(P - Q ) [~ (P + Q )1 + $ PQ + P + Q + 1 ] 

and the dimension operator of the representation is 

D=!(P+ l)(Q+ 1)(P+Q+2) 

(2) 

= !(b]b t )(b2b t )(b]b 1+ + b1b t)· (3) 

A definite irreducible representation ofSU(3) is charac
terized by the eigenvalues p and q of the number operators P 
and Q. On replacing P, Q by their integer eigenvalues in (1) 
one gets the Dyson-Maleev representation for SU(3) which 
is related to Bars' representation for SL(3, C). The eigenval
ues of Cz, C3 , and D are then given by Eqs. (2) and (3) on 
making the same replacement for P and Q. 

III. CONCLUDING REMARKS 

In the representation given above, the five operators Cz, 
C3 , Y,l3' and H = I +L + 13(13 - 1) = a 1+ a](az+ a1 + 1) 
+ (a3+ a3 + P + Q + 3)at aZa3 - a]az+ a3+ 

- (a3+ a3 + P + Q + 2)a3+ a3 + 13(13 - 1) commute among 

432 J. Math. Phys., Vol. 25, No.3, March 1984 

themselves and thus can be used in labeling the states. How
ever, unlike Cz, C3, 13 and Y, I 2 does not consist only of 
number operators and makes it impossible to use the states 
In], nz, n3 , p, q) as our eigenstates. The simultaneous eigen
states of the five operators will instead have the form Gin], 
nz, n3,p, q), where G is the metric operator in this represen
tation. The construction of the metric operator will be the 
object of a separate note. 
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Charge operators for representations of dimension less than or equal to 16 are computed in all 
simple Lie groups. The representations for which the charge operator repr~duces ~he charge 
spectrum ofleptons and quarks of one family are analyzed from a GUT pomt of view. 

PACS numbers: 02.20.Qs, 12.10. - g 

1. INTRODUCTION 

Schemes for grand unified theories generally require 
one or more irreducible complex representations of a simple 
group, which are anomaly free and possess asymptotic free
dom. The group has to contain the SU(2)XU(I) weak elec
tromagnetic subgroup and the SU(3) color group thought to 
be responsible for the QCD strong interactions. 

Although those conditions are by now considered as 
minimal,1 it has seemed to us that it would be helpful to 
know exactly which groups one can select, asking only for a 
much weaker condition, namely the existence of a good elec
tric charge operator. What we precisely mean by this is ex
plained in Sec. 2.2 

Since we now believe that there are 15 or 16 quarks and 
leptons in the first generation, and seven allowed charges 
(from - 1 to + 1, by steps of 1/3), we have restricted our
selves to compute the "good" charge operators for all irredu
cible representations of dimension less than or equal to 16 in 
simple Lie groupS.3 The values of the parameters are dis
cussed quite generally according to the conditions of Sec. 2. 

In Sec. 3, we compute the charge operators for all rel
evant groups. They appear in Table I. 

It should be noted that this approach is valid for any 
additive quantum number, and not only for the electric 
charge. For this reason, our tables can be used more general
ly.4 

In Sec. 4, we show that a great class of charge operators 
are obtained in a quite trivial way, and present the Table II 
where the less trivial cases are collected. 

In Sec. 5, we discuss the opportunity of considering ex
tra-abelian U( 1) factors, which we call shifts. 

Finally, we give in Sec. 6 the pathology of each group 
which has some good properties (but not all) to be a GUT 
candidate, and we give our conclusions in Sec. 7. 

2. CHARGE RESTRICTION 

Instead of using the embedding of the SU(3) color group 
in a larger group as the major condition to select a candidate 
for GUT, we restrict ourselves to the requirement of a good 
charge operator. We find all groups having such a good oper
ator in a given irreducible representation. The latter obeys 
dimension limitations which we now describe. 

The fermionic content of a GUT is described by quarks 
and leptons of several families. From the point of view of 

• ) Aspirant au Fonds National de la Recherche Scientifique, Faculte des 
Sciences, Universite de l'Etat a Mons, Belgium. 

electric charge, these families are equivalent. We take into 
account one family in the representation(s) and convention
ally use the labeling of the first family. The others are ob
tained by mere duplication of the constructed multiplet. The 
allowed charges in the spectrum are 0, ± 1/3, ± 2/3, ± 1, 
which means that we Qnly consider charge operators with, at 
most, seven different eigenvalues. 

The size of the representation will depend on the multi
plicity of each eigenvalue. We ask the multiplicity of the 
+ 1/3 and + 2/3 charges to be at most three, and the multi
plicity of th; ± 1 charges to be at most one. Moreover, we 
analyze the theories with one and two neutrinos. 5 

If the maximal allowed structure 

(le-, 3u, 3d, (lor 2)v, 3d, 3u, le+), (1 ) 

which limits the dimension of the representation to 16, is 
obtained, one can expect an underlying SU(3) color group. 
However, the restrictions above show that we are also inter
ested in the cases where no SU(3) color appears. This may 
occur when the complete spectrum described in (1) is ob
tained by adding contributions of several representations of 
the same group. Then, the multiplicities may come out nu
merically (for instance, 2u-quarks in an irrep, and lu-quark 
in another irrep of the same group make 3u-quarks when 
considering the sum of the irreps). We think it can be inter
esting to investigate these groups even in the absence of any 
SU(3) color. 

All these structures are presented in Table II, and we 
shall discuss them in Sec. 6. 

Let us make a final comment on the possibility ofU(I) 
shifts. Since the charge operator is a generator of a Lie group, 
it must be traceless. However, we also consider the opportu
nity of an extra U( 1) factor, so that the charges could possibly 
be decomposed in two parts: the first one, traceless, belong
ing to the simple group and the second one to the extra U( 1). 

Table II gives the allowed structures when the charge 
operator is entirely within the simple group, while the shifts 
are discussed in Sec. 5. 

3. CHARGE OPERATOR BUILDING 

The first task is to construct the charge operators asso
ciated with the irreducible representations of dimension less 
than or equal to 16 for all allowed simple groups. The only 
groups to investigate are thusA n (2<n< 15), Bn (2<n<7), Cn 
(3<n<8), Dn (4<n<8), and the exceptional group G2 • In
deed, A 1 is clearly too small, B2 = C2, D2 = A 1 XA I' and 
D3 = A3 locally . 

Tables III recall the allowed representations of the al-
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TABLE I. Structure of charge operators in An. Bn. en. Dn. G2• for d-dimensional irreducible representations (d< 16)." 

An 2SU(n + I). 2<n<15 

n=2 3 
3 
6 
6 
8==8 
10 
10 

IS 

IS 

IS' 

IS' 

n=3 4 
4 
6==6 
10 
10 

15== IS 

n=4 5 
5 
10 

10 

IS 

IS 

n=5 6 
6 
IS 

IS 

6<n<15 n+ I 

n+1 

Bn =SO(2n + I). 2<n<7 

n=2 4, 
5" 
10" 
14" 

16, 

n=3 7" 
8, 

n=4 9" 
16, 

5<n<7 (2n + I)" 

(0. a, b) - 1/3(a + b ) 
(0. - a + b. b) + 1/3(a - 2b ) 
(0. a. 2a. b. a + b. 2b) - 2/3(a + b ) 
(0. - a + b. b. - 2a + 2b. - a + 2b. 2b) + 2/3(a - 2b ) 
(0. a. - a + b. b 2. a + b. - a + 2b. 2b) - b 
(0. a. 2a. 3a. b. a + b. 2a + b. 2b. a + 2b. 3b) - (a + b ) 
(0. - a + b. b. - 2a + 2b. - a + 2b. 2b. - 3a + 3b. - 2a + 3b, 

- a + 3b. 3b) + (a - 2b ) 
(0, a, 2a. - a + b, b 2. (a + b)', 2a + b. - a + 2b, (2b )2, 

a + 2b. - a + 3b, 3b ) - 1/3(a + 4b ) 
(0. a, - a + b. b 2. a + b. - 2a + 2b, ( - a + 2b )2, (2b )2, 

a + 2b, - 2a + 3b. - a + 3b. 3b ) + 1/3(a - 5b ) 
(0. a, 2a, 3a, 4a, b, a + b. 2a + b, 3a + b, 2b, a + 2b, 

2a + 2b. 3b. a + 3b. 4b ) - 4/3(a + b ) 
(0. - a + b. b. - 2a + 2b. - a + 2b. 2b. - 3a + 3b. - 2a + 3b. 

- a + 3b. 3b. - 4a + 4b. - 3a + 4b. - 2a + 4b. - a + 4b. 
4b) + 4/3(a - 2b ) 

(0. a. b. c) - 1/4(a + b + c) 
(0. - b + c. - a + c. c) + 1/4(a + b - 3c) 
(0. - a + b. b. - a + c. c. - a + b + c) + 1/2(a - b - c) 
(0. a. 2a. b. a + b. 2b. c. a + c. b + c. 2c) - 1/2(a + b + c) 
(0. - b + c. - a + c. c. - 2b + 2c. - a - b + 2c, - b + 2c. 

- 2a + 2c. - a + 2c. 2c) + 1/2(a + b - 3c) 
(0. a. b. - b + c. a - b + c. - a + c. c'. a + c. - a + b + c. b + c. 

- b + 2c. - a + 2c. 2c) - c 

(0. a. b. c. d) - 1/5(a + b + c + d) 
(0. - c + d. - b + d. - a + d. d ) + 1/5(a + b + c - 4d ) 
(0. - a + b. b. - a + c. c. - a + b + c. - a + d. d. - a + b + d. 

- a + c + d) + 1/5(3a - 2b - 2c - 2d) 
(0. - b + c. - a + c. c. - b + d. - a + d. d. - a - b + c + d. 

- b + c + d. - a + c + d) + 1/5(2a + 2b - 3c - 3d) 
(0. a. 2a. b. a + b. 2b. c. a + c. b + c. 2c. d, a + d. b + d. 

c + d. 2d) - 2/5(a + b + c + d ) 
(0. - c + d. - b + d. - a + d. d. - 2c + 2d. - b - c + 2d. 

- a - c + 2d. - c + 2d. - 2b + 2d. - a - b + 2d. - b + 2d. 
- 2a + 2d. - a + 2d. 2d) + 2/5(a + b + c - 4d) 

(0. a. b. c. d. e) - 1/6(a + b + c + d + e) 
(0. - d + e. - c + e. - b + e. - a + e. e) + 1/6(a + b + c + d - 5e) 
(0. - a + b. b. - a + c. c. - a + b + c. - a + d. d. - a + b + d. 

- a + c + d. - a + e. e. - a + b + e. - a + c + e. - a + d + e) 
+ 1/3(2a - b - c - d - e) 

(0. - c + d. - b + d. - a + d. d. - c + e. - b + e. - a + e. e. 
- b - c + d + e. - a - c + d + e. - c + d + e. - a - b + d + e. 
- b + d + e. - a + d + e) + 1/3(a + b + c - 2d - 2e) 

n 

(0. a" .... a n ) - l/(n + I) I a, 
,_ 1 

(0. -an _ 1 +an ..... -a,+an.an)+1/(n+I{~~,'a,-nan). 
where 0 < a, <,a, + 1 • for I <i<n 

(0. a. b. a + b) - 1/2(a + b ) 
(0. - a + b. b. a + b. 2b) - b 
(0. a. 2a. b. (a + b )2. 2a + b. 2b. a + 2b. 2a + 2b ) - (a + b) 
(0. - a + b. b. a + b. - 2a + 2b. - a + 2b. (2b )2. a + 2b. 

2a + 2b. - a + 3b. 3b. a + 3b, 4b) - 2b 
(O.a. -a+b.b 2.(a+b)2.2a+b. -a+2b.(2b)'. 

(a + 2b )2. 2a + 2b. 3b. a + 3b) - 1/2(a + 3b) 

(0. - b + c. - a + c. c. a + c. b + c. 2c) - c 
(0. a. b. a + b. c. a + c. b + c. a + b + c) - 1/2(a + b + c) 

(0. - c + d. - b + d. - a + d. d. a + d. b + d. c + d. 2d) - d 
~~~a+~~a+~b+~a+b+~~a+~b+~ 

a + b + d. c + d. a + c + d. b + c + d. a + b + c + d) - 1/2(a + b + c + d) 

(0, -On __ 1 +an, .. ·,-OI+an,Gn,OI+an"'" 

On_I +a n ,2an )-an , 

whereO<a,«ai + I' for I<i<n 
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TABLE I. (Continued.) 

C. ==SP(2n), 3<n<8 

n=3 

4<n<8 

6 
14 

14' 

2n 

D. ==SO(2n), 4<n<8 

n=4 

n=5 

6<n<8 

8, 
8, 
8.; 

10, 
16, 

16, 

(2n), 

7 
14 

(0, - b + c, - a + c, a + c, b + c, 2c) - c 
(0, - a + b, a + b, 2b, - a + c, a + c, (b + C)2, - a + 2b + c, 

a + 2b + c, 2c, - a + b + 2c, a + b + 2c, 2b + 2c) - (b + c) 
(0, 20, a + b, 2b, 20 + 2b, a + c, b + c, 20 + b + c, a + 2b + c, 

2c, 20 + 2c, a + b + 2c, 2b + 2c, 2a + 2b + 2c) - (a + b + c) 

(0, - an -1 + an"'" - at + an' a 1 + an"'" 
an _ 1 +a",,2an )-an , 

where 0 < a, <a, + 1 , for I <i,n 

(0, - c + d, - b + d, - a + d, a + d, b + d, c + d, 2d) - d 
(0, a + b, a + c, b + c, a + d, b + d, c + d, a + b + c + d) - 1/2(a + b + c + d) 
(0, - a + b, - a + c, b + c, - a + d, b + d, c + d, - a + b + c + d) 

+ 1/2(a-b-c-d) 

(0, - d + e, - c + e, - b + e, - a + e, a + e, b + e, c + e, d + e, 2e) - e 
(0, - a + b, - a + c, b + c, - 0 + d, b + d, c + d, - 0 + b + c + d, - 0 + e, 

b + e, c + e, - 0 + b + c + e, d + e, - a + b + d + e, - 0 + c + d + e, 
b+c+d+~+I~o-b-c-d-~ 

~o+~a+~b+~o+~b+~c+~a+b+c+~a+~b+~ 

c+~o+b+c+~d+~a+b+d+~o+c+d+~b+c+d+~ 
-1/2(o+b+c+d+e) 

{O, - an_ 1 + an"'" - at + an' 01 + an"'" 

an_I + an' 2an ) - an 
where 0 < a, <0, + 1 , for I <,i<n 

(0, 20, - 0 + b, a + b, 30 + b, 2b, 20 + 2b) - (a + b) 
(0, - 3a + b, - 0 + b, a + b, 30 + b, - 2a + 2b, (2b f, 20 + 2b, 

- 30 + 3b, - 0 + 3b, 0 + 3b, 30 + 3b, 4b ) - 2b 

a The charge operators are described by nonnegative eigenvalues, written in increasing order. The classification within an operator is based on the following 
assumption: If 0, b, c, ... are the free parameters of the operator, a is very much smaller than b, b very much smaller than c, and so on. We write, according to 
(2) when K = 0, 

(Ok I, ok2, b k 3, ... ) +,1., 

where k, is the multiplicity ofthe ith eigenvalue. Then A., A. + 0, A. + b, ... are the charges of the particles we consider. 

lowed simple Lie groups, according to the restrictions of Sec. 
2. 

In order to minimize the notations, let us describe the 
charge values of a d-dimensional multiplet in a given group 
by 

Qd = (Oko ,a~" ... ,a;p) + A. + K, 

with 

1 p 

,1.= - - L ajkj . 
d j~1 

(2) 

(3) 

We have chosen to order the a j 's in the following way: 

a j <a j + \' 1 <'i<p, (4) 

and k j is the multiplicity of the charge eigenvalue 

435 

qj =a j +,1. +K. 

Clearly 
p 

d= L kj • 

;=0 

J. Math. Phys., Vol. 25, No.3, March 1984 

(5) 

(6) 

In what follows, we will omit the symbol k j in (2) when 
it is equal to 1, and introduce the square bracket notation 

(7) 

In (3), A. has been defined in such a way as to insure zero 
trace for Qd if K = O. Hence, Qd can be, for K = 0, the 
charge operator of a simple group. 

When K, which we call the shift, is nonzero, the group 
must contain an extra U(l)factor. We will go back to the 
shifts in the discussion of Sec. 5. 

To obtain the "good" Qd 's of specific representations of 
simple Lie groups, we use two different techniques: either 
the Kronecker products or the weight diagrams. 

We illustrate the first technique in the case of An 
(2<.n<. 15), starting from the fundamental (n + I)-dimen
sional representation. We write Qn + I when the (n + 1) ei
genvalues are all different: 

(8) 
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TABLE II. "Good" charge operators (see Sec. 2)." 

Multiplicities 
m = (mo, m " ... ,m.) 
of the charges 
( - 3, - 2, - 1,0, 1,2,3) 

7 different charges 

[I, 1, I, I, I, I, I] 
[I, I, 1,2, I, I, I] 

[I, 1,2,2,2, I, I] 

[I, 2, 3, 2, 3,2, 1] 
[1,3,3,2,3,3, I] 

6 different charges 

[I, I, 1,0, I, I, I] 
[1,2, 1,0, 1,2, I] 

[I, 1,2,0,2, I, I] 

S different charges 

[0, I, 1,2, I, 1,0] 

[I, 1,0,2,0, I, I] 
[1,0, 1,2, 1,0, I] 
[0, 1,2,1,2, 1,0] 
[0, 1,2,2,2, 1,0] 

[0,2, 1,2, 1,2,0] 

[1,2,0,2,0,2, 1] 

[1,0,2,2,2,0, 1] 

4 different charges 

[0, I, 1,0, I, 1,0] 
[1,1,0,0,0, I, I] 
[1,0, 1,0, 1,0, I] 
[0, 1,2,0,2, 1,0] 
[0,2, 1,0, 1,2,0] 
[1,2,0,0,0,2, 1] 
[1,0,2,0,2,0, I] 
[0, I, 3,0, 3, 1,0] 

[0,3, 1,0, 1,3,0] 

[0, 2, 2, 0, 2, 2, 0] 

[1,3,0,0,0,3, 1] 

[1,0, 3,0, 3,0, 1] 

[1,3,0,0,3,3,0] 

[0, 3, 3,0,0, 3, 1] 
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Groups and 
representations 

G2,7 
SU(3),8 
SO(7),8, 
SO(8), 8" 8; 
SU(3),1O 
SU(4),10 
SU(S),lO 
SO(S),IO" 
SP(6),14 
SO(9),16, 
SO(lO), 16, 

SU(4),6 
SO(7),8, 
SO(8), 8" 8; 
SO(8),8; 

SO(8),8, 
SO(8),8; 

SU(3),6 
SU(4),6 
SU(4),6 
SU(4),6 
G20 7 
SU(3),8 
SO(7),8, 
SO(8), 8" 8; 
SO(8),8; 

SO(8),8; 

SO(8),8, 

SO(5),4, 
SO(S),4, 
SO(S),4, 
SU(4),6 
SU(4),6 
SU(4),6 
SU(4),6 
SO(8),8, 
SO(8),8; 

SO(8),8; 

SO(7),8, 
SO(8), 8" 8; 
SO(8),8, 
SO(8),8; 
SO(7),8, 
SO(8), 8" 8; 
SO(8),8, 
SU(S),IO 
SU(5), T6 
SU(5), \0 
SU(5), TO 

Values of the 
parameters 

a = 1/2, b = S/2 
a = I, b = 3 
a = I, b = 2, c = 3 
a = 0, b = I, c = 2, d = 3 

a= 1, b=2 
a = I, b = 2, c = 3 
a = I, b = 2, c = 3, d = 4 
a= I, b=2 
a = O. b = I, c = 2 
a=b=c= I, d=3 
a=O, b=c=d=l, e=3 

a = 3, b = 4, c =c S 
a = b = I, c = 4 
a = 0, b = c = I, d = 4 

a = I, b = c = 2, d = 3 

a = b = 1/2, C = 3/2, d = 7/2 
a = 1/2, b = 3/2, c = d = S/2 

a= 1, b=2 
a = 1, b = 2, c=3 
a=2, b = 3, c=S 
a= I, b=3, c=4 
a = 1/2, b=3/2 
a= I, b=2 
a=b= I, c=2 
a =0, b=c= I, d=2 
a = b = 1/2, c = 3/2, 

a = 1/2, b = c = 3/2, 

a= 1/2, b = c = 3/2, 

a = I, b = 3 
a = I, b = 5 
a = 2, b = 4 
a = 2, b = c = 3 
a = b= 3, C = 4 
a = 4, b =c = 5 
a = 2, b = c = 4 

d= S/2 

d=7/2 
d = S/2 

a = b = C = 1/2, d = S/2 
a = 1/2, b = c = d = 3/2 
a = b = c = 1/2, d = 7/2 
a = b = c = 3/2, d = 5/2 
a = 0, b = I, c = 3 
a=b=O, c=l, d=3 
a = b = c = 1/2, d = 9/2 
a = 3/2, b = c = d = 5/2 
a=b=c=2 
a = 0, b = c = d = 2 

a=b=c=l, d=3 
a = 3, b = c = d = 4 
a = b = 0, c = 1, d = 4 
a = b = 0, c = I, d = 4 
a = 3, b = c = d = 4 
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TABLE II. (Continued.) 

Multiplicities 
m = (mc» m[ ..... m6 ) 

ofthe charges 
( - 3. - 2. - I. O. 1.2. 3) 

3 different charges 

[I. O. O. 2. O. O. I] 
[0. I. 0.2. O. 1.0] 
[0. O. 1.2. I. O. 0] 
[0. 2. O. 2. O. 2. 0] 
[0. O. 2. 2. 2. O. 0] 
[0. 3. O. 2. O. 3. 0] 

[0. O. 3. 2. 3. O. 0] 

2 different charges 

[0. 2. O. O. O. 2. 0] 
[0. O. 2. O. 2. O. 0] 
[0. 3. O. O. 0, 3. 0] 
[0. O. 3. O. 3. O. 0] 

Groups and 
representations 

SO(5).4, 
SO(5).4, 
SO(5).4, 
SU(4).6 
SU(4).6 
SO(8).8; 

SO(8).8; 

SO(5).4, 
SO(5),4, 
SU(4).6 
SU(4).6 

VaIues of the 
parameters 

a=b=3 
a=b=2 
a=b=1 
a=b=2. c=4 
a = b= I. c= 2 
a = b = c = I. d = 3 

a = b = c = 112. d = 312 

a =0. b=4 
a =0. b= 2 
a =b=O. c=4 
a = b =0. c= 2 

a All the groups which don't need an extra U( I) factor to reproduce the charges of the quarks and the leptons of one family. with multiplicity I at most for the 
leptons (except for the neutrinos). and 3 at most for the quarks. are presented here. The values of the parameters must be divided by three in the table and must 
be put in the corresponding charge operator of Table I. to get the correct charge assignment. 

To compute the charge operators described in the lemmas of the Sec. 4. recall that 

Qp = (0. a, ..... ap_,) +A +K in SU(p). 

Q2n = ( - an •...• - a,. a, •...• an) in SO(2n) and SP(2n). 

Q2n+' =(-a ••...• -a[.O.a, •...• an) in SO(2n+I). 

If one has the structure 
b 

m = [mo. m" ...• m 6]. I m; =p 
i=O 

with mf the first nonzero multiplicity. then the first mf parameters of Qp are equal to zero. the next mil + ') are equal to 113. the next mlf + 2) are equal to 2/3. 
and so on. 

If p = 2n + I. with m symmetric, then m3 = I. and the m. first parameters are equal to 113. the next ms are equal to 2/3. and the next m6 are equal to 1. If 
p = 2n. with m symmetric, then m3 = 0 or m3 = 2. In the former case. the first m. parameters are equal to 113. the next ms are equal to 2/3. and the next m6 
are equal to I. In the latter case. a, = O. the next m 4 parameters are equal to 113, the next ms are equal to 2/3. and the next m6 are equal to 1. 

Example: 

m = [0. 1.2. 1.2. 1.0]. !.m; = 7. 

SO(7), 7v • a, = a2 = 113. a, = 2/3. 

SU(7). 7. a, = a2 = 113. a, = 2/3. a. = as = I. a6 = 4/3. 

TABLE IlIA. List of d-dimensional irreducible representations in simple 
Lie groups (d<; 16). 

SU(3) 
SU(4) 
SU(5) 
SU(6) 
SU(N) 

1.3.3.6.6.8=:8. 10. 10. IS. 15. IS'. IS' 
1.4,4,6===6, 10, TO. 15=== IS 
1.5.5, 10. T6. IS. 15 
1.6.6. IS. 15 
I.N.N 

(7,;;;:N,;;;:16) 

SO(5) 

SO(7) 
SO(9) 

SO(2N + I) 
(5,;;;:N,;;;:7) 

SP(6) 
SP(2N) 

(4,;;;:N,;;;:8) 

SO(8) 

SO(IO) 
SO(2N) 

(6.;;;N,;;;:8) 

G2 

437 

1.4" 5u • 10", 14v • 16, 
1, 7v ' 8s 

I. 9u • 16, 
I.(2N+ I)v 

1.6,14.14' 
1.2N 

1, 8u ' 8n 8; 
1, IOu. 16,. 16, 
I,2N 

1. 7===7, 14=== 14 
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TABLE I1IB. List of simple Lie Groups having d-dimensional irreducible 
representations (d.;; 16). 

d=3 
d=4 
d=5 
d=6 
d=7 
d=8 

d= II 
d= 12 
d= \3 
d= 14 

d= IS 

d= 16 

SU(3) (2 types) 
SU(4) (2 types); SO(5) 
SU(5) (2 types); SO(5) 
SU(3) (2 types); SU(4); SU(6) (2 types); SP(6) 
SU(7) (2 types); SO(7); G2 

SU(3); SU(8) (2 types); SO(7); SO(8) (3 types); 
SP(8) 
SU(9) (2 types); SO(9) 
SU(3) (2 types); SU(4) (2 types); SU(5) (2 types); 
SU(IO) (2 types); SO(5); SO(IO); SP(IO) 
SU(II) (2 types); SO(II) 
SU(12) (2 types); SO(12); SP(I2) 
SU(\3) (2 types); SO(13) 
SU(I4) (2 types); SO(5); SO(14); SP(6) (2 types); 
SP(14); G2 

SU(3) (4 types); SU(4); SU(5) (2 types); 
SU(6) (2 types); SU(I5) (2 types); SO(I5) 
SU(16) (2 types); SO(5); SO(9); SO(IO) (2 types); 
S0(16); SP(I6) 
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according to formulas (2), (3), and (4), when K = O. From 
expression (8), it is easy to get Q 11+1' if one notes that, under 
charge conjugation, the generic charge operator Qd' given in 
(2), becomes 

Ii -k _k - -
Q" = (0 u,a l ', ... ,a/) +,1 + K, 

where 

(ii =ap -ap _ i , 

ki = kp __ i , 

;: = - ap +,1, 

K= -K. 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

Any other representation ofSU(n) is obtained by suit
ably Young-symmetrized Kronecker products of the funda
mental representation. 

To get the corresponding charge operator, just recall 
that for Qd and Qd' , whose eigenvalues are respectively Xi 
and lj, the eigenvalues of Qd X Qd' are Xi + lj. Now, any 
symmetrization of the (d X d ') product gives a representation 
whose charge operator is obtained by picking up out of the 
set (Xi + lj) the sums with the symmetries ofthe representa
tion. Special cases when some of the ai's in (8) are equal can 
be derived from the results above. 

For the Bn, Col' and DOl classes and G2, we use the 
weight diagrams. 

If a simple Lie group is of rank n, there exist n funda
mental weights L' , defined by the formula 

2(L"aj )/(aj )2 = 8ij' (15) 

where the ai's are the simple roots and where the scalar 
product is defined in an n-dimensional Euclidean space, with 
orthogonal basis (e i ) and suitable normalization. We refer to 
it as to the weight space. Each representation has its highest 
weight L, of multiplicity one, expressed as a linear combina
tion of the L' 's, with nonnegative integer coefficients (Dyn
kin labels): 

(16) 

In order to find all the weights of 1, say, d-dimensional repre
sentation tJ., we use the Weyl group. This one is generated by 
the reflections p acting in the weight space 

p(t) = I-IW, 

where I' is a weight, a are the roots, and J1 is an integer 
defined by 

J1 = 2(e,a)/(a,a). 

(17) 

(18) 

All weights deduced from each other by a Weyl trans
form are equivalent, and have the same multiplicity. Starting 
from the highest weight L of multiplicity I, we can find the 
set W (L ) of the weights equivalent to L. These weights are 
points of the Z-lattice obtained by adding arbitrary combi
nations of the n simple roots to the highest weight L. They 
enclose a finite number of points of the lattice, which are also 
weights of the representation. We write them as 

(19) 
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til) being, by definition, the highest weight of the representa
tion tJ.. The multiplicity n(f) of the weight tiJ) is given by 
Freudenthal's recursive formula 

[(01) +8'~1) +8)-(flJ) +8,irfl +8)Jn(f) 
00 

= 2 I I n(f')(t(f) + ia,a), (20) 
ct>O i= 1 

where a are the positive roots (linear combinations of the 
simple roots, with nonnegative coefficients); 

and n(f') is the multiplicity of the weight 

~f'I = IIf) + ia. 

Recall that 

n(l) = 1. 

(21) 

(22) 

(23) 

The techniques and developments can be found in Ref. 6. 
Now, the charge axis has a priori any direction in the n

dimensional weight space. Indeed by a good diagonalization 
any operator Q can be expressed as a linear combination of n 
operators Hi which form a suitably normalized Cartan basis: 

Qd=hiHi , I<i<n. (24) 

(A generator Y has to be added to this expression if K #0.) 
The hi'S are free parameters, and Qd has eigenvalues given 
by [see (2) and (3)], 

i.e., qJ up to a factor K, by (5). The b If) are fixed by the 
representation tJ. [see (19)]. 

(25) 

To get the charge operator we want, we have to discuss 
the values of the parameters hi' components of an n-vector in 
the weight space, which we call charge axis. Its direction can 
be chosen within a closed Weyl chamber of the weight dia
gram. (An open Weyl chamber w being a connected compo
nent of W - Ua Pa , where W is the weight space and P a the 
hyperplane orthogonal to the roota. Using Weyl transforms 
on a Weyl chamber, one finds W - uaPa). Let us now de
scribe the limitations we can put on the charge axis in the 
weight space of Bn, Cn, Dn, and G2• 

A. Bn (roots: ± ei• ± ei ± ej ) and en (roots: 
±2ei• ±ei ±ej ) 

Under a reflection through the hyperplane orthogonal 
to the root ei (or 2e i ), the charge axis transforms like 

(26) 

Thus we can consider that all the ai's are nonnegative. Un
der a reflection through the hyperplane orthogonal to the 
root ei - ej , the charge axis transforms like 

(h I, ... ,h i , ... ,hj , ... ,hn )--+{h l,h 2, ... ,hj , ... ,h, , ... ,h,,). (27) 

Thus we can consider hi smaller than hj for i <j. The Weyl 
chamber we select is the connected part of the weight space 
delimited by the hyperplanes orthogonal to the roots 
e l ,e2 - e l ,e3 - el, ... ,e" - en _ 1 , and whose vectors have a 
positive scalar product with all the roots above. The charge 
axis is such that 

(28) 
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B. On (roots: ± ei ± ej ) 

Under a reflection through the hyperplane orthogonal 
to the root ej - ej the charge axis transforms like (27) while 
under a reflection through the hyperplane orthogonal to the 
root e j + ej , the charge axis transforms like 

(h l,h 2 , ••• ,h j , ••• ,hj , ••• ,hn )-+(h l,h2 , ... , - hj , ... , - hj , ... ,hn )· (29) 

This transformation shows that we can take the hj 's as posi
tive numbers except perhaps, hn , whose sign is to be dis
cussed. However, there exists a Z2 symmetry which inter
changes representations, and, in particular, the two spinorial 
representations whose dominant weights are 

L = ~(el + e2 + ... + en) (30) 

and 

(31) 

A negative value for an in the first spinorial representation 
corresponds to a positive value for an in the second one, of 
same dimension, and obtained by a Z2 symmetry. The argu
ment is easily generalized to any pair of Zz-related represen
tations. We then have 

(32) 

The W ey I chamber we select here is the connected part of the 
weight space delimited by the hyperplanes orthogonal to the 
roots el - ez,e l - ez,ez - e3, ... ,en _ I - en' and whose vec
tors have a positive scalar product with all the roots above. 

C. G2 (roots: ± 2e;, ± 3e2, ± (e; + e2), ± (e; + 3e2), 
± ( - e; + 3e2), ± ( - e; + e2» 
Here 

(33) 

The Weyl chamber we select is the connected part of the 
weight space delimited by the roots 2e~ and e; + 3e~, and 
whose vectors have a positive scalar product with these two 
roots. Then we have 

0<,h t <,3hz· (34) 

The classification of Table I takes the restrictions (4), (28), 
(32), and (34) into account. Furthermore, we give there the 
eigenvalues in an increasing order, supposing a j + t much 
greater than a j. When some a j+ I become closer to aj, the 
order of the eigenvalues can change, as is easily seen. 

4. DISCUSSION OF PARAMETERS VALUES 

We first deal with the trivial cases, which are essentially 
treated using the following lemmas. Let us slightly extend 
the notation k (7) introducing 

m = [mO, ... ,m6 ], (35) 

where some mj can be zero. They are the multiplicities of 
particles and antiparticles, listed in the following order 
(e- ,u,d,(v or v), d,u,e+). 

Definition: The structure m is symmetric if mo = m 6 , 

m l = m 5 , mz = m 4 • 

Lemma 1: m symmetric implies that the sum of the 
charges of the particles put in the irreducible representation 
is zero. 
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Lemma 2: In all groups of Table I, nonsymmetric struc
tures only appear in SU(n) (3<,n<; 16) and in representation 
16s of SOt 10). 

Lemma 3: Each time one takesN particles (and/or anti
particles) so that the sum of electric charges is zero, with the 
multiplicity structure m there is a good N-dimensional 
charge operator in SU(N) associated with them. 

Lemma 4: Each time one takes 2N particles (and/or 
antiparticles) plus one neutrino, with m symmetric, there is a 
good (2N + 1 )-dimensional charge operator in SO(2N + 1) 
associated with them. 

Lemma 5: Each time one takes 2N particles (and/or 
antiparticles) with m symmetric, there is a good 2N-dimen
sional charge operator in SO(2N) and Sp(2N) associated with 
them. 

The proofs of the five lemmas are obvious when looking 
at the charge operator structures of Table I. 

As a consequence of the lemmas, when one constructs a 
multiplicity structure m, four cases are possible. 

(a) m is symmetric and ~~=omj = 2N + 1. Then, there is at 
least the trivial charge operator Q ZN + I in Su(2N + 1) [resp. 
SO(2N + 1)] which describes the particles of the theory. 

(b)missymmetricand~~=omj = 2N. Then, there is at least 
the trivial charge operator Q ZN in Su(2N) [resp. SO(2N), 
Sp(2N)] which describes the particles of the theory. 

(c) m is not symmetric, but the sum of the charge is zero and 
~~ = 0 mj = N. Then, there is at least the trivial charge opera
tor QN (and Q"N) in SU(N) which describes the particles of the 
theory. 

(d) m is not symmetric, and the sum of the charges is not zero. 
then, a shift is necessary, and this will be discussed in Sec. 5. 

To construct explicitly the charge operators for the tri
vial cases, i.e., those described by a to c, one can simply use 
the prescriptions of the footnote to Table II. 

The nontrivial cases can be found in Table II, and are 
obtained by the methods explained in Sec. 3. 

5. THE SHIFTS 

We look now at theories where the relevant group is 
G X U (1), with G a simple group. Indeed, if we want to con
sider groups where K, as defined in Eq. (2), is nonzero, this is 
the simplest possibility. In the preceding section, we have 
tried to present our results quite generally, so that they can 
apply to any representation of dimension less than or equal 
to 16, and for a set of at most seven different eigenvalues. 

In this section, we will be more specific and limit our
selves to the actual problem of putting the known quarks and 
leptons in several representations of G. 

A quick analysis shows that if we want the weak and 
strong interactions to act on the multiplets, the only parti
tions are: 

9+6, 10+ 6: (e- ,u 3,v1,2,d 3,e+) + (d 3,U3), (36a) 
6+9, 7 +9: (e- ,vl.z,d 3,e+) + ( u 3,d 3,U3), (36b) 
6 + 10 (- d 3 +) ( - 3 d 3 3) e ,v, ,e + u, ,v,U, (36c) 
5 + 10, 6+ 10: (e-,vl.z,d 3) + (u3,d3,u3,e+), (36d) 
5 + 11, (e-,v,d 3

) + (u 3,d 3,v,u\e+), (36e) 
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8 + 7, 9 + 7: (e-,iI 3,V I ,2,d 3) + (d 3,u3,e+), (36f) 

8 + 8 (e-,iI 3,v,d 3) + (d 3,v,u3,e+), (36g) 

1 + 14, 1 + 15: e+ + (e- ,iI 3,d 3,VI ,2,d 3,U3), (36h) 

1 + 1 + 14 e+ + v + (e- ,iI 3,d 3,v,d 3,U3), (36i) 

with, in formulas (36b) and (36c) the possibility of inter
changing iI and d. 

Table III shows that the allowed sums are 

6 + 10 in 8U(3) and SU(4), (37a) 

SU(8), 

1 + 14, SU(14), 

a = b = c = 1/3, 

e=/=g=4/3, 
K= 1/4, 

d= 1, 

K= -1/4, 

(38a) 

a = b = c = 1/3, d = e = / = 2/3, 

g = 1, h = i = j = 4/3, 

k = 1= m = 5/3, KI4 = 1/14, 

KI = 1, (38b) 

7 + 8 in SO(7), (37b) 

8 + '8 in SU(8) and SO(8), (37c) 

1+1+14, SU(14),a=b=c=1/3, d=e=/=2I3, 

g=l, h=i=j=4/3, 

1 + 14 in 8U(14), 80(5), SO(14), (37d) 

1 + 1 + 14 SP(6), 8P(14), G 2, (37e) 

1 + 15 in SU(15),SO(15),8U(6),SU(5),8U(4),SU(3). (37f) 
1 + 15, SU(15), 

Among these possibilities, only SU(8), SU(14), and 
SUI 15) provide a good charge assignment. According to the 
notations of Sec. 3, and Table II, we write 

TABLE IV. 

Group Rep 

SU(16) 16 

Fennionic content Values of parameters 

(e-, il 3,d 3
, v,d 3

, u3
, e+) a = b =c= 1, d= e =/= 2, 

g = h = 3, i = j = k = 4, 
1 = m = n = 5, 0 = 6 

SO(I6) 16 idem a = 0, b = c = d = 1, e = / = g = 2, 
h=3 

SP(16) 16 idem idem 

SO(IO) 16, idem a = 0, b = c = d = 1, e = 3 

SO(9) 16, idem a = b = c = 1, d = 3 

SU(I5) 15 (e~, u3
, d 3 , v, d\ u3

, e+) a =b=c= 1, d=e=!=2, g= 3, 
h = i=j= 4, k = 1= m = 5, 
n=6 

SO(15) 15, idem a=b=c=l, d=e=/=2, 
g=1 
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k = 1= m = 5/3, KI4 = - 1/14, 

KI = 1, K 1• = 0, (38c) 

a = b = c = 1/3, d = e = / = 213, 

g = h = 1, i = j = k = 4/3, 

1= m = n = 5/3, K I5 = - 1/15, 

KI = 1. (38d) 

Characteristics 

-Complex representation 
-Not anomaly free 
-Asymptotically free (A = 176) 
-SU(3) color present 
-SU(2) weak present 

-Self-conjugated representation 
-Anomaly free 
-Asymptotically free (A = 77) 
-SU(3) color present 
-SU(2) acts on (u, d), (v, e-) and 

(ii, d), (v, e+) 

-Self-conjugated representation 
-Anomaly free 
-Asymptotically free (A = 99) 
-SU(3) color present 
-SU(2) acts on (u, d), (v, e -) and 

(ii, d), (v, e+) 

-Complex representation 
-Anomaly free 
-Asymptotically free (A = 22) 
-SU(3) color present 
-SU(2) weak present 

-Self-conjugated representation 
-Anomaly free 
-Asymptotically free (A = 19) 
-SU(3) color present 
-SU(2) acts on (u, d), (v, e-) and 

(ii, d), (v, e+) 

-Complex representation 
-Not anomaly free 
-Asymptotically free (A = 165) 
-SU(3) color present 
-SU(2) weak present 

-Self-conjugated representation 
-Anomaly free 
-Asymptotically free (A = 71) 
-SU(3) color present 
-SU(2) acts on (u, d), (ii, d) but 

not on (v, e-) 
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TABLE IV. (Continued.) 

Group Rep 

SOtS) S; + S" 

SU(S) S + '8 

SO(7) 

SU(7) 

SU(5) 5 + 10 
(5 + 10) 

SU(4) 4+4+6+1 

Fermionic content 

(u3
, '?, u3

) 

+(e-,d 3,it 3,<) 

(u3 , v, it 3, e+) 
+ (e-, d 3

, v, u3
) 

(e-, U, d, v, it 2, u) 
+ (u 2

, d 2
, v, it, u, e+) 

(U3
, '?, u3

) 

+ (e-, d 3 , it 3, e+) 

(e-, u, d, it 2, u2
) 

+ (u2, d 2
, it, u, e+) + v 

(e-,d"u3
) 

+ (u 3
, it 3

, e+) + v 

(e-, v, it 3) 
+ (u 3

, d 3
, u3

, e+) 
(and c.c.) 

(d 3
, v, e+) 

+ (e- ,u3
, it 3, u3

) 

(and c.c.) 

(d 3
, e+) + (e-, it 3

) 

+ (u 3
, u3

) + V 

VaIues of parameters 

a = b = c = I, d = 3 
a = 0, b = c = d = 2 

a=b=~ c=~ d=e=/=3 
g=5 
or 
a=b=c=~ d=~ e=/=g=5 

a = I, b = 2, c = 3, d = e = 4, 
/=g=5 

a=b=c=2 

a=l, b=2, c=d=4, e=/=5 
or 
a = 0, b = c = I, d = 3, e = 4, / = 5 

a=b=c=2, d=e=/=5 
or 
a = b = 0, c = d = e = 3, / = 5 

a = b = 0, c = I, d = 4 

a=l, b=c=d=4 

a = b= 0, c= 4 

Characteristics 

-Self-conjugated representation 
-Anomaly free 
-Asymptotically free (..i = 16) 
-SU(3) color present 
-No SU(2) present 

-Self-conjugated representation 
-Anomaly free 
-Asymptotically free (..i = 44) 
-SU(3) color present 
-SU(2) weak is taken to act only 

on S 

-Self-conjugated representation 
-Anomaly free 
-Asymptotically free (..i = 44) 
-No SU(3) color 
-No SU(2) weak present 

-Self-conjugated representation 
-Anomaly free 
-Asymptotically free (..i = 13) 
-SU(3) color present 
-No SU(2) weak 

-Self-conjugated representation 
-Anomaly free 
-Asymptotically free (..i = 3S) 
-No SU(3) color 
-No SU(2) weak 

-Self-conjugated representation 
-Anomaly free 
-Asymptotically free (..i = 38) 
-SU(3) color present 
-No SU(2) acting on (v, e-) 

-Complex representation 
-Anomaly free 
-Asymptotically free (..i = 13) 
-SU(3) color present 
-SU(2) weak present in 5 + 10 

-Complex representation 
-Anomaly free 
-Asymptotically free (..i = 13) 
-SU(3) color present 
-SU(2) weak present in 5 + 10 
-Self-conjugated representation 
-Anomaly free 
-Asymptotically free (..i = II) 
-SU(3) color present 
-No SU(2) weak 

a The values of the parameters must be divided by three to get the spectrum of the particles. 

Let us note that a more general approach to the shift 
problem is to examine all the sums 

n) + ... + nj = 15 (or 16), (39) 

where nj is the dimension of the ith multiplet in a given 
simple group G. This analysis leads to extra cases like, for 
instance, 
8v + 8., SO(8), a =b=c= 1/6, 

d = 1/2, K s" = - 1/2, K s, = 1/2 
(40) 

the particle assignment being, for this, (e-,u 3,d 3,v) 
+ (v,'P,u 3,e+). 

Unfortunately, all these cases, deduced from too gen
eral assumptions, don't seem to have any hope of surviving. 
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6. SOME COMMENTS 
Among all the charge operators described in Sec. 4 and 

Table II, we pick up those which reproduce the charge spec
trum 

(41) 

within one or several irreducible representations of a same 
Lie group. 

We discuss in Table IV the SU(3) color content of the 
groups G when the charge operator comes out well, and look 
for an SU(2) group which could describe the weak interac
tions. 

Beside the complex and anomaly-free character of the 
representations, we also give in each case the maximal multi-
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plicity of these representations (/l. ), bounded by the asympto
tic freedom requirement. 

7. CONCLUSIONS 

We have presented here all the simple Lie groups where 
the charge operator has 16 different eigenvalues at most. Our 
work has been guided by the idea of putting the leptons and 
the quarks of one family in a representation (reducible or 
irreducible) where the charge operator comes correctly out. 

This can be seen as a classification of GUT candidate 
groups at the lowest level, i.e., with the charge restriction as 
unique condition on the representation. However, if we re
quire SU(3) color and SU(2) weak to be subgroups ofthe 
relevant group G, SU(16) seems to be the best candidate [ex
cept, of course, the SU(5) and SO(lO) groups]. 

A straightforward extension of this paper would be to 
allow several families in the representation. In particular, 
the extension ofSU(16) to SU(48) or SU(16)3, which are the 
maximal SU(N) symmetries when one considers three gen
erations of particles, becomes more and more popular. 

On the other hand, the idea of inserting an extra U(I) 
factor in the theory (shift problem) doesn't lead to any ap
pealing alternative. 

Anyhow, the above classification of representations is 
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still useful if one succeeds in curing the weaknesses of the 
GUT candidates listed in Table IV, using, for instance, new 
concepts or new tools. 
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Let g be a Lie algebra and assume XE Z (g) (the center of g). Let rp: g-End V be such that 
rp (X) = 1 v' We show that H ; (g, V) = 0 V n > O. The result applies to the nonrelativistic Poincare, 
harmonic oscillator and Heisenberg algebras, and also to g Ell u( 1) where g is a semisimple Lie 
algebra. We also give here the cohomology groups for the first three algebras with the adjoint 
action, giving explicit computations of H 1 and H 2, respectively, for the first two algebras. 

PACS numbers: 02.20.Sv, 02.90. + P 

I. INTRODUCTION an f(X1, ... , Xn + 1 ) 

n+l A 

= I (-IY+ 1{,6(X;)f(X1, .. ·,X;, ... ,Xn+ l ) 

;=1 

It follows that a n + Ian = 0 V n. Further, we define 

CO(g, V) = (f IF_V: fis IF linearJ and 

ao f(X): rp (X)f(l) V XEg. 

Cohomology theory has long been known to be of great 
importance in solving various problems in mathematics. 1 In 
recent years, some of these problems, e.g., classification of 
principal bundles (Chern class theory)/ solutions offield 
equations in nonabelian gauge theories (de Rham theory),3 
classification of Lie algebra extensions and groups and Lie 
algebra contraction schemes (group/Lie algebra cohomo
logy theory4.5) have been of interest to physicists also. The 
explicit computations of cohomology groups, remains, how
ever, as a problem. In this paper, we wish to study some of 
the cohomology groups of Lie algebras with a nontrivial cen
ter. In this regard, it is worthwhile noting that complete re
sults are known for finite dimensional representations of 
semisimple Lie algebras: H; (g, V) = 0 Vn > 0, g semisimple 
over R or C, Vbeing a g module.4 

Let Z;(g, V) = Ker a nand B ;(g, V) = 1m an - I. Finally, 
H;(g, V)=Z;(g, V)/B;(g, V). 

Our major result in this direction is the following. 
Theorem: Let g be a Lie algebra over IF (R or C) and let 

Z(g)beitscenter. AssumeO#XE Z(g). Let{,6: g-End Vbea 
representation such that (,6 (X) = 1 v' Then H; (g, V) = 0 V 
n > O. The proof of this theorem is given in Sec. II. The 
theorem can be applied immediately to several physically 
interesting Lie algebras, e.g., the nonrelativistic Poincare al
gebras in (m + n) dimensions, nrp(m, n), the Heisenberg al
gebra in n dimensions, h(n), the harmonic oscillator algebra 
in n dimensions, ho(n), and Lie algebras of the form h Ell u(l) 
where h is semisimple over C. The common feature of the 
first three sets of these algebras is that representations satis
fying (,6 (X) = 1 v are precisely the physically relevant ones as 
is shown in Sec. II. 

In Sec. III, we give the groups H ~ (g, g) where (,6: 
g-End g is the adjoint action and g is one of the following 
algebras: nrp( 1,1), ho( 1), h( 1) and give the explicit calcula
tions for nrp( 1,1) (p = 1 case) and h( 1) (p = 2 case). 

II. RESUME OF COHOMOLOGY THEORY AND PROOF 
OF THE THEOREM 

Let g be a Lie algebra over IF, and let Vbe a vector space. 
Let (,6: g-End Vbe a representation. We define cn(g,V) 
= ! f gn_V:fis IF linear and 

f(XJ, ... ,XiI .. ·,Xj , ... Xn) 

= -f(XJ' ... ,Xj , ... ,X;, ... ,Xn) VX;Eg}. 

We define a n: cn(g, Vj-C n + I(g, V) by 

Proof of the theorem 

LetfECn(g, V). Then 

an f( Y1, Y2 , ... , Yn + 1 ) = 0 
n+ I A 

=> I (- 1);+ 1{,6 (Y;)f(Y1, ... , Y;, ... , Yn + I) 
;=) 

1'1+) A A 

+ I (-l);+Jf([Yil l}],Y;, ... ,l} ... ,Yn+d=O 
i<j 

and 

ay(x,Y1, .. ·, Yn ) = 0 

=>f(Y), ... ,Yn) + i (- 1);{,6 (Y;)f(X,Y1, ... ,Y;, ... ,Yn) 
;=1 

i<j 

V Y,.E g/[X J, 
"-

( 1) 

(2) 

where Y; implies that Y; is to be omitted. Using Eq. (2), we 
define 

(3) 

It is possible to show that Eq. (1) is satisfied. ThusfE Z n(g, V) 
implies that (3) is satisfied. Now let/, = f - aw, i.e., 
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/,(YI,···,Yn) 
n. A 

=/(YI,···,Yn) - I (- 1)'1,6 (Y;)W(YI,···,Y;.···,Yn) 
i=1 

n 

- I( - 1);+lW([ Y;, lj], YI,. . .,i';. ... ,Yj, ... ,Yn), 
i<j 

/,(X, YI""'Yn ~ I) 

=/(X, YI""'Yn ~ I) - W(YI"··'Yn.~ I) 
n~1 

- I (- 1);1,6 (Y;)W(X, YI,···, Y;. ... , Yn ~ I ) 

;~ I 

'tJ Y,Eg/(XJ. 

Choose 

w(YI, ... , Yn ~ I) = fIX, YI""'Yn ~ I)' 

w(X, YI, ... , Yn~2)=0 'tJ Y;Eg/(XJ. 

(4) 

(5a) 

(5b) 

Then/'(X, YI"",Yn ~ I) = O. Also from (4), (5a), (5b), and (3), 
/,(YI, ... ,Yn) = 0, and hence/= aw, i.e., H;(g, V) 
=0 'tJn>O. 

Remark 1: The Lie algebras nrp(m, n), ho(n), and h(n) 
share the property thatXE[g, g]. As usual, this implies that if 
1,6 (X) - I v then V is necessarily infinite dimensional for 
tr 1,6 (X) = dim V = tr([¢ (g),¢ (g)]) = 0, which implies that ei
ther dim Vis trivial or that tr 1,6 (X) is not well defined. On the 
other hand if g = h 61 u(I), then X~[g, g] and the representa
tion may be finite dimensional. 

Remark 2: The above theorm may be generalized in the 
following sense. 

Theorem: Let g = ~ + gl be a Z2 graded Lie algebra 
over]F. Let O#XEZ (g)n~ and let 1,6: g-+End Vbe a represen
tationsuch that 1,6 (X) = 1 v' ThenH;(g, V) = 0 'tJn > O. The 
proof of this theorem may be carried out on the same lines as 
above. In this connection, see also the explicit computations 
of H;(g, V) for the Dirac algebras reported earlier. 7 

III. Hf(g, g) FOR THE ADJOINT ACTION 

(i) g = nrp(I,I). The Lie algebra is defined by (XI' X 2, 

X3,X4J with [XI,x2] = X4' [XI,x3] = X2, other commutators 
being zero, and with ZIg) = (X4J. Here XI is the velocity 
boost operator, X 2, X3 the space and time translation opera
tors, and X 4 is the identity operator. 

Let/EZ I(g, g) and let/IX;) = aij~' Then a/(x;. Xj) 
=0= [X;./(X;) + [/(X;),Xj ] -/([X;,Xj])' 

Using the commutation relations, we get 

a 31 = a21 = a 23 = a41 = a42 = a43 = 0, 

a 44 = a 33 + 2a 11 , a 22 = a33 + all' a 24 = a 32· 

Thus, one is left with seven free parameters so Z I(g, g) = ]F7. 
Now let/' = / - aw where WECO(g, g) and/,(X;) 
= aijX;. w( I) = /3;X;. Then, from/'(X;) = fIX;) - [X;. 

w(I)], one finds a;3 = a l3 - /34' a;4 = a l4 - /32' a;2 
= a 32 + /31' a~4 = a 24 + /31' aij = aij for all other i,j. 

Choosing/34 = al3,/32 = a I4,/31 = - a w we may write/, as 
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/,(Xd = a;IXI + ai2 X2' 

/'(X2 ) = a;IXI + a;2X4' 

/'(X3) = a;2 X2 + a~X4' 
/'(X4 ) = 2a;I X4' 

Hence 

H~(g,g)=~. 

Similarly one may show that H2 = ]F6, H3 = ]F5, H6 = ]F2, 
and H n = 0 'tJ n > 4. 

. (ii) g = h(I). The Lie algebra is defined by (XI' X2, X31 

wIth [XI' X2] = X3. Here, XI is the position, X2 is the momen
tum, and X3 is the identity operator. One can show that 
HI=~. 

Let/E Z2(g, g) and let/(X;,~) = aijkXk' Then 

a/(XI' X2 , Xl) = 0 = [XI./(X2, X3)] - [X2./(X, , X3)] 

+ [X3./(X1' X2)]· 

Simplifying, we get a 232 = - am. Thus Z2 = ]F8. Let 
/' =/ - aw, WEC I(g, g) with/'(X;,~) = aijkXko w(Xj) 
= /3ijXj , Then we get 

a;21 =a'2' +/332' a;22 =a'22 +/33" 

a;23 =a'23-/3I,-/322+/333' 

aUk = aijk 'tJ other i,j, k. 

Choosing /332 = - a l2l , /33' = - a 122' /311 = /322 = 0, 
/333= -a'23' 

we may write /' as 

/'(X" X 2 ) = 0, 

/'(XI, X3) = ai3l X , + ai32X2 + ai33X3' 

I'(X2 , X 3 ) = a~3IXI - ai31 X2 + ai33 X3' 

and hence H ~ (g, g) = ]F5. Similarly, one gets H 3 = ]F2, and 
Hn = 0 'tJ n>3. 

(iii) g = ho(I).6The Lie algebra is defined by (XI ,X2,X3, 

X4 J with [Xp X2] = X 3, [Xp X 3] = - X 2 , [X2, X 3] = X4 , all 
other commutators being zero. The cohomology groups are 
givenbyHI = ]F2,H2 = ]F6,H 3 = ]F2,H4 = ]FI,andH n = 0, 
n > 4. (Here, Xl is the harmonic oscillator Hamiltonian, X 2 is 
the position, X3 the momentum, and X 4 the identity opera
tor.) 
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We analyze a number of restrictions on the evolution systems associated with the zero-curvature 
equations corresponding to the extended Dynkin diagram A ~~ I . The resulting specialized 
evolution systems contain exponential terms, like a third-order differential equation previously 
derived in Ref. 5. 

PACS numbers: 02.30.Jr, 02.20.Sv 

1. INTRODUCTION 

Recent work by Drinfel'd and Sokilov, I shows how 
equations ofthe Korteweg-de Vries (KdV) and modified 
KdV type can be generalized through the construction of 
zero-curvature equations2 in the context of the affine Lie 
algebras (an adequate description of these algebras can be 
found in Helgason's book in Ref. 3). Even though the num
ber of examples of two-dimensional integrable systems has 
been notably augmented and most of them conveniently 
classified,4 there are still some equations, known to have an 
integrable behavior, which are not included in the general 
scheme of the theory. Among others, we can cite Eqs. (5.5) 

Pt = 2pxxx - p! - 3(c~ e2p + c6 e - 2
P)px 

first derived in Ref. 5, that will constitute, besides the gener
alizations of them, the main object of the present work. 

The specialization of an integrable system consists in 
constructing another system compatible with the former and 
containing a number of functions less than those appearing 
in the original equations. This method has been widely dis
cussed in the works of Refs. 5-10 from different viewpoints. 

The main result of this paper establishes that the for
mula (4.4) determines a specialization for the zero-curvature 
equations associated with the diagram A ~I~ I' The method 
we have followed here makes use of what we call in Sec. 2 an 
invariant manifold: A condition over a duplicate evolution 
system which is to be specialized. These invariant manifolds 
constitute an infinite set, but only the first two elements of it 
are of practical use if one wants to maintain the discussion in 
an algebraic (local) setting. In Sec. 3 we give the necessary 
information about the symmetries of evolution equations 
based on automorphisms of order 2 of the extended Dynkin 
diagram of A ~~ I' in order to derive in Sec. 4 the desired 
specializations of these equations by examining the solutions 
of a pair of coupled equations. Finally, in Sec. 5 we present 
some examples of the above in the simplest cases. 

2. INVARIANT MANIFOLDS 

In this section we shall determine a number of con
straints (invariant manifolds) that will be used in the special
ization of the zero-curvature equations. We start with some 
information about these equations that we shall be using in 
what follows, though the interested reader will learn correct-

-I Partially supported by the Comisi6n Asesora de Investigaci6n Cientifica y 
Tecnica. 

ly what we sketch here, in Refs. 1 and 2. 
Let 9 denote a simple Lie algebra and u an automor

phism of mth order in 9 with the corresponding 'lm -grada
tion induced by it: 9 = 90 EB ••• EB 9m _ I (9i is the subspace of 
9 where u acts as E i

, E a primitive mth root of unity). Define 
the infinite-dimensional Lie algebra 

00 

L(9,u)= EB Ai9imodm' 

its elements being of the form 1: A i Xi' Xi E 9i mod m' under
stood as a formal power series in the parameter A with coeffi
cients in 9. Let FE 9 I be a semisimple element and u E 90 
n 1m ad F. We consider the algebra B = C [ u\')] of differen
tial polynomials in the variables U i which determine u on 
some fixed set of vectors expanding 90 n 1m ad F and define 
the usual derivation a, 

au\') = u\j + II. 

We set 9 = B ® 9, i = L (g, u) and extend a to g, i acting 
coefficientwise. Define the differential operator 

(2.1) 

Thus, for each Vo in the center ofthe centralizer of Fwe can 
form the element r of i, r = Vo + VI A. -I + ... satisfying 

(2.2) 

Let k be some fixed positive integer, take Vo E 9k mod m as 
above and set V+ = (A k r)+, V- = (A k r)-, i.e., the 
positive and negative parts in the powers of A, respectively. 
The equivalence of 

(2.3) 

is then obtained with the evolution equations 

- U t = aVk (2.4) 

defining the derivation at commuting with a. These are the 
zero-curvature equations described in Ref. 2. 

We shall assume that some concrete faithful representa
tion of 9 by n X n matrices has been given for 9 = sl(n), and u 
being the Coxeter transformation,2 L (9, u) is the affine Lie 
algberaA ~~ I' 

Take .5t' u' .5t' u like the operator .5t' in (2.1) but with 
different markings u and U. We defineB2 = C[ u\'\ u\')] the 
algebra of differential polynomials in u and u with the differ
ential grading in which both U i and ui have degree 1 and a 
increases the degre~ by 1 so that the degree of u\') or iii') is 
equal toj + 1. Let B2 be the extension of B2 containing the 
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integrals of the elements in B2 described in Ref. 11, being a 
surjective and maintaining the grading. 

Proposition 2.1: Let the operators .Y u and .Y u be given. 
Then there exists an unique element K, 

K= 1 +XIA -I +XzA -2 + .... 
with Xi homogeneous of degree i in B2 X g, such that 

.Yu =K.Yu K- 1
• 

Proof We use the representation of 9 for which 
F = diag (1, E, ... , En - I), being then U and ii circulants, as is 
done in Ref. 6. We want to prove that.Y uK = K.Y u deter
mines the Xi of K, that satisfy 

ii - U = [F,X1], 

aXi + ii Xi - Xiu = [F, Xi+ I]' i = 1,2, .... 

From the decomposition of 9 = ker ad F Ell 1m ad Fin diag
onal and nondiagonal parts, it follows at once that Xi is de
termined by the equations above, except for integration con
stants that appear when calculating its diagonal part. 
However, such constants must be set equal to zero if we want 
to maintain the homogeneity requisite, so that the Xi are 
uniquely calculated in B2 ® g. • 

We shall regard the element K (which could be inter
preted in the gauge group for the manifold of operators .Y u ) 

as a function of U and ii. Then the Xi are expressed in terms of 
u, ii, and their derivatives, but containing integrals as well, 
forcing us to introduce the extension B2 to deal with them. 

We denote also by at the unique extension to B2 of the 
evolutionary derivation at of B2, homogeneous of degree k, 
defined by (2.3). 

Proposition 2.2: Let .Y u and .Y u satisfy Eq. (2.3) for 
some fixed value of k. We have 

atK=KVu- - Vu-K 

and 

atK= Vu+K -KVu+' (2.5) 

Proof Equation (2.3) can be written as 

[ .Y u' at + v u- ] = ° 
(this follows from (2.2), [ .Y u' 'Y u ] = 0, and the decompo
sition of 'YAk in positive and negative parts). Conjugation by 
K gives us 

[ .Y u' at +KV u- K- 1 
- (atK)K -I] = 0, 

which when compared with [ .Y u' at + Vi] = ° tells us 
that KV u- K -I - V u- - (atK) K -I is a negative power se
ries in A commuting with .Y u' say l:,;, 1 Yi A - i, with Y, 
homogeneous of degree i + k.1t is easily seen that Yi = ° for 
all i, proving our first assertion. The second equation (2.5) 
results from the relation 

'Yu =K'YuK- 1 

that follows from the definition (2.2) of 'Y u and 'Y u . • 
We pick out the coefficient of A - ion both sides of(2.5), 

obtaining 
k 

at Xi = I (Vj(ii)Xi+j -Xi+j Vj(u)), 
j~O 

Then, each Xi(u,ii) does satisfy an equation of the form 
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(2.6) 

with a different Y for each i, containing explicitly the vj(u), 
vj(ii). 

Lemma: If u, ii are such that Xi (u, Ii) = ° for some 
fixed i, then Xi + I = ° for I = 0,1, .... 

Proof Our assertion, the vanishing of Xi + I with Xi' 
follows from the equations determining the elementsXj after 
imposing Xi 0. So, the non diagonal part of Xi + 1 is zero, 
and the diagonal one constant, this constant being zero in 
order to maintain the homogeneity of K. • 

Remark: We are not interested in analyzing at this point 
the solutions of Xi(u, Ii) = ° (which could be interpreted as 
an integro-differential equation), for arbitrary i. That will be 
done in Sec. 4 in a more concrete situation. 

Now we are able to get the result we are interested in. 
From (2.6) we conclude that at Xi = ° if Xi = 0, since Y 
vanishes with Xi' Xi + 1 , ... ,xi + k and that does happen if Xi 
= 0; thus we have 

Proposition 2.3: The condition Xi(u, Ii) = ° is consis
tent with the evolution of U and ii determined by (2.4) for 
i = 1,2, .... 

3. INVOLUTIONS 

It is known that simple Lie algebras admit a set of outer 
automorphisms induced by an automorphism of their Dyn
kin diagrams. 3 It is clear that one can extend to the affine Lie 
algebras this procedure, in order to determine a collection of 
automorphisms through their corresponding system of 
roots. In turn we shall obtain a number of symmetries (often 
called in variance transformations) for the evolution equa
tions associated with them. These symmetries are of impor
tance for us not by themselves. They become relevant in our 
present context when combined with the invariant mani
folds of Proposition 2.3. Then we shall obtain the specializa
tions of the zero-curvature equations (2.4) that we shall per
form in the next section. 

Being more concretely interested in the algebra A ~I~ I' 

we give the relevant information about the generators and 
the root system in the representation we shall be using from 
now on. Letxi'Yi' hi' i = O,I, ... ,n - 1 be vectors ofg = sl(n) 
defined by 

where E i • j is the n X n matrix with 1 in place (i,j) and zero 
elsewhere. Thus Xi E 9 I' Yi E 9n- I' hi E 90' the subspaces 9o, 
91' 9n __ 1 being the eigenspaces corresponding to the eigen
values 1, E, En - 1 for the Coxeter transformation acting by 
conjugation of the diagonal matrix (1, E, ~, ... ,En - I), En = 1. 
We set ei = AXi,/; = A -I Yi' i = O,I, ... ,n - 1. Therefore, ei, 
/;, hi generates A ~I)_ 1 satisfying the defining relations of this 
algebra. 3 Further we introduce the linear forms, roots, over 
the linear span of vectors hi> ai(hj ) = aij' The numbers aij 

determine the Cartan matrix of A ~I~ 1 with values aij = 28ij 
- 8i• j _ I - {)j _ I.j' and the corresponding extended Dynkin 

diagram 
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01. 0 

«1 '" ~ o{h_' 

C£ ~ 0(,,_.1. 

Besides the rotational symmetry 

O(aj ) =a j + 1 

producing the "Backlund transformations" 12 for Eq. (2.4) 
associated with this diagram, we shall consider the following 
automorphisms of order 2, involutions. 

Let n be one ofthe numbers O,I, ... ,n - 1; we define the 
automorphism 7 on Zn by 

7(i) = n - i, (3.1) 

and extend it to the roots 7(aj) = a7j., (we use the same sym
bol7in both cases). We have a reflection of the root diagram 
for each n, determined by one of the axes of symmetry of the 
corresponding regular polygon, with the roots placed in its 
vertices. Together with the rotation ~ (i) = i + 1, theyconsti
tute the generators of the complete group of symmetries: the 
dihedral group. 

We define automorphisms on g = sl(n) and A ~I)_ I in 
order to get the desired symmetries ofEqs. (2.4). Since the xo, 
X 1"",Xn _ I generates g, we determine 7 on g by setting 7(Xj) 
= - x,.w That fixes 7( Yi) = - Y 7jj) and 7(h i ) = h7ji)' For 

A. jx in L i , being L = $ L j and L = A ~~ I , we make 7(A. iX) 
= ( - 1 V A. j 7(X), being the action of 7 on the generators of 

L, 
(3.2) 

Now, we make 7 an automorphism on B ® L in the 
natural way: 7(B ® L ) = B ® 7(L) and look at its action on 
Eq. (2.4). That equation - u, = aVk results in 

- a,7(U) = a7(vk ). (3.3) 

Since 7 preserves the Zn -grading of g, 7(U) plays the same role 
in (3.3) as U did in (2.4). Equation (3.3) is Eq. (2.4) for 7(U) in 
place of u, whenever 7(v k ) coincides with vd7(u)). We ana
lyze the relation between 7(vk) and vd7(u)) by studying Eq. 
(2.2) for 'Y' = Vo + VI A. -I + .... 

Let Zk mod n (F) denote the centralizer of F = :lj Xj in 

gkmodm' 
Proposition 3.1: For Vo E Zkmodn(F) the relation 

7(vdu)) = ( - l)k + I Vd7(U)) (3.4) 

holds, and 7 defines a symmetry for Eq. (2.4), - u, = aVk (u), 
with k odd. 

Proof Equation (2.2) transforms under 7 in 

a7('Y') = [7('Y'), 7(U) -A.F]. 

Now, 7('Y') = C'Y'(7(U)) since 7(vo) = CVo with c2 = 1. [7(Vo) 
must be proportional to vo, due to the fact that 
dim Zk mod n (F) = 1 and that 7(Vo) E Zkmodn(F)]. But 
Zk mod n (F) = We [xI"",Xii] [k = the integer on 
(O,I, ... ,n - 1) congruent with k mod n], 
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[xI"",Xii] = adxI adx2··· adxii_1 Xii, 

n{}=e+~+ ... +~n-I. 
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Thus, Z k mod n (F) is generated by the power k of F in the 
representation introduced above. Because 7 commutes with 
IIe, one easily gets (3.4) by taking into account the relation 

7([X I,,,,,Xii ]) 

= (_I)ii [xTjI)'''X7jii!1 

= ( - l)ii ( - l)ii - I [XTjii i' x7jii ) + I , ... , xTjii) + ii _ I ], 

telling us that c = - 1. • 

4. SPECIALIZATION OF THE ZERO-CURVATURE 
EQUATIONS 

Before going over the specialization ofEq. (2.4) we are 
really interested in, let us briefly comment on a more trivial 
situation closely related to our final result. For it, we consid
er the conditions Xj(u, ii) = 0 of Proposition 2.3, invariant 
under the flow (2.4), and use them to construct a set of rela
tions containing a letter U only. This is easily done by taking 
advantage of our previous results of Sec. 3, and substituting 
7(U) in place of ii, togetX;(u, 7(u)) = o that will be consistent 
for each fixed i with the evolution equations for which we 
have 7(u) still as a solution. However, condition Xi = 0 is 
nonlocal and in general is not of much use in constructing 
specializations of our original equations. But the nonlocality 
problems can be bypassed at least in cases i = 1 and i = 2. 
The first of these will produce nothing new, being of interest 
here because it is contained in the case i = 2. 

For i = 1 we get simply 

U=7(U), (4.1) 

which in accordance with Proposition 3.11 is a condition 
compatible with - u, = aVk for k odd. Condition (4.1) 
specifies a collection of diagrams, namely, those correspond
ing to the subalgebras of A ~I ~ I determined by the fixed 
points of the automorphism 7. The specialized equations in 
this case are the corresponding ones to these diagrams in the 
general theory of Ref. 1. 

Let us write what the generators' (eo];, hj J are in each 
case. For n odd, n = 2m + 1 and m > 1, 7(i) = - i, we have 
the set of generators eo];, hj 

eo = eo, 10 =10' 

ej =ei +eZm + l _ j ' ]; =/; +/2m+l-j, 

em =em +em+ l , 1m =2(lm +lm+I)' 

ho = ho, 

hi =h j +h2m + l - o i= 1, ... ,m -1, 

hm = 2(hm + hm + I ), 

~. ... --0-----0=>=0 

that realize A ~~ as it is directly checked. From A ~IJ we get 
A ~) by taking 

eo = eo, 10 = 10' ho = ho, 

el = el + e2, 11 = 2(/1 +/2)' hI = 2(h l + h2)· 

O$¥=O 
Ifwe have n even, n = 2m, we can take two kinds of nonequi
valent automorphisms. The first of them gives C~!,1, m> 1, 
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from A ~I~ _ I with T(i) = - i and setting 

eo = eo, 10 =10' ho = ho, 

e j = ej + e2m _ jJ J; = /; + hm _ jJ 

hj = h j + h2m _ jJ i = 1, ... ,m - 1, 

em=em, Im=lm, hm=hm· 

():):::::O-o- " .. -<>--~ 

The vectors [e j ,);, hj j;;' realize C~). But instead of the 7 
above, we can take also in the diagram A hl~ _ I the automor
phism T(i) = 2m - 1 - i producing D ~), m > 2 when we de
fine 

ej = e j + e2m _ I _ j' i = O,l, ... ,m - 1, 

10 = 2(fo + hm - I)' ho = 2(ho + h2m _ I), 

J; = /; + 12m - 1- jJ hj = h j + h2m _ 1- jJ i = 1, ... ,m - 2, 

Im-I = 2(fm-1 + 1m), hm_ 1 = 2(hm _ 1 + hm)· 

0=<;::0-0- ... --0. ~ 

And, in the case of A ~I), A \1) will result, with the same 7, 
generated by 

eo = eo + e3, 10 = 2(fo + 13)' ho = 2(ho + h3), 

el = e l + e2, II = 2(f1 +/2)' hi = 2(h l + h2)' 

Now, we shall examine the next condition, derived from Pro
position 2.3, that allows us to maintain our treatment in local 
terms. ThedescriptionofX2(u, T(u)) = Oprovestobeequiva
lent to the study of 

7(U) - u = [F, X], 
(4.2) 

ax + 7(U) X -Xu = 0, 

where we write X - XI' Note that the obvious solution 
X = ° to the second of the equations above leads to the case 
already examined 7(U) = u. Thus the present specialized 
form of u determined by (4.2) should coincide with some of 
the previous u determined by (4.1) plus something going to 
zero with X. 

We start by investigating an appropriate decomposition 
ofthe subalgebra go of n X n diagonal matrices with null trace 
to which u belongs. In turn, such a decomposition will easily 
provide the solution of (4.2) we are looking for. 

Let v denote the automorphism of A ~I~ I defined as 

v=78, 

where 7is one of the automorphisms (3.1) and 8 the rotation 
8 (i) = i + 1. Clearly, v is an automorphism of order 2 like 7. 

Proposition 4.1: Let u E go, then there exist elements 
R,S E go such that 

7(R) =R, vIS) =S, 

providing the linear decomposition 

u =R +S. 

Proof Consider the orthogonal decomposition of 
u = Uo + u I in the eigenspaces of 7 corresponding to the 
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eigenvalues ± 1. We denote by llT the orthogonal projector 
on the subspace of fixed points of 7, and by ll; = e - llT' 
We set 

a = (8 + e)(8 - e)-I ll; u, 

8 - e being bijective (as linear application) over Ran llT I
go

' 

It is easily seen that 

R = Uo +a, 

S=ul-a 

gives us the desired vectors Rand S in terms of u. • 
The relevance of Proposition 4.1 in the context of Eqs. 

(4.2) is determined by the fact that after substitution of 
u = rx + S in (4.2) (where we have introduced the potential 
variables r: R = rx) we find the equivalent system 

(tJ-e)S= [F,X], 
(4.3) 

ax + [r x' X] = 0, 

The second of Eqs. (4.3) follows from the relation 
T(S) X - XS = ° because v(S) = S. The first ofEqs. (4.3) al
lows us to calculate S as a function of X since 8 - e is injec
tive in go, X being determined by a differential equation of the 
same kind as those appearing in the 2-Toda lattice theory. 1,2 

On the other hand, the appearance of the automorphism 8 
possessed by the diagram A ~~ I only, makes difficult the 
extension of our present situation to the remaining diagrams 
with automorphisms of order 2. Namely, the diagrams 
D~I~ I' B~I), .... 

Let r denote one of the fixed points of 7 in go for one of 
the cases enumerated at the beginning of this section. We set 
d j = Ej,j [the diagonal matrix with 1 in place of (i,i) and zero 
elsewhere]. With these notation conventions, the solution of 
Eqs. (4.3) is given by the following: 

Proposition 4.2: The specialization of the zero-curva
ture equations (2.4), k odd inA ~I~ I' determined by Eqs. (4.3) 
corresponding to X 2(u, 7(U)) = 0, is provided by 

'" a,jr) d u = rx + £,- C j e j-I' (4.4) 

The Cj are constants satisfying 

C j + c7j1j = 0, 

and the a j are the simple roots of A ~I ~ I acting on r viewed in 
A ~I~ I' 

Proof The solution of ax + [rx' X] = ° takes the 
form 

X = '" C eU,jr)y. Lin 
j 

Yj E gn _ I being defined in Sec, 3 and the Cj arbitrary con
stants. By introducing this X in (8 - e) S = [F, X] and deve
loping the commutator we get 

[F, X 1 = I Cj eu,{r) hj = (e - 8) I Cj eU,{r) d
j 

_ I 

; j 

due to the election made for h j = E j _ I'; _ I - E jj 

= (e - 8 ) d j _ I and that 8 extends to act on the E jj by trans
lation in i: 8 (i) = i + 1. The restriction of the C j is obtained 
afterimposingv(S) = Sin(8 - e) S = ~ C j eu,{r) hj' Achange 
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of sign in the C; gives finally (4.4). • 
Corollary: 

U = r(u) = rx + r(S) = rx + 11(S) = rx + I C; ea,{r) d; (4.5) 

produces the same specialization of (2.4) as that determined 
by (4.4). 

That results from the fact that u satisfies (4.6) like u, as 
we next deduce. 

Proposition 4.3: The evolution of r obeys the equations 

a,r = (11- 1 
- e)-I Il ~ wdr), wdr) = Vk(U), (4.6) 

Proof From (2.4) and U = r x + S we have - r xl - St 
= aWk or 

since v(S) = S. As Il ~ r = !(e - v) r(r) = - !(e -I - e) r, 
thanks to the relations r(r) = rand vr = e -I (see the defini
tion of the automorphism of order 2 v in Proposition 4.1), we 
obtain (4.6) after rescaling t ---+ 2t and integrating in x. Note 
that integration constants do not appear since the evolution 
of S will determine precisely (4.6) without such constants. • 

For the proof of the Corollary it suffices to insert 
u = r(u) in (2.4) and perform analogous calculations to those 
done with u, to arrive at the same Eq. (4.6). 

To conclude, let us observe that some kind of proof 
about the non triviality of (4.6), in the sense that the right
hand side of it does in fact depend on the constants C;, must 
be given. We postpone this, as well as the study of reduc
tions 13 of these equations, to a future work. In the next sec
tion we calculate explicitly some concrete examples of the 
equations presented above. 

5. EXAMPLES 

Simplest cases in the specializations (equivalent) (4.4) 
and (4.5) arise when the resulting equations contain just one 
function. That situation does happen for n = 3 and n = 4 in 
A ~I~ I' 

For n = 3 all the automorphisms of order 2 prove to be 
equivalent. By examining r(i) = - i, one finds diagonal ma
trices U and u of the form 

U = (Px + ce P, - ce P, - Px), 

u = r(u) = (Px' ce P, - Px - ce P). 

(5.1) 

(5.2) 

Here P is the dependent variable and c an arbitrary constant. 
According to Ref. 2, Eqs. (2.4) admit the Hamiltonian form 

with 

a u = Ya oH (5.3) 
t ou ' 

... U= ( Uo) , Y = ( 2 
U I - 1 

- 1) 
2 . 

The first Hamiltonian for which the specializations (5.1), 
(5.2) apply is 

H = j qix - qo qlx + q~ - j qi (5.4) 

(see for example Ref. 14). The variables q; are expressed in 
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terms of the u; by means of the generalized Miura transfor
mation 

By using (5.2), i.e., 

and (5.3) with H given by (5.4) we get for P 

Pxt = - 3(Nx + Npx)x' 

Pt = - 3(Nx + Npx)' 

where 

N=qox -jqlxx -qi = -(!qlxx +qi), 
ql = 2pxx - p~ - c2 e2P. 

Note the reduction 

qo =! qlx 

induced by the Miura transformation. 
In the fifth-order equation 

Pt = - 3(Nx + Npx)' 

we have for N 

N = N(O) +! c2(13pxx - 4p~) e2p - c4 e4p, 

N(O)=Nlc~o· 

A third-order equation is obtained by examining the 
case n = 4. The appropriate Hamiltonian 

H=qo- AqL 

when written in terms of the variables U; through the Miura 
transformation 

J4 + q2 a2 + ql a + qo 

= (a - Uo - UI - u2Ha + u2Ha + ulHa + uo), 

enables us to calculate the evolution equations for which 
r(i) = 3 - i, and induces specializations given by 

U=(Px+cleP, -cleP, -Px-cae-P, cae-P), 

u=r(u)=(px +cae-P,cleP, -Px -cleP, -cae-P), 

ca, C I arbitrary constants. The resulting equationS is 

Pt = 2pxxx - p! - 3(ci e2p + c~ e- 2p)px' (5.5) 

In this case n = 4 too, we can consider the automorphism 
r(i) = - i giving us a system of equations that reduce, for 
c = 0, to those considered in Ref. 4 in connection with the 
diagram ~ . First, the specialized forms are 

u=r(U)=(Pax' Pix +ce PO - P1 , -Pix' -Pax _ce PO - P1 ), 

where c is constant. With the same Hamiltonian 

H = qo - A q~, we get 
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at PI = ~POxxx + !Plxxx + 3(pox + Plx)POxx + 3P6x PIx 

- pix + cBpoxx - ~Plxx + 3pox POx PIx + ~P6x -1Pix] 

Xe PO - P' + 3c2 Pox /IPo-·p,!. 

Analogous systems are found associated with the diagrams 

~and~ 
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The geometrical theory of supermanifolds is developed and applied to the super Lie groups. The 
resulting structural equations and the adjoint representation are studied and used to find the 
automorphisms of super Lie groups. The N = 1 supergravity symmetry group (the so-called 
graded Poincare group) is explicitly studied and possible applications are outlined. 

PACS numbers: 02.40.Sf, 1l.30.Pb, 02.20. + b 

I. INTRODUCTION 

In the last years various papers 1-5 have given contribu
tions to the study of the geometrical theory of supermani
folds and, in particular, to the program of giving a clear, 
formal meaning to supersymmetric physical theories such as 
supergravity.6.7 Particularly in Ref. 4 it has been shown how 
the idea of interpreting the anticommuting coordinates as 
elements of a Grassmann algebra could be extended by con
sidering coordinates with values in a generic Banach-Grass
mann algebra thus obtaining a non-necessarily denumerable 
set of odd generators. A satisfactory aspect of this approach 
is the fact that it avoids the restrictions on the nilpotence of 
the elements of the algebra. 

In Sec. II, by using the resulting different treatment of 
the tangent space T (M I to a supermanifold M, we develop the 
differential aspect of the geometry of M; subsequently in Sec. 
III, after having generalized some classical concepts and 
used the definition of a supergroup G, we show how the ordi
nary Lie algebra structure of Te (G) (e is the identity) induces, 
on a preferred set of nontangent vectors "basis" of Te (G ), the 
commutation relations of a graded Lie algebra. 

The problem of the determination of the automor
phisms of a super Lie group is hence analyzed (Sec. IV) and 
solved by using a general definition of automorphism of a 
graded Lie algebra: the problem is reduced to find the even 
derivations of Te (G). The resulting equations (Sec. V) are 
applied to the symmetry group of the N = 1 supergravity, 
the so-called graded Poincare group GP, and all the auto
morphisms are found. 

Finally relations with the theory of fiber bundles built 
up with supergroups are suggested. 

II. GENERAL GEOMETRICAL STRUCTURE 

In this paper we use the notation introduced in Ref. 4. 
In brief, summing up, we introduce a Zz-graded commuta
tive Banach-Grassmann algebra Q = Qo Gl QI satisfying 

(i) ai aj = (-l)ijaja i EQi+j' ai EQi, aj EQj, 

(ii) lIao +a1 11 = Ilaoll + 110 1 11, (2.1) 

and we define the Q-module Q"' + n as the set of the (m + n)
tuples with values in Q, 

_I This work wa& carried out under the auspices of the GNFM of CNR and 
under the research program "Geometria e Fisica" of the "Ministero della 
Pubblica Istruzione." 

Q m + n = {OA IA = 1 ,oo.,m + n; aA E Q} , for which the 
following conditions hold: 

(i) Q m + n = (Q m + n)o Gl (Q m + n)l , 

where 

(Q m + n)o===Q m,n 

= {(ai ,aa),i = l,oo.,m; a = l,oo.,n; a
j 
E Qo; aa E QI,}' 

(2.2) 
(Q m + n)1 ===Q m,n 

= {(ai ,aa),i = l,oo.,m; a = l,oo.,n; a
j 
E Q1: aa E Qo}; 

(ii) a,vs =(-l)"vsa,; GjEQj, VsE(Qm+n)s' 

Now, we can define a supermanifold M as a Banach 
manifold with a supersmooth atlas of coordinate maps with 
values in Qm,n .4 In other words, M can be covered by open 
sets where convenient homeomorphisms (the coordinate 
maps) with open sets of Qm,n are defined; this definition is 
similar to the one used for ordinary manifolds. Finally, hav
ing defined a path ron M as a continuous map 
r:[ - a,aJ~M, aER, introduce a local frame of coordinates 
¢ and an equivalence relation R:r1;:::: r2 in PEM if 3 a' ,a" ER 
so that 

(i) r1(a') = Y2(a") = P, 

(ii) :a ¢Y1(aJla=a' = :a ¢Y2(a)la=a" . 

Now, we can speak of tangent vectors in P as equivalence 
classes of paths in P. 

Setting Tp(M) = r/;:::: inPwe have that, for every 
VETp(M) there exists VE~,n so that we can write: 

V = Vi~) + va~) 
ax' p axa 

p 

if ¢ (P) = (Xi ,xU). This notation means that Vbe10ngs to the 
equivalence class of paths r that, in P, satisfies: 
(Vi ,Va) = (d /da)¢r(a)la = a if r(il) = P. Notice that no path 
can give Vi = 0, va = 8: and, therefore, the set of tangent 
vectors is isomorphic only to the "even" derivations (i.e., not 
changing the grading of the functions). 

In the remaining part of this section we shall give some 
results and some formulas that will be useful in the follow
ing. This matter is a natural development of the ideas of Ref. 
4; however, since they are not available in the literature we 
shall spend some words on them. Let us give the 
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Definition 2.1: If I/J:M-M is a continuous map with 
v = I/J(u); the path ji(t) = I/J(r(t)) is called the push-forward of 
rbyI/J. 

By noticing that t/J preserves the relation R, one can 
define a map I/J. :Tu (M)_Tv (M) as t/J.(X A ala~)u 
= X A (ala~)tY (u)alaxB)v ,where tY = ¢ B (I/J) and 

a¢ B la~)u E GL(m,n)'If u. 8 Now let us introduce the dual 
space T~ (M);w E T~ (M) can be written as 
w = dX'Wi + dxawa ,Wa E Q; for any v E Tp (M) we have 
the action 

(2.3) 

It is worth noticing that, following Ref. 9 we adopt the 
convention of making the vectors acting on the right (notice 
that~ WA #WA~)' In this way, we shall say that aformw is 
"even" if W A E Q m.n , thus inducing the grading 
T~ (M) = (T~(M))o Ell (T~(M))I . We can now construct 
the Lie derivative with respect to tangent vector fields on the 
basis of the existence of a one-parameter group of diffeomor
phisms I/J, of M.IO Consider the field v E T(M) tangent to t/J, 
and define 

- .f, (u) + u 
O? = l' 'f/,. T- (M) 11 ..z vu 1m , u E . (2.4) 

,-0 t 

This equation can be elaborated paying attention to the grad
ed commutation relation rules in Q to obtain 

!f v = (UA~ VB _ ~~ UB)~) 
u a~ a~ axB x 

= uv - vu = [u,v] ~ . (2.5) 

This result is obvious enough since, according to the grading 
of Ref. 4, v is an "even" field. The Lie derivative can be 
extended to functions f E F (Ref. 11) and, consequently to 
differential forms obtaining 

!f v if) = vif) , 

!fvw=dxB[(a~B~)WA + ~a~WB]' (2.6) 

!fv u(w) = (!f vu ) (w) + u(!fv w), (2.7) 

!f vt') = v.Jdw + d (v.Jw) , (2.8) 

III. THE GEOMETRY OF SUPER LIE GROUPS 

The theory we have summed up and completed in Sec. 
n will be applied to the super Lie groups (SL-groups) thus 
extending some known results. 2 Briefly, an SL-group is an S
manifold G with a S-smooth composition law A:G X G-G 
which makes G into an abstract group. It can be shown that 
the map A can be assumed S-ana1ytic without any restric
tion, 12 since one can always give to G an SA-structure in 
which A is S-ana1ytic. Like any tangent space to an S-mani
fold, the space 

T (G)={V=Vi~) + va~) '~EQm.n}(Ref.13) 
e ax' e asa e 

does not admit a module basis with respect to any algebra A; 
anyway, following Ref. 9, we can choose a set of non tangent 
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a a . 
fields -.)e '-)e E Te tt(G) (Ref. 14) whose graded Im-

ax' asa 

ear span (3.1) generates exactly Te (G) and we can define the 
fields 

DA (a)=L .~) 'If aEG, 
a a~ e 

La. denotes the push-forward given by the left transport 
map La. 

Theorem 3.1: The linear span {V = ~DA} , with con
stant coefficients va E Q m.n , generates the class g of the left
invariant tangent vector fields on G; moreover g is the even 
sector of the super Lie module W [= n t (g)] of G. 

The proof can be achieved according to the ideas of 
Theorem 3.4 of Ref. 2(b), where the definition of W (there 
called graded Lie module) is given; even if we have used a 
generic BL-algebra Q and so enlarged the category of SL 
groups, no problems arise since only the definition and the 
obvious properties of the map La are involved. It is worth 
noticing that, by using tangent fields X, Y E g, only the "ordi
nary" bracket !f x Y = [X, Y] = XY - YX and the "ordi
nary" Jacobi identities are involved. After introducing the 
fields D A , one can ask if they are related to some graded Lie 
algebra g; in general the answer is negative. 

Consider now u, v Eg, set u = uA DA, V = ~ DA and 
calculate 

!f" u = [v,u] 

= ~DAUBDB - uBDB~DA 

= UBvA(DADB - (- WBDBDA) 

= UB~ [D A , DB ] ± . (3.1) 

By setting [DADB] ± = eCABDc , with 
e CAB = - ( - 1 )ABe C BA , it is easy to show that, the grad
ed bracket being La.-invariant, the e CAB are Q-valued con
stants satisfying grading of e CAB = A + B + e. 

On the other hand, we have that 

!flO u = uB~ecABDc Ege Te (G), (3.2) 

and therefore, whenever we can choose a basis IDA 1 of Won 
which the e G

AB are real, Eq. (3.2) gives 

e~/ = e~" = eij = o. (3.3) 

Theorem 3.2: If Wadmits a basis D A for which the 
e G

AB are real, the JR-span oftheDA is a graded Lie algebrag. 
Proof: Define go = I dDi 1 ,gl = I vaDa J with Vi, 

Va E JR , and use Eqs. (3.2) to show that fgo,goJ Ego, 
fgo,glJ Eg1, fgl,glJ Ego· The graded Jacobi identities for the 
e A BG can be obtained by the component expression of the 
"ordinary" Jacobi identity for three fields u, v, WE g. We 
wish to stress that the correspondence between tangent 
space to the identity to SL-groups and g.L.a.'s is not one-to
one; so to say, there are "more" Te (g) than g.L.a.'s. Using the 
formalism of Ref. 2, we have that, under the same assump
tion of Theorem 3.2, W is decomposable: W = Q ® g. 

The problem to investigate SL-groups with nondecom
posable SL-modules is not easy, since decomposability is dif
ficult to test in general. Actually, if, on one hand, it is easy to 
build simple nondecomposable modules, on the other hand, 
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it is difficult to say if the cause of Q-valued C ABC is only the 
use of a nonconvenient basis [D A l of W. To clarify this 
point, consider the GP group (see Sec. V for details on GP); 
the GL (4,4) transformation 
Pi -.P; = Pi + qfQa ; Qa -. Q ~ = Qa gives a new basis 
of W GP for which C'a ij = - C'aji #0 E QI . 

Now let us return to the general case and use the formal
ism of Ref. 9; namely set z = A (x,y) and put 

A *d~ = dxB VB A (X,y) + dyB WB A (X,y) . (3.4) 

The "auxiliary" GL(m,n)-matrices Vand W satisfy some 
useful properties often used in the following: see Eqs. (2.10) 
of Ref. 9. This formalism, although not strictly necessary, is 
very useful since it allows us to write 

DA (x) = W! (x,e)~) , wB (x) = d~W! (x-I,x) , (3.5) 
axB x 

where wB (x) denotes the left-invariant forms which are dual 
to the fields D A :D A (WB) = D! . 

Theorem 3.3: The following equations hold: 

[DA ,DB] (WC
) = DA -.J DB -.J dwc

, 

dwA = !wB 1\ wCC '2B (3.6) 

(Maurer-Cartan structural equations). 
Outline of the proof It is sufficient to carry on the calcu

lation of dwA by using Eq. (2.7) Eqs. (2.10) of Ref. 9, and the 
natural extension of the 0 operator given by 

a v-.l11 = ~- -.J (dxQ 1\ dxP I1Qp) 
axA 

= ~ dxP I1AP - (- WQ~ dxQI1 QA 

for each v E T(G) and 11 E T*2 (G) . Since d dwA = 0 Eq. 
(3.6) gives 

wA I\wR I\wQ C B C C 
- 0 QR BA - , 

that is, 

(gr A )QRA C~R C~A = 0, 

where (gr A ) QRA denotes the graded antisymmetrization in 
QRA; this explicitly yields 

(- l)C(A+B)C~CC~A + (- l)B(c+A)C~BC~c 

(3.7) 

Whenever C ~c are real we have the usual graded Jacobi 
identities. 

Theorem 3.4: The fields X E g generate a group of local, 
superregular diffeomorphisms of G: for any X Ega group 
r t :G-.G exists so that 

(i) rlrs = r l+ s , 

(ii) ro = e, 

(iii) F (0) = X for any t E (O,E) with E E R. 

This result can be extended by using the formula 
r , = r".r,_ n< for nE::;; t::;; (n + 1 )E, n > O. Leaving to the 
reader to verify that Ft = L rt X we can give 

Definition 3.2: r, = exp tX is called the exponential 
map of X. 

On the other hand, calling ada :G-.G (a E G) the map 
ada x = axa - I, we obtain ad a* : T (G )-. T (G) explicitly given 
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byada.DA (x) = ad(a)!DB (.v) wherey = ada x and ad(a)! is 
a constant GL(m,n) matrix. This enables us to define 
ad a* :g-.g as 

ada*XADA (x) = X A ad(a)!DB (.v). (3.8) 

Theorem 3.5: The matrix ad(a)! (the adjoint representa
tion of G on g) satisfies some useful properties which are 
listed here: 

ad(ab)! = ad(b )~ ad(a)~ , (3.9) 

CiE ad(a- I)'2 = ad(a-I)i ad(a-I)~C~B (- If(E+B), 
(3.10) 

dad(a- I)'2 =(- WCwB(a) ad(a-I)~C:B' (3.11) 

Outline of the proof Equation (3.9) is trivial; Eqs. (3.10) 
and (3.11) can be obtained calculating A *wA by means ofEq. 
(3.6), 

A *dwA = Y1 *wB 1\ A *WcC'2B , 

and by comparing this result with the equation 

A *wA (z) = wA (.v) + WC (x)ad(.v-I)'2, z = A (x,y) 

obtained directly by Eq. (3.4). 
On the other hand, whenever a = exp tA,A Egthemap 

(dldt)ada(t)* Xlt~o = Y gives 

Y = [A,x]. (3.12) 

It provides the adjoint representation of g on g, also denoted 

adA X= [A,xJ. (3.13) 

IV. AUTOMORPHISMS 

The aim of this section is to determine the automor
phism group Aut( G ) of a given SL-group G whose module is 
decomposable. All results up to and including Eq. (4.9) are 
true also for nondecomposable modules. More precisely, 
if; E Aut(G) is 

(i) an automorphism of the topological group underly
ing G, 

if;:G-.G, if;(ab) = ¢(a)if;(b) 'r/ a,b E G; (4.1) 

(ii) an SA-map with respect to the SA-structure which is used 
to make G an SL-group. 

It is a remarkable result, analogous to the classical one, 
that the map if;* is a Qo-linear automorphism of g: 

if;* [A,B] = [if;* A,if;* B] 'r/ A,B E g . (4.2) 

The Qo linearity is a trivial consequence of the S-analyticity 
of if;. Equation (4.2) can be obtained by a mere transposition 
of the classical proof, 15 or by performing the following calcu
lation, which will be useful later on. 

By differentiating Eq. (4.1) with respect to a and setting 
a = e we obtain 

(4.3) 

a 
wherey = if;(x) and B'2 = --~(e) E GL(m,n). The anal

axc 
ogous calculation for b gives 

W~(x,e)~~(x) =B~W;(y,e). 
axB 
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By equating the term ~~ in both equations and using 
axB 

the expression ad(a- I )! = V~(e,a)W~(a-l,a), we have 

B~ = ad(x-I)~B~ad(y)! , 

from which we obtain 

tP.(uADA(x)) = uBB~DA(y)' 

(4.S) 

(4.6) 

Now, by differentiating Eq. (4.S) and using Eq. (3.11) we get 

C~cB~ = (- l)Q(A+C)B~BSC~A (Ref. 16). (4.7) 

Equations (4.7) and (4.6) imply directly Eq. (4.2). Equation 
(4.7) implies that for any S E aut(G) we have 

C~cS~ = SSC~c - ( - l)QCS~C~Q . (4.8) 

(This can be obtained naively by putting B ~ = 0 ~ + S~) . 
Now, using Eq.(4.8) we can obtain 

Theorem 4.1: The operator S (D A) = S ~ Dc is a deriva
tion of W, and S ~ E gl(m,n) . 

Proof Calculating the expressions 

S [DQ ,Dc] =S(C~CDE) = C~CS~DD' 

[SDQ ,Dc] = SS [DB ,Dc] = SSC~CDD , 

[DQ ,SDc ] = [DQ ,S~DA] = (- l)Q(A+C)S~CgADD' 

and using Eqs. (3.3) and (3.4) we prove that S is a derivation; 
on the other hand, S~ E gl(m,n) in view of its definition. 

Notice that, as in the case of the automorphisms of the 
classical Lie groups, S is an "even" derivation only if we 
consider as even derivation those preserving the grading in 
Q m + n : in other words, we have to use a grading of the deri
vations S different from that of g.L.a. theory, 17.18 where Sis 
called even if it satisfies the more restrictive condition 

S:go-+go' S:gl-+gl' 

Theorem 4.1 can be written as 

S [A,B] = [SA,B] + [A,SB ] or [S,adA ] = adsA , 
(4.9) 

where the last commutator has to be regarded in gl(m,n). The 
problem of determining Aut(G) is reduced to finding the 
graded subalgebra of gl(m,n) of the matrices S satisfying Eq. 
(4.9). By denoting with D (g) the derivations of g and with 
Inder(g) only the interior ones [i.e.,x E Inder(g) if X = adA 
for some A Eg], we can see from Eq. (4.9) that Inder(g) is an 
ideal in D (g) and use the result l8.17 

D (g) = Inder(g) EB W, (4.10) 

where W is a subalgebra of D (g) satisfying 

adw(L) =0. (4.11) 

In this equation L denotes the semisimple part of the ordi
nary Lie algebra go, the latter defined as the lR-linear span of 
the D j • L is well characterized by means of Levi's decompo
sition theorem ingo

l9 and is unique modulo the action of 
adR , R being the soluble radical of go; the Malcev-Harish
Chandra theorem 19 has been used for go. Setting go = L EB R 
and denoting with u, V,oo. indices in L and with a, b,oo. indices 
in R, Eq. (4.11) becomes 

W~C!c =0. (4.12) 

On the other hand, we have the following 
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Lemma 4.1: W(L) = 0 (i.e.,W~ = 0). (4.13) 

Proof Using Eq. (4.12) when C = v and B = w we ob
tain W ~ C ~ = 0; the properties of the graded Lie algebra 
D A and of R have been used; since L is semisimp1e, it admits 
a non degenerate Killing form which, in turn, yields the met
ric 

(4.14) 

thus allowing one to get W~ = O. Now writing Eq. (4.8) for 
the derivation W ~ E W we have 

C E W D = CD W B + (_ l)Q(A+C)c D W A 
QC E BC Q QA c, (4.1S) 

which furnishes W~ = 0 by setting D = a, Q = u, C = v. 
Finally setting D = a, Q = u, C = v we get 

W~ =0. 

The foregoing discussion can be summed up in 
Lemma 4.2: The matrices S satisfying Eq. 4.9 are given 

by 

S=adA + W 

for any A E g and for any WE gl(m,n) which is a solution of 
Eqs. (4.13) and (4.1S). 

The whole problem has been reduced to an explicit 
study of these equations for the specific SL-group which is 
under consideration. 

V. THE CASE OF THE GRADED POINCARE GROUP GP 

We wish to find the automorphism group ofGP.9 By 
denoting the "generators" with J ij' Pi' Qa' the graded Lie 
algebra20 is 

[Jpq ,Jij] = C;~ ijJrs , 

[Jij ,Pk ] = !(TJikPj - TJjkPi) , 

[Jij ,Qa] = HlTj;)l"aQI" ' 

[Qa,QI"] = (C-Iy')aI"Pj ' 

[Qa ,P;] = 0, 

where crs .. = l(TJ ·0 [ros] + TJ ·0 [ros] - TJ .0 [ros] 
pq 'J 2 qJ p. p. q J PJ q • 

(S.l) 

- TJqiO ~rO p) are the Lorentz structural constants, C is the 
charge-conjugation matrix, r (i = 0, 1, 2, 3) are the 4 X 4 
Dirac matrices and uij = HYi 'Yj] _ . 

In order to find the SL-group Aut(GP) we apply 
Lemma 4.2 and therefore, after having introduced a matrix 
WE gl(1O,4) satisfying Eq. (4.13), we write Eqs. (4.1S) for our 
actual case; they are 

Cf3 Wks - Cks wpt 
ija f3~ ijp! a' 

CpaW~ +C~ijW~ =0, 

c b wa-cawf3 
ija b- ij/3 a' 

C~f3W~ =Cijf3WZ +CijI"W~, 

CtdW~ =CijbW~, 

C~a W~ = C~a W~ + Cpr W~ , 

C~ f3 W~ = Cij r W~ , 

Cf3 w a - ca W b 
ija f3~ ijb a" 

Roberto Cianci 

(S.2a) 

(S.2b) 

(S.2c] 

(S.2d) 

(S.2e) 

(S.20 

(S.2g) 

(S.2h) 

454 



                                                                                                                                    

To solve Eqs. (5.2a)-(5.2d) the use of a straightforward 
calculation gives W~ = W~ = O. On the other hand, Eq. 
(5.2h) yields W~ = 0; finally Eqs. (5.2e)-(5.2g)· gives 

W~ = A.8~, W~ = !A8a /3 + IL (ys )a/3' A.,IL E R . (5.3) 

By recalling that C ~/3 = C 1m one obtains the most general 
expression for S E gl(1O,4): 

S~ =A AC!C 

+ 8f8~ A. + !8 !8~A. + IL8!8~ (YS)av' A E g. (5.4) 

The matrix B can be obtained by exponentiation, 
B = exp S, and finally we can obtain t/J by integration. This 
calculation can be performed easily using normal coordi
nates in G: if z = exp(~ D A (e)) set ¢JA (z) = ~ . The exponen
tial map assures us that an isomorphism between a neighbor
hood of e E G and a neighborhood of aA = 0 in Qm.n exists. 
We have 

t/J(z) = t/J( exp(~DA (e))) = exp(~t/J*DA (e)) 

= exp(z"B ~Dde)) 

from which 

¢J A (t/J(z)) = ¢J B (z)B ~ = ¢J B (z)( exp S )~ 

(5.5) 

(5.6) 
follows. In the case of an infinitesimal automorphism t/J 
(where we can setB ~ = 8~ + S~) we give explicitly the for
mula: if ¢J (z) = (L ~ ,Vi ,s a) then 

¢J (t/J(z)) = (L~ ,(1 + A. )vi ,(1 + A. )sa + ILS V(YS)va) . 

Normal coordinates have been used; only the exterior deri
vations have been taken into account: in general, a term adA 
has to be added. 

Eventually, we wish to notice that the study of the auto
morphisms of GP is particularly useful in the description of 
supergravity when one uses a principal fiber bundle whose 
structural group is GP,zI.22 In this framework, the automor
phisms ofGP can be linked with the fiber-bundle ones23 and 
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therefore, looking at the latter as gauge transformations, one 
can describe the symmetry of the theory. 
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A model for quantum dynamics is presented in terms of a generalization of Markov chains. We 
first consider measurements and events on an amplitude space. Markov amplitude chains on an 
amplitude space are then studied. Quantum chains are defined and characterized by a Markov 
and weak stationarity property. We then consider random phase transformations and study the 
changes that result in an amplitude space and in the quantum chains due to such transformations. 
A perturbation expansion involving a potential perturbing the "free" motion is proved. Quantum 
processes are defined and their relation to quantum chains is discussed. The existence of an 
arbitrary quantum chain is proved using path chains. 

PACS numbers: 02.50.Cw, 05.40. + j, 02.50.Ga, 03.65. - w 

1. INTRODUCTION 

Over thirty years ago, R. Feynman observed a basic 
difference between classical probability theory and quantum 
probability theory.t-3 In classical probability theory one has 
a probability space (11, ~, P), where 11 is the set of outcomes 
for a stochastic system, ~ is a u-algebra of events, and P is a 
probability measure on~. For an event E E~, P (E) gives the 
probability that E occurs. In quantum probability theory, 
the situation is quite different. One still has a triple 
(11 q' ~ q' Pq) consisting of an outcome space, an event set, 
and a probability function. However, in general, ~q is not a 
u-algebra, and Pq is not a measure. As we shall discuss in 
detail later, ~q is a u-algebra and Pq is a measure only when 
attention is restricted to a single measurement. When multi
ple measurements are considered, interference effects re
move us from the realm of classical probability theory. The 
interference effects occur because, unlike P which can be 
quite arbitrary, the quantum probability function Pq is ob
tained in a specific way. It is basic to quantum mechanics 
that we begin with an amplitude functio!1 A: n q ----+ C. If 
E E ~q' we define the amplitude of E asA (E) = ~wEE A (w) 
and we define the probability that E occurs by 

(1 ) 

In this way, a quantum probability function is induced from 
an amplitUde function. If E, F E ~q and En F = 0, we need 
not have that Pq (E u F) = Pq (E) + Pq (F). Also, as we shall 
later show, we need not have that E u F E ~ q' It is because of 
such differences between classical and quantum probability 
theory, that we are confronted with certain so-called "para
doxes" of quantum mechanics. 

One of these "paradoxes" involves the double-slit ex
periment. This experiment is discussed in detail in Ref. 2 so 
we shall only give what we feel is the essence of the argu
ment. A source emits a beam of photons which impinge upon 
a screen with two slits which we designate as slits 1 and 2. 
After going through one of the slits, photons then strike a 
target screen. We seek to find the probability that a photon 
strikes the target screen within an area.::1 on the screen. De
note the probability that a photon passes through slit 1 by 
P (1) and the probability that a photon strikes within.::1 given 

that it passes through screen 1 by P (.::1 11), and use similar 
notation for screen 2. Classical probability theory would 
then give 

P(.::1 ) = P(I) P(.::1 11) + P(2) P(.::1 12). (2) 

Now P (.::1 11) is the distribution obtained if slit 2 is closed and 
similarly for P (.::1 12). Thus Eq. (2) says thatP(.::1 ) is a mixture 
of the two distributions obtained when slit 1 or slit 2 is 
closed. This does not agree with reality. In the correspond
ing quantum mechanical calculation, the probability Pq is 
induced by an amplitUde function A . We use the notation 
A (.::1 ), A (1), A (2), A (.::1 J 1), A (.::1 121 for the a!Dplitudes of the 
various events, where A (.::1 11) = A (.::1 n 1)1 A (1) and 
A (.::1 12) = A (.::1 n 2)1A (2). Assuming that the photons do not 
interact between the source and the first screen, we have 
I A (lW = Pq(I) = P(I)and I A (2W = Pq(2) = P(2).Ifslit2is 
closed, the photons must pass through slit 1 so there is no 
interference between the two slit measurements. We con
clude that I A (.::1 IIW = P(.::1 11), and similarly 
I A (.::112W = P(.::112).NoticethatalthoughPq need not bead
ditive, by its very definition in the previous paragraph A is 
additive. Hence, applying Eqs. (1) and (2), the quantum prob
ability becomes 

Pq(.::1 ) = I A (.::1 W = I A (1) A (.::1 11) + A (2) A (.::1 12W 
=P(.::1)+2ReA(I)A(2)A(.::1ll)A(.::112). (3) 

Equation (3) shows that Pq (.::1 ) is P (.::1 ) plus an interference 
which can be positive or negative, so this latter term can 
cause reinforcement or cancellation. The quantum probabil
ity calculation does agree with experiment. 

2. QUANTUM DYNAMICS 

The main purpose of this paper is to present a model for 
quantum dynamics in terms of a generalization of Markov 
chains. In order to motivate this model, we first consider the 
usual formulation of quantum dynamics. Let K be a separa
ble, complex Hilbert space, and let ej,j = 1,2, ... be an orth
onormal basis for K. Suppose <Po E K, II <Poll = I represents 
the initial state of a quantum system and H is a self-adjoint 
operator on K representing the Hamiltonian of the system. If 
we establish a standard unit of time, then the probability 
amplitude that the system which is initially in the state <Po is 
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in the state ej after n time steps is given by 

(Un<po, ej ) = (e- inH <Po' ej ). (4) 

The probability that the above event occurs is given by 
the square of the modulus of the expression in (4). Expanding 
Eq. (4) in terms of U gives 

(un <Po, e) = I, (<Po, eia> (Ueio ' ei,) 

X(Uei"ei) ... (Uein_l,ej ). (5) 

We now interpret Eq. (5) physically. Let w(io, il,.··,in) 
represent the outcome that a quantum system, which is in 
the initial state <Po, begins in the state eio at time zero, moves 
to state ei, in one time step, then to state ei2 in one more time 
step, and continues in this way until it arrives at state ein after 

a total of n time steps. We interpret (<p, eia> (Ueio ' ei, ) 
... ( Uein _ I ,ej ) as the probability amplitude A [w(io,···,in)] of 
the outcome w(io, ... ,in ). Let E (j) be the event that a quantum 
system in the initial state <Po moves through the various states 
ei and arrives at the state ej after n time steps. The probabil
ity amplitude of E (j) is given by A [E (j)] = (U n</1o, ej ). We 
assume that the event E (j) consists of the outcomes 
w(io, ... ,in _ I ,j), io,·.·,in _ I = 1,2, .... Then Eq. (5) gives 

(6) 

that is, the probability amplitude of E (j) is the sum of the 
probability amplitudes of the outcomes it contains. If 
fl = [w(io, ... ,in): io, ... ,in = 1,2, ... J we call (fl, A ) an ampli
tude space. For w E fl we interpret I A (w) 12 as the probability 
that the outcome w occurs. We also interpret I A (Ej ) 12 as the 
probability that the event E (j) occurs. This gives a consistent 
probabilistic interpretation since 

I, I A [w(io,"" in) W = II </10112 = 1 (7) 
rD.···. In 

and 

I, I A [E (j)] 12 = II un <Po112 = II </10112 = 1. (8) 

In the sequel we shall call a set of outcomes or events 
which satisfy Eq. (7) or (8), respectively, a measurement. An 
important role will be played by real-valued functions de
fined on subsets of fl whose inverse images form a measure
ment. These will be called observable functions. 

In this paper we shall develop the theory of Markov 
chains on amplitude spaces. The simplest types of Markov 
chains will describe systems like the ones considered above. 
However, as we shall see, we can consider much more gen
eral systems. For simplicity, we shall only consider chains 
with a finite number of values. With careful attention to con
vergence matters, our work can be extended to chains with a 
countable number of values. However, we wish to avoid such 
matters in this study. 

3. AMPLITUDE SPACES 

Let fl be a nonempty set and let A: fl ---+ C. We call the 
points w E fl outcomes, the function A an amplitude func
tion, and (fl, A) an amplitUde space. We say that (fl, A) is a 
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point amplitude space ifJ..wElJ I A (wW = 1. We call a subset 
E ~ fl sum mabie if 1:'"E E I A (w)1 < 00 and denote the col
lection of summable sets by .Io' We define the set function 
A: .Io ---+ Cby A (E) = 1:wEE A (w), E E.Io [A (</1) = 0], and 
call A (E) the amplitude of E. 

Lemma l:.Io is a ring of sets with the property that 
E E .Io and F ~ E implies FE .Io. Also, A is a u-finite com
plex measure on .Io. 

Proof The proof that.Io is a ring with the above proper
ty is straightforward. To show that A is a complex measure 
on .Io, suppose Ei E .Io, Ei n Ej = <p, i #} = 1,2, ... , and u Ei 
= E E .Io. Denumerate the elements of E j on which A is 

nonvanishing by wij,j = 1,2, '" . Then since J..i,j I A (wij)1 
= 1:w EEl A (w) I < 00, it follows from Fubini's theorem that 

A (E) = lA (wij) = I, [I,A (Wij)] = I,A (Ei)· 
I,) 'j l 

Hence, A is countably additive on .Io. To show A is u-finite, 
let E E.Io and let Wi be the elements of E on which A is 
nonvanishing. Let F = E - [Wi: i = 1,2, ... J. Then 
E = u [w..} u F andA (F) = 0,,4 (1 Wi}) E CsoA isu-finite .• 

Let.I be the u-ring generated by .Io' If A is a complex 
signed measure, then it follows from the Hahn extension 
theorem that there exists a unique extension of A to au-finite 
complex measure on.I (which we also denote by A ). The 
measure space (fl,.I, A) will be important for more general 
studies. We shall mainly consider measurable functions with 
finite value space here, and (fl, .Io, A ) will suffice for our 
purposes. 

A measurement on (fl ,A ) is a collection of mutually 
disjoint sets E j E 1:0 such that 1: I A (Ei) 12 = 1. Notice that 
(fl, A ) is a point amplitude space if and only if the set of 
outcomes is a measurement. Denote the set of measurements 
on (fl,A )by M (fl, A ). AneventisasetE E .Iosuch thatE E M 
for some ME M (fl, A ). An event can belong to more than 
one measurement. If a distinction is needed, we say that E is 
an event of the measurementM. Notice, if M (fl, A ) :;60, then 
</1 is an event. Also, if A (E) = 0, E is an event called a trivial 
event. A measurement is proper if it contains no trivial 
events. For ME M (fl, A ) denote the Boolean algebra gener
ated by the sets of M by B (M). Define a probability distribu
tionPJonB(M)asfollows:ifE= uEi> Ei EM, thenPJ(E) 
= 1: I A (EiW, Notice that ifE EM, thenPJ(E) = I A (EW· 
We call the elements of B (M) compound events of M. For 
E E B (M) we interpretP J(E ) as the probability thatE occurs 
upon execution of the measurement M. An amplitude space 
can have various measurements and an outcome can refer 
(belong) to one measurement but not to another. The values 
that are obtained from a measurement are given by a certain 
function. This function is defined only on the outcomes that 
refer to the given measurement. Motivated by the above, we 
call a functionf: E ~ fl ---+ R observable if 
[f-I(A):AER 1 EM(fl,A);thatis,1:A.ER IA [f-I(A)W 
= 1. A finite set offunction/w .. ,fn isjointly observable if 

Example 1: Let (fl, P) be a finite probability space, 
wherefl = [wl"",wn J. DefineA : fl ---+ CbyA (w) = P(w)I12. 
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Then (11, A ) becomes a point amplitude space. The collection 
M = {[ w, J , ... , [Wi J } is a measurement and P7 = P on the 
powersetP (11 ) = B (M). In general, Mis the only proper mea
surement on (11, A ) and the only nontrivial events are the 
singleton sets [Wi J, i = 1, ... ,n. Any E E P (11 ) is a compound 
event. In general, the only observable functions are the injec
tive functions defined on all of 11. 

Example 2: Let (X, I, P) be a probability space. Define 
11 = I and A : 11 _ Cby A (w) = P(w)'/2. Then (11, A) is an 
amplitude space but is not a point amplitude space. If M is a 
measurable partition of X, then M EM (11, A ). For any mea
surable partition M, P 7 = P. Any random variable with 
countably many values is observable. 

Example 3: LetHbe a separable, complex Hilbert space 
with unit sphere 11 and let tP E 11. Define A : 11 _ C by 
A (w) = (tP, w). Then (11, A ) is an amplitude space, butisnota 
point amplitude space. If eo i = 1,2, .,. is an orthonormal 
basis for H, then M = {[ e, J, [ez J, ... } is a measurement. In
deed, 1: I A (eJlz = 1: I (tP, e) IZ = II tP 112 = 1. It follows that 
any outcome is an event. Let E = [ei : i = 1,2, ... J and sup
pose/rei) =Ai ER whereAi#Aj , i#J. Then/:E-R is 
observable. If Pe; is the projection onto ei we can identify / 
with the self-adjoint operator 1: Ai Pe,' 

Example 4: Let H be a separable, complex Hilbert space 
and let 11 be the lattice of orthogonal projections on H. 
Let tP E H with II tP II = 1. Define A : 11 - C by A (w) 
= (wtP, tP )' /2. Again (11, A ) is an amplitude space, but is not 

a point amplitUde space. Let Pi E 11, with Pi Pj 
= O,i#} = 1,2, ... , 1: Pi = I. Then M = {[Pd, [PzJ, ... } is 

a measurement. Any outcome is an event. Let 
E = [Pi: i = 1,2, .. , J and suppose/(Pi ) = Ai E R where Ai 
#Aj , i# J. Thenf: E - R is observable and can be identi
fied with the self-adjoint operator 1: Ai Pi' 

Example 5: Let 11 = [w, ,W2,W3 J and A (w,) = 5 - j i, 

A (wz) = j + j i, A (w3) = .[if3. The (11, A ) is a point ampli
tude space and the proper measurements are 
M, = {[wd. [w2 J, [W3J} andM2 = {[w"w2 j}. Notice that 
[ w "Wz J is an event in M2 and a compound event in M,. 
However, it has a different probability of occurring depend
ing on which measurement is executed. Indeed ~ 

=P~' [[W"W2J]#P~2 [[W"W2J] = 1. Theonlyobserva
ble functions defined on all of 11 are the injective functions. If 
/ and g are defined on all of 11 and one or the other is injec
tive, then they are jointly observable. If/andg are constant 
on 11, they are not jointly observable. 

Let (11, A ) be an amplitude space and let E E Io. We 
defineA (·1 E): P(I1) -4 CbyA (FI E) =A (FnE)lA (E)if 
A (E) # ° and A (F IE) = ° otherwise. Notice that if A (E) 
#0, then (A. I E)isacomplexmeasureonP(11 )withA (11 I E) 
= 1. We call A (F IE) the conditional amplitude 0/ F given E 

and E is the conditioning set. Care must be taken with condi
tional amplitudes since A (E) = ° need not imply that 
A (F n E) = ° even if the sets are events. Because of this possi
bility, formulas such as A (F n E) = A (E) A (F IE) need not 
hold when A (E) = 0. However, when the conditioning sets 
have nonzero amplitude, the following formulas hold: 

A (E, n .. , nEn) =A (Ed A (E21 EI)A (E31 EI nEz) 

... A (En I EI n ... n En _ , ) (9) 
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if Fi n Fj = tP,i#} = I,.oo,n, and u Fi = 11 then 

(10) 

Iff, g : Eel1 - R, then/is g obseroable if 
1:,t I A [i-I(A)I g-I(a)] 12 = 1 for every a E R such that 
A [g-l(a)]#O. Ifgis observable andfisgobservable, then/ 
and g are jointly observable. Indeed, when g-I(a) is nontri
vial we have A [I-I(A ) n g-I(a)] = A [g-I(a)] 
XA [I-I(A)I g-J(a)]. We say thatfisg orthogonal if 
1:,tA [f-I(A)lg-l(a)] A [f-I(A)lg-l(a')] = ° for every 
a#a', where - denotes the complex conjugate. 

4. MARKOV AMPLITUDE CHAINS 

Markov amplitude chains were considered a long time 
ago in Ref. 4. However, we shall treat them in more depth 
here. Throughout the sequel, (11, A ) will denote an amplitude 
spaceandS= [al'"oo,arJ a fixed finite subset ofR. Ifhj:E 
k 11 - S,} = O, ... ,n, are Io measurable we call [hj J~ an 
amplitude n-chain with value space S. We interpret S as the 
set of possible locations of a randomly moving physical sys
tem, and ho, ... ,hn give the location of the system at the times 
0, I, ... ,n, respectively. The numbers in Sneed not correspond 
to position values, but could be interpreted as values for any 
physical quantity such as energy, momentum, spin, charge, 
color, flavor, etc. The possible n-step paths of the system are 
given by the set of sample paths (ho(w),.oo,hn (w)), wEE. The 
kth vector of the n-chain is the vector tPk E cr given by tPd}) 
= A [h k- l(aj )],} = l,oo.,r; k = O,oo.,n. Notice that tPk is a 

unit vector if and only if hk is observable. We call tPo and tPn 
the initial and final vectors, respectively. 

We define the amplitude matrix of [ hj J ~ by 
A (k,}) = A [h 0- l(aj ) n h n- '(ak)] ,},k = I,oo.,r. The matrix 
element A (k,}) gives the amplitude that a system moves from 
aj to ak in n steps. This amplitude is the sum of the ampli
tudes for all possible n-step paths from aj to ak' Indeed, since 
A is a complex measure, it follows that A (k,}) = 1:;, .... i

n 
_, = I 

XA [h 0- I(aj ) n h 1- I(ai,) n .. · n h n--\ (a in _,) n h n- l(ad]' We 
also define the conditional amplitude matrix 
A 'rk,}) = A [h n- l(ak)1 h 0- '(aj )] ,}, k = I,oo.,r. If the initial 
vector is nonvanishing [tPo(J)#O,} = 1,00.,r], then 
A (k,}) = tPo(J) A 'lk,}) and hence 

tPn(k) 

=A [hn-I(ad] = IA [ho-'(aj)nhn-I(ak)] = IA(k,}) 
j j 

= I tPo(J) A 'rk,}) = (A / tPoHk ). 
j 

Hence, tPn =A /tPo· 
An r X r matrix T is called a stochastic matrix if 

1:k T(k,}) = I,} = I,oo.,r (notice this is different than the 
usual terminology where it is also assumed that T(k,}/>O). 
An r X r matrix T is called a stochastic amplitude matrix if 
1 T(k,}W is an amplitude matrix (that is, 1:k 1 T(k,}W = 1, 

) = 1, ... ,r). Notice that hn is ho observable if and only if tPo is 
non vanishing and A / is a stochastic amplitude matrix. Sup
pose A is a stochastic amplitude matrix. This holds if and 
only if the collection of sets [h o-I(aj ) nh n-I(ad: k = I,oo.,rJ 
is a measurement for each} = 1,00.,r. We then call {hj J~ a 
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constrained n-chain. In this case, we interpret I A (k,}W as 
the probability that a system which is initially constrained at 
a, then moves to ak in n steps. Another important case is 

J • 

when ho and hn are jointly observable. This holds If and only 
if ~.k I A (k,}W = 1, and we then call {hj J ~ a definite n
chain. We interpret I A (k,}W, in this case, as the probability 
that a system begins at aj and moves to ak in n steps. 

We call {hj J 3 a Markov amplitude n-chain if 

A [h j- l(a;)1 h 0- I(a,o) n h j~ II (a,) I)] 

=A [hj-l(a.)1 hj~\(a,) ,)] 

for all io, .. ·,ij ,} = l, ... ,n. We say that {hjl~ is stationary if 

A [h,;;- l(ak)1 h,;;- _~ I (aj )] = A [h 1-I(ak)1 h o-I(aj )] 

for allj,k = l, ... ,r m = l, ... ,n. 
Theorem 2: Let (hj J~ be a stationary, Markov, ampli

tude n-chain for which <Po is nonvanishing and define the 
matrix T(k,j) = A [h 1- l(ak)1 h 0- I(aj )]. 

(a) Then T is a stochastic matrix and 

A [h 0- I(a,o) n .. · n h n- l(a'N)] 

= <Po(io) T(il,io)'" T{in,in -I), 

A (k,}) = <Po(J) Tn(k,}), 

A '(k,}) = P(k,}), 

(lla) 

(lIb) 

(llc) 

(Ud) 

(b) If, in addition, ho is observable and h I is ho observable 
and orthogonal, then T is unitary and any subset of 
{hj :} = O, ... ,n J is jointly observable. In particular, each hj is 

observable and (hj J ~A is definite. A 

Proof (a) Since A [h 0- I(aj )] #0 and A [. I h 0- I(a})] is 
a complex measure, we have 

IT(k,j) 
k 

=A [uh I-I(adl ho-I(aj )] =A [EI ho-I(aj )] = 1. 

Hence, T is a stochastic matrix. Equation (11 a) follows from 
Markovicity, stationarity, and Eq. (9). Equation (Ub) fol
lows from letting io = j, in = kin Eq. (lla) and summing 
over i)o ... ,in _ I' Equation (llc) follows directly from (lIb). 
Replace n by kin (lla) and sum over io, ... ,ik _ I to obtain 
(Ud). 

(b) Since hi is ho observable and orthogonal, we have 
~k T(k,}) T(k,j') = ~k T*(j',k) T(k.}) = oil' and hence, 
Tis unitary. We next show that Tm is a stochastic matrix for 
any m = 0,1, .... Indeed, TO and Tare stochastic and sup
pose Tm is stochastic. Then 

I Tm + I(k,}) = I I Tm(k,i) T(i,}) 
k k , 

= I T(i,j) I Tm(k,}) 
, k 

= I T(i,j) = 1. 

Hence, the result follows by induction. Consider a subset 
{ho, hh, , ... ,hi. J of {hj :} = O, ... ,n 1 where 0 <jl <j2 
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< ... <}k < n. Summing (lla) over the other indices gives 

A [h 0- I(a,o) n h j~ l(a'l) n .. · n h j-; I(a'kl ] 

A.. (. ) T il (' .) Th -jl(' .) = '1'0 10 1],10 ' 2,' 1 

T j,-1.-,(·· )""Tn-jkk(") 
'" ' k , 'k __ I ~ 1,lk • , 

Since Tn - 1. is stochastic, the last sum is 1. Since T k is uni
tary for k = 0,1, ... and" <Poll = 1, taking the modulus 
squared and summing over io,il, ... ,ik again gives 1. It follows 
that {ho, hh , ... ,hjk J is jointly observable. The other cases fol
low in a similar manner. • 

The above theorem shows that stationary, Markov, am
plitude n-chains can be very well behaved. In particular, for 
the situation described in part (b), we can not only observe 
any trajectory (sample path), but we can observe a sequence 
of "snap shots" in which time is stopped whenever we wish. 
We shall see in later sections that n-chains which describe 
quantum systems need not be stationary although they fre
quently are Markov. We then lose the ability to observe indi
vidual trajectories. However, frequently hn is observable so 
we can observe where the system ends or ho and h n are jointly 
observable so we can observe the beginning and the end. We 
shall also show that (11aH lId) hold in slightly altered form. 
The reader may wonder if it is possible for a nontrivial ma
trix to be both unitary and stochastic as in Theorem 2(b). Of 
course, the identity matrix has this property and it is easy to 
construct 0-1 matrices with this property. However, there 
are nontrivial examples of unitary stochastic matrices as the 
following examples show: 

[

! + (l/J3)i 

! - (l/J3)i 

1 
j 

I 
1 

! + (l/J3)i 

! - (l/J3)i 

5. QUANTUM n-CHAINS 

! - (~/J3)i] 
j . 

! + (l/J3)i 

We have seen that a stationary, Markov, amplitude n
chain has ajoint amplitude satisfying Eq. (lla). We now use 
this equation to define an important class of n-chains. An n
chains (hj J ~ is called a quantum n-chain if there exists a 
vector 0 #!fo E C r and an r X r complex matrix T such that 

A [h o-I(a,o) n .. · n h ;-1(a,J] 

(12) 

We call !fo and T the vector and matrix of { hj J ~, respectively. 
We denote the vector of { hj J ~ by !fo instead of <Po since the 
vector may not equal the initial vector. The relationship 
between !fo and <Po is given in Theorem 3. If II !foil = 1, we 
call !fo the initial state. If T is unitary we call {hj J ~ a closed 
quantum n-chain. 

Theorem 3: Let {hj J ~ be a quantum n-chain with vector 
!fo and matrix T. 

(a) The amplitude matrix, conditional amplitude ma-
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trix. initial vector. and final vector satisfy 

A (k.j) = l/Io(J) Tn(k.j). (l3a) 

A '(k.j) = Tn(k.j)/~ Tn(k.j) if ¢0(J)#0. (13b) 

¢0(J) = l/Io(J) I Tn(k.j). (13c) 
k 

¢n = Tnl/lo' (13d) 

(b) If" 1/1011 = I and Tn is a stochastic amplitude matrix. 
then! hj J ~ is definite (and hence. ho and hn are jointly obser
vable). 

(c) If 1/10 = I. then Tn is a stochastic amplitude matrix if 
and only if ! h j J ~ is constrained. 

(d) If! hj J ~ is closed. then II 1/1011 = I implies it is definite 
and hn is observable. and 1/10 == I implies it is constrained. 

Proof (a) The proof of (13a) is the same as the proof of 
(11 b). Sum (13a) over k to obtain (l3c). (l3b) follows from 
(13a) and (l3c). Sum (l3a) overj to obtain (l3d). 

(b) Take the square of the modulus oft 13a) and sum over 
jand k. 

(c) Same proof as (b). 
(d)The first part follows from (b) and (l3d). The second 

part follows from (c). • 
Notice that formulas (12). (l3a). and (13d) are analogous 

to formulas given in Sec. 2 on quantum dynamics. In that 
case the system was closed and Twas given by a unitary 
operator U. In our present situation. suppose! hj J ~ is closed 
and has unitary matrix U. By the spectral theorem there 
exists a unique self-adjoint rX r matrix H such that 
U = e - iH. We call H the Hamiltonian for! hj J~. Observe 
from Theorem 3 that 1/10 = ¢o if T (or Tn) is a stochastic 
matrix. 

The next theorem summarizes some of the important 
properties of quantum n-chains. Among other things. it 
shows that if certain amplitudes are nonzero. then a quan
tum n-chain is Markov. Corresponding to an rXr matrix T 
we define vectors T m E C r.m = O •...• n by T m (J) 
= 1:k Tn - m(k.j).j = I •...• r. Notice that Tis stochastic if 

and only if Tm = I. m = O •...• n. 
Theorem 4: Let! hj J ~ be a quantum n-chain with vector 

1/10 and matrix T. 
(a) If ¢k is nonvanishing and 

A [h 0- I(a;o) n ... n h k- I(a;.)] #Ofor all k.io ..... ik • then! hj J~ 
is Markov. 

(b) If the terms are nonzero. then 

A [h,;;- l(ak)1 h,;; ~ daj)] = T(k.j) Tm(k )lTm __ di). 

(c) If the terms are nonzero. then 

A [h,;;-l(ak)lh';;-~I(aj)] 

= A [h;- I(a k ) I h ;-=- \ (aj )] 

X Tm(k) T;_I (J)lTm_ I (J) T;(k). 

Proof (a) Summing over various indices in (12) gives the 
following formulas: 

A [ho-I(a",)noo.nh,;;-I(ad] 

(14a) 
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(14b) 

A [h ,,-; I(aj ) nh,;;-~ I (ad] = (Tm - II/Io)(k) T(J.k) Tm(j). 
(14c) 

It follows from (14a) that 

A [h,;;- I(adl h 0- I(a;o) n 00. n h ,;;-~ I (a;m ,)] 

= T{im.im -I) Tm(im)ITm_1 (im - I)' 

Applying (14b) and (14c) we obtain 

A [h,;; I(a; )1 h .;;_11 (a; )] 
m m I 

Hence. ! hj J ~ is Markov. 
(b) This follows from (14d). 

(14d) 

(c) This follows from part (b). • 
In Theorem 4(a) we gave a sufficient condition for a 

quantum n-chain to be Markov. In the following corollary 
we strengthen this to a characterization. 

Corollary 5: A quantum n-chain with vector 1/10 and ma
trix T is Markov if and only if the following two conditions 
hold for all m = 1.2 ..... n. 

(l)(Trnl/lo)(im) T m (im) = 0 whenever 

I/Io(io) T(il.io)oo. T(im ,im- I) T m (irn) = 0 for some io ... ·,im - I' 

(2) I/Io(io) T(il,io)'" T(im,im _ I) Tm (im) = 0 for every 

io .... ,im __ I whenever (Tml/lo)(im) Tm (im) = O. 
Proof If follows from the proof of Theorem 4 that! hj J 3 

being Markov is equivalent to the two conditioning sets in 
the Markov definition having zero amplitude simultaneous
ly. The result then follows from (14a) and (14b). • 

We see from Theorem 4(b) and (c) that a quantum n
chain is stationary if its matrix Tis stochastic. However. 
unlike the Markov condition. this is a very strong require
ment. and in general we would not expect a quantum n-chain 
to be stationary. Nevertheless. the conditions in Theorem 
4(b) and (c) are weak stationary conditions. Although 
A [h,;; I(a k ) I h ,;;-.~ I (aj )] is not independent of m. we can 
separate out some of the m dependence. We now make this 
idea precise. We call an n-chain ! hj J~ almost stationary if 
there exist vectors 8m E cr. m = O ..... n. with 8n = I such 
that 

8m_di)8;{k)A [h,;;l(ak)1 h,;;-ll(aj )] 

= 8m (k) 8;_1 (j)A [h ;-I(adl h; __ \ (aj )] (15) 

for all applicable i.i.k.m. 
Lemma 6: (a) If ! hj I ~ is a quantum n-chain with matrix 

Tand¢m and Tm nonvanishingform = O .... ,n. then !hj 1~ is 
almost stationary. 

(b) If !hj 13 is an almost stationary. Markov n-chain 
with ¢m and 8m nonvanishing for m = O ..... n. th~n I hj J~ 
is quantum with matrix T(j.k) = 8o(k) 8dir I A 
X [h 1-I(aj)1 h a I(ad], vector I/Io(j) = 80 (j)-I¢O(j). and 8m 

= Tm. m = O .... ,n. 
Proof (a) This follows from Theorem 4(c). 
(b) Using Markovicity and (15). the joint amplitude be

comes 
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A I I] A [h 0- (a iO ) n ... n h n- (aiJ 

= A [h 0- l(aiJ]A [h 1- '(adlh 0- l(aiJ] 

... A[h-'(a·)lh-_',(a )] n 'n n In _ I 
A 

= (DO(il) .. ·Do(in _ I )lD,(i')"'D,(in)) A [h 0- I (a io )] 
A I -I A -I 

XA [h ,- (ail)lh o (aiJ] .. ·A [hl(aiJlho (a in _,)] 

= DO(i)-IA [h 0- l(aiJ] T(i,,iO) .. ·T(in ,in - I)' 

where 

T(ij,ij _ , ) = Do(ij_1 )DI(ij)-1 A [h 1-I(ai)lh o-I(aij _,)]. 

This shows that I hj 13 is quantum with the prescribed 
matrix Tand vector tPo. We prove that Dm = Tm ,m = O, ... ,n 
by reverse induction. Clearly D n = Tn = 1. Suppose that 
Dm = T m for some integer m where ° < m <no By (15) we 
have 

A [h,;;-l(ak)lh';;-~I(aj)] 
= Dm(k)DoU) A[h-'(a )Ih-'(a)] 

8 ( ')D (k) I k 0 J 
m-I j I 

= Dm(k) T(k,j). 
Dm _ 1 (j) 

Summing over k gives 

Dm -I (j) 

= I 8m (k )T(k,j) = I I Tn - m(i,k )T(k,j) 
k k i 

~ Tn--m+ 1(") T ( .) = L I,j = m - I j. 

6. RANDOM PHASE TRANSFORMATIONS 

• 

In this section we shall study the changes that result in 
an amplitude space and in the n-chains due to a random 
phase transformation. In the sequel I hj 13 will be an n-chain 
on (JJ,A ) with value spaceS = I al,. .. ,ar I. For simplicity, we 
shall assume that the functions hj ,j = O, ... ,n, are defined on 
all of JJ. In this case, we have JJ E l:o. We say that I hj 13 is 
separating if hj(m) = hj(m') forj = O, ... ,n, implies that 
m = m'. Define 

L '(JJ,A ) = {/3:JJ--+c: I 1/3 (m)A (m) I < oo} . 
OJElJ 

For /3 E L I(JJ,A ) define 

I/3A = I /3 (m)A (m) = I /3 (m)A (m) 
wElJ 

and 
Ok. ak 

L /3A = I /3 (m)A (m) 
a

J 
aj 

Notice that A (k,i) = l:d'kA. 
For a:JJ--+R, define Aa :JJ--+C by Aa (m) = e - ia(wlA (m). 

We call A--+Aa a random phase transformation. Notice that 
A 0 = A. If a is a constant function, then Aa and A are essen
tially the same since the probabilities are unchanged and 
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Aa (.1.) = A (,1·). In general, (JJ,Aa) gives an entirely different 
amplitude space than (JJ,A ). If (JJ,A ) is a point amplitude 
space, then it is clear that (JJ,Aa) is also. In this case, the 
collection of singleton outcome sets is a measurement in both 
(JJ,A ) and (JJ,Aa). In general, however, (JJ,A ) and (JJ,Aa) 
have different measurements and events. If {hj J ~ is separat
ing, then it is jointly observable in (JJ,A ) if and only if it is 
jointly observable in (JJ,Aa). Indeed, we then have 

Aa [ h 0- I(a io )n .. ·nh n- I(ain )] 

= e - ia(wi;4 [h o-I(aio)n ... nh n- '(a in )], 

where hj (m) = aij.j = O, ... ,n [if such an m does not exist, then 

bothA andAa are zero on h 0- '(a;" )n .. ·nh n- I(ain )]. However, 

even when I hj J 3 is separating, one can have hj observable in 
(JJ,A ) but not observable in (JJ,Aa). 

If I hj I ~ is Markov, stationary, almost stationary, quan
tum. etc., relative toA, it need not be relative toAa 

. The most 
regular nontrivial case is when a has the following form. Let 
v:S--+R and define av :JJ--+R by av (m) = l:j= ov[hj(m)]. De
fine AV = A a". 

Theorem 7: Let I hj 13 be a quantum n-chain on (JJ,A) 
with vector tPo' and matrix T. and let v:S--+R. Let I h ; I ~ be 
the same n-chain considred on (JJ,AV). 

(a) I h ; I ~ is a quantum n-chain with vector tPb (j) 
= e - iV(a,ltPO(j) and matrix T' = e - iv(QIT, whereQis therXr 

diagonal matrix Q = diag(a" ... ,ar ). 

(b) 

AV (k,j) = tPb T'n(k,j) 

= ~ exp [ - i mto v(h m (m))]A (m). 
, -

(c) If {h j l~ is closed, then so is I h; l~· If I hj 13 is closed 
and definite. then so is I h ; I ~. 

Proof (a) The joint amplitude of I h ; I ~ becomes 

AV 
[ h 0- l(aiJn ... nh n- l(aiJ] 

= I IAV (m):ho(m) = ai" , .. "hn (m) = aiR I 

= I le-ia,(wIA (m):ho(m) = aio,· ... hn(m) = ad 

= exp i[ - jto V(ai)]A [h 0- l(aiJn .. ·nh n- l(aiJ] 

= IT e - iV1a)tPo(io)T(il,io) .. ·T(in .in - I ) 

j=o 

_ - ivja,).I, (. ) IIn 
- iVla~IT(" ) - e '1-'010 e Ij ,Ij _ I 

j= I 
n 

= e - ivja')tPo(io) II [e - iv1Q1T] 0 .ij _ d· 
j= I 

The proofs of (b) and (c) are straightforward. • 
If I hj 13 is a closed quantum n-chain and has Hamilton

ian H o, then T = e - iHo and T' = e - iv(Q1e - iHo• The Hamil-

tonian H for the closed quantum n-chain I h ; J 3, then satis
fies e - iH = e - ivjQ1e - iHo. In practice, Ho corresponds to the 
free Hamiltonian and v(Q) to the potential. 

Let (JJ,A ) be a point amplitude space. As in Sec. 3, we 
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define the probability distribution PA (E) = 1:", E E IA (wW, 
E E PIn ).NoticethatPA (w) = A (w)A (W)SOPA results from a 
random change in A although it is not a random phase 
change. If I hj J~ is an n-chain on (n,A ) we call I hj J~ on 
(n, PA ) the parallel classical n-chain. 

Lemma 8: Let I hj J ~ be a separating, definite, closed 
quantum n-chain with vector tPo and matrix T on a point 
amplitude space (n,A ). Then the parallel classical n-chain is 
a stationary Markov n-chain with initial probability vector 
tPb(J) = ItPo(JW and transition matrix W(J,k) = 1 T(J,k W· 

Proof The result easily follows from 

PA [h 0- I(ain )n···nh n- I(a in )] 

= 1.4 [h 0- I(a,o!n ... nh n- l(aiJ] /2 

= /tPo(ioW/ T(il,ioW"'/ T(in.in - 1 W· • 
The parallel classical n-chain gives entirely different 

probabilities than the original amplitude n-chain. For exam
ple, in the case considered in Lemma 8 we have 

and 

In particular, if tPo is the standard basis element ej , then 
/.4 [h n- I(a k )] /2 = / T' (k,jW and PA [h n- I(ad] = wn (k,j). 
For I-chains these agree. This indicates that quantum me
chanical effects do not have time to occur during just one 
time step. However, for 2-chains we have 

/.4 [h;- I(a k )] /2 = I ~ T(k,i)T(i,jf, 

while 

PA [h;- I(ad] = I/T(k.i)T(i,jW, 
i 

which are quite different. 
Also, as we have seen, a random phase transformation 

A_Aa makes a profound change in an amplitude n-chain. 
However, since PA = P

A 
a, random phase transformations 

cannot be distinguished in the parallel classical n-chain. 
We now present a lemma which is interesting in its own 

right and which is needed to prove Theorem 10. 
Lemma 9: Let I hj J ~ be a quantum, n-chain with vector 

tPo and matrix T. Let s be a positive integer and let Fbe a map 
from S xS X .. · xS (s times) to R. IfO<il < .. ·<is <n, then 

Q, 

IF [hi, (w), ... ,hi,(w)]A (w) 
Q, 

I F(aj, ,00.,aj')tPo(J)Ti'(JI,j) 
il, .... }$ = I 
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Proof 
Qk 

IF [hi, (w), ... ,hi,(w)]A (w) 
Q) 

I I IF [hdw),oo.,hi,!w)]A (w):ho(w) 
j, •.. j, ~ 1 

I F(aj, ,oo.,aj,) I IA (w):ho(w) 
j, ..... j, ~ 1 

I F(aj, ,oo.,aj,) 
j, ..... j. ~ 1 

X.4 [h 0- I(aj)n h i~ 1 (aj , )n ... nh i~ I(aj,)nh ;: I(a k )] 

I F(aj , ,00.,aj)rPo(J)Ti(Jl,j) 
j, ..... /, ~ 1 

• 
Let O<il, ... ,is <n be integers and place these integers in 

non decreasing order. For I <m<s, define 1m to be the mth 
element of the resulting ordered sequence. The next theorem 
gives a perturbation expansion for AV(k,j). 

Theorem 10: If I hj J ~ is a quantum n-chain with vector 
tPo and matrix T, and v:S-R, then 

AV(k,j) =A (k,j) +A I(k,j) +A 2(k,j) + "', 
where 
A (s) (k,j) = (- i)' 

s! 

X I I v(aj, ) ... v(aj,)tPo(J)Ti'(JI,j) 
i].~ ..• j, ~= 0 jll""}' = 1 

X r' - i'(J2,jIl .. ·Tn - i'(k,js)' 

Proof Expanding the exponential in Theorem 7(b) gives 

AV(k,j) = I {I - i I v[hm (w)] 
Q} m 

(y [ ]S} + 00, + ~ ~ v(hm(w)) + ... A (w) 

Uk ak 

= IA(w)-iIIv[hm(w)]A(w) 
a

J 
aj m 

(y Qk [ ]S + ... + _I, I I v(hn(w)) A (w) + ... 
s. OJ m 

(y Qk 

=A(k,j)+"'+ _I, I Iv[hdw)] 
S. 'I' ··,is = I OJ 

"'V[hi,!/i))]A (/i)) + .... 
An application of Lemma 9 gives 
Qk 

I v[hdw)] ... v[hi,!W)]A (w) 

I v(aj ) ... v(ajJtPo(J)T i'(J I' j)T i, - i'(J2' j I) 
i] ..... /. = 1 

.. ·m - i'(k,js)' 

The result now follows. 
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To get a better understanding of the perturbation ex
pansion, let us write out A (ll(k,j) and A (21(k,j) in detail: 

" , 
A (ll(k,j) = - iLL tPOU)TmUI,j)V(aj, )T" - m(k,jd, 

m=Oj,=l 

n , 

A (21(k,j) = - L. L. tPOu)r'Uhj)v(aj ,) 
i, <i2 = OJ,.}:. = 1 

X T i, - i'U2,j.)v(aj, )Tn - i'(k,j2) 

1 n , 

- - L L. tPoU)Ti'U.,j)v(aj, )2Tn - i'(k,jl)' 
2 i, = OJ, =. 

We follow Feynman and Hibbs2 in interpreting the expan
sion. The amplitude matrix elementA V (k,j) is a sum of alter
native ways of going from aj to Ok: not scattered at all 
[A (k,j)], scattered once [A (J1(k,j)], scattered twice 
[A 121(k,j)], ... . Each of these alternatives is a sum of alterna
tives. For example, A (ll(k,j) is a sum of terms 
tPoU)T m U.,j)v(aj , )Tn- m (k,jl)' The system moves "freely" 
from OJ to aj, in m steps, is scattered by the potential v(aj, ), 
and then moves "freely" from aj, to ak in n - m steps. The 
term A 121(k,j) has a similar interpretation except something 
new happens in the second summation of this term. Here the 
system moves "freely" from aj, to aj, in i I steps, is doubly 
scattered at aj, ' and then moves "freely" from aj, to ak' This 
second summation does not appear in the continuum valued 
case. 2 

7. QUANTUM PROCESSES 

A quantum n-chain describes a quantum system as it 
evolves in n-steps. Roughly speaking, a quantum process 
describes a system as it evolves in any number of steps. A 
quantum process is a sequence of chains {h ni=o, n = 1,2, ... 
on amplitude spaces (nn,An) with the same value space 
S = {a \>" •• ,a, I C,R such that the product rule 

An [(h ~)-I(aiJn ... n(h ~ )-I(aiJ] 
~ . 1 . I 

=Aj [(h~)- (adn ... n(h})- (Oi)] 

XAn_j [(h3-j)-1(0,.)n ... n(h~=~)(aiJ] 

holds for every nio, ... ,in' l<j<n. The next theorem shows 
that a quantum process consists of a sequence of quantum 
chains. [By convention AoU,k) = Djk .] 

Theorem 11: If {h ni=o, n = 1,2, ... is a quantum pro
cess, then the n-chain {h i Ji = ° is a quantum n-chain with 
vector tPo== 1 and matrix A tlj,k). Moreover, 

An(k,j) = I, Am (i,jjAn _ m (k,i) 
i 

for every j,k = 1, ... ,r, and m = O, ... ,n. Conversely, if 
{h ni = 0' n = 1,2, ... is a sequence of quantum chains with 
the same value space, vector tPo-1, and matrix T, then this 
sequence is a quantum process. 

Proof We prove this using induction on n. For n = 1, 
we have 
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Assume the result holds for n = k - 1. Then 

Ak [(h ~)-I(a;Jn ... n(h Z)-I(a;k)] 

= Ak_ 1 [(h ~- 1)-I(a;Jn ... n(h ~=: )-I(Oi
k

_
1
)] 

XA I [(h b)-I(a;k_ In(h : )-I(a;.\] 

= A)(i),io)···AI(ik _ 1 ,ik - 2JAI(ik ,ik - I)' 

This completes the proofby induction. For the next part we 
letA I be the matrix with components A IU,k) and apply (13a) 
to obtain 

An(k,j) =A 7(k,j) = LA 7- m(k,ijA ';'(i,j) 
i 

= LAm (i,jjAn - m (k,i). 
i 

The converse follows from 

An [(h 3 )-I(o,.Jn ... n(h ~ )-I(O;J] 

= [T(il>io)···T(iJ,ij _ I)] [T(iJ+ 1 ,ij) ... T(in,in -1)] 

= ~ [(ht)-I(a;Jn ... n(h~)-I(o,.)] 

XAn _j [(h 3 - j)-I(o;)n ... n(h ~ =})(aiJ]· • 

Let {h n;=o, n = 1,2, ... be a quantum process with val
ue space S, and let v:S----+-R. Let ej,j = 1, ... ,r be the standard 
basis for C". Applying Theorems 7 and 11, we have 

A~(k,j)= Iexp [ -iIv(h::'(W))] An(w) 
a, m 

= e - iv(a) ( [e - ;v(QIA
1

] nej,e
k

). 

The phase factor e - ;v(ajl is inessential since it does not affect 

the probability IA ~ (k,jW. For a closed system, we have 
A I = e - iHo

, where Ho is the "free" Hamiltonian, and then 

(16) 

Let us now make a scale change in time. We replace 
Al = e- ;Ho by AI(T) = e-;rHo and replace e - iv(QI by e- irv(QI, 

where T E R is fixed. We denote the corresponding quantum 

process by {h ;(7) Ji = 0' n = 1,2, .... This process is interpret
ed as giving the location of the system at the time steps 
0,T,21", ... . Equation (16) then becomes 

([e - irv(Qle - irHo] nej,e
k

) 

= eirvla) I exp { - iT I v[ h ::'(T)](W)} An(w). (17) 
aj m 

For continuous time t, the perturbed Hamiltonian is taken 
to be Ho + v(Q) and the evolution is given by exp( - it (Ho 
+ v(Q I). The next result gives a Feynman formula2 for the 

finite-dimensional case. 
Theorem 12: For every t E R we have 

= lim I exp { - i ~ L. v [h::' (~)] (W)} An(w), 
"-0() a, n m n 

Proof Applying (17) with T = t In and Trotter's formula 
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gives 

lim r exp { - i ~ 2> (h ':n (~)) (UJ)} An(UJ) 
n---+CQ a

j 
n m n 

= lim e-itlayn([e-itvIQ)lne-itH,.;n]nej,ek) 
n~oo 

• 
8. PATH CHAINS 

In this section we show, among other things, that quan
tum n-chains exist with any vector and matrix. Let 
S= [al, ... ,arJ~RandletPn = [p:[O,I, ... ,nJ-SJ. We call 
the functions in Pn n-paths. Notice that IPn I = r" + I. Let 
"'0 E C' and let T be an r X r complex matrix. We then call 
(Pn ,"'o,T) apath space. Define the map I:S-[ I, ... ,rJ by 
Iaj = j. For p E Pn define 

A",,,.T(P) = "'0 [Ip(O)] T [Ip(I),lp(O)] ... T [Ip(n),Ip(n - 1)]. 
(18) 

Then (Pn ,A ",,,,T ) becomes an amplitude space. If II "'oil = 1 
and Tis a stochastic amplitude matrix, the (Pn ,A "'0' T) is a 
point amplitude space. Define the path n-chain [hj J 3 on 
(Pn ,A ",,,,T) by hj ( p) = p(j),j = O, ... ,n, Then the joint ampli
tude of ! hj J 8 becomes 

A",,,,T [ h 0- I(adn ... nh ;;; I(ad] 

= A.,. T [(a j , ... ,aj )] 
CPo, 0 /l 

= "'o(io)T(i).io) .. ·T(in,in - I), 

where (a j , ... ,ai ) denotes the pathp(j) = a;,j = O, ... ,n. 
() n ) 

Hence, ! hj J 8 is a quantum n-chain with vector "'0 and ma
trix T. We thus see that quantum n-chains with arbitrary 
vectors and matrices exist. 

Let! hj J 8 be an n-chain on an arbitrary amplitude space 
(fl,A ) with value space S. For each UJ E fl, the sample path 
Pw (j) = hj(UJ) is an n-pathpw: [O, ... ,n J-s. Notice that [hj J3 
is separating if and only if the map UJ-Pw from fl to Pn is 
injective. We call [hj J8 conclusive if the map UJ-Pw from fl 
to Pn is bijective. We say that an an-chain! hj J 8 on (fl,A ) is 
isomorphic to an n-chain ! h ; J 8 on (fl ',A ') if there exists a 
bijection K:fl-fl' such that A '(KUJ) = A (UJ) and h ; (KUJ) 
= hj (UJ) for all UJ E fl andj = O, ... ,n. This is stronger than hj 

and h; having the same joint amplitudes,j = O, ... ,n, which is 
called stochastic equivalence. 

Lemma 13: An n-chain is a conclusive quantum n-chain 
if and only if it is isomorphic to a path n-chain. 

Proof Let [hj J 8 be a conclusive quantum n-chain on 
(fl,A ) with vector "'0 and matrix T. Define K:fl-Pn by 
KUJ = (ho(UJ), ... ,hn (UJ)). Since [hj J 8 is conclusive, K is bijec
tive. Define A"'o,T:Pn-C by (18). Then 

A"'o,T(KUJ) = A "'".T(ho(UJ), .... ,hn (UJ)) 
= "'0 [Iho(UJ)] T [Ihl(UJ),lho(UJ)] ···T 

X [Ihn (UJ),lhn _ I (UJ)] 
A 

= A [h 0- l(ho(UJ))n ... nh n- I(hn (UJ))] = A (UJ). 

Finally, if [h; J8 is the pack n-chain on (Pn ,A ",,,.T)' then 

h ; (KUJ) = h ;(ho(UJ), ... ,hn(UJ)) = hj(UJ). 
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It follows that [hj J 3 is isomorphic to the path n-chain 
[ h; J 8. Since every path n-chain is a conclusive quantum n
chain, the converse follows easily. • 

In the rest of this section we shall study path n-chains 
(equivalently, conclusive quantum n-chains). Let P ~ 
= [ ¢:Pn -C J. Then P ~ is a complex vector space under 

pointwise addition and scalar multiplication of dimension 
rn + I . Define an inner product on P ~ by 

(¢1'¢2) = I ¢I(P) ~2(P). 
PEP" 

For p E Pn, define p' E P ~ by p'(q) = Dpq,q E Pn . Then 
[ P:P E Pn J is an orthonormal basis for the Hilbert space P ~ . 
For¢ E P~ we have (¢,p') = ¢ (p),p EPn. Hence, for every 
¢EP~ 

¢ = I (¢,p')p' = I ¢ (p)p'. 
PEP" PEPn 

Let V = C' and for p E Pn define Jp' E V ®In + I) by 

Jp' = elplOI ® ... ® eIPln )' 

Extending by linearity, we obtain the unitary transforma
tions J:P ~_V ®In + I) given by 

J¢ = I ¢ (p)'!p'. (19) 
pE P" 

The above construction is used to prove the following 
theorem. 

Theorem 14: Let [hj J 3 be a conclusive quantum n
chain on (fl,A ) and let V = C'. Then there exists a map 
L:P (fl )_ V ® In + I) such that {L [UJ J :UJ E fl } is an orthonor
mal basis for V" In + I) and for every E E P (fl ),L (E) 
= 1:w E EL [UJ I. There exists a vector A E V ® In + I) and vec

torslij E V ® In + lJ,j = O, ... ,n such that A (E) = ( A,L (E) for 
every E E P(fl ) and hj(UJ) = ( lij,L [UJ J). If "'0' Tare the vec
tor and matrix of [hj 13, respectively, then 

A = I "'o(io)T(il,io)· .. T(in,in _ I )ej" ® ... ® ein 
io, ...• in = 1 

and 

Proof Applying Lemma 13, there exists a path chain 
[ h; ) ~ on (P n ,A "',,' T) and a bijection K:fl-P n such that 
A (UJ) = A ",,,,T(KUJ) and hj (UJ) = h ; (KUJ). For UJ E fl define 
L [UJ) =J(KUJ)'andforEEP(fl)letL(E) 
= 1:(uEfo;L [UJ J . It is clear that[ L [UJ J:UJ E fl J is an orthonor-

-- I mal basis for V" In + II. Define the vectors A,hj E V ® In + I, 

j = O, ... ,n by A = JA",,,,T andlij = Jh;. SinceJis unitary, we 
have 

(A,L(E)= L (A,L [UJJ)= I (JA",,,,pJ(KUJ),) 
WEE wEE 

L (A"'o,T,(KUJ)') = L A ",,,,T(KUJ) 
(J}EE (tJEE 

= L A(UJ)=A(E) 
UJEE 
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and 

( hj,L ! w J) = (Jh;,J (Kw)') = (h; , (Kw)') 

= h ; (Kw) = hj(w). 

For the last part, using (19) gives 

A = JA",,,.T = I A"'o,T(P)JP' 
pEP" 

= I "'0 [Ip(O)] T [Jp(I),Ip(O)] 
pE p" 

... T[Jp(n),Ip(n -1)]elP(ol ® .. ·®elp(nl 

I "'o(io)T(il,io) .. ·T(in,in_l)ej" ® .. ·®ejn 
io •...• i n = 1 

and 

hj = Jh; = I h ;(p)Jp' = I pU)elp(OI ® ... ® elplnl 
pEP" pEP" 

I a j/ jo ® ... ®ejn · • 
io •...• i,, = 1 

Forp EPn, define Cj(p) = 1P-I(aj)l, i = 1, ... r. Notice that 
l:;= I Cj(p) = n + 1. Let C(p) = (CI(p), ... ,Cr(p)) and write 
p-qifC(p) = C(q). Then - is an equivalence relation. We 
say that cP E P ~ issymmetricifp-qimplies thatcp (p) = cp (q). 
Notice if pEP n , then p' is symmetric if and only if 
Cj(p) = n + 1 forsomej. Denote the symmetric elements of 
P ~ by P ~ and denote the equivalence class containingp E P n 

by [pl. Notice that l[p]1 = (n + 1)!/CI(p)! .. ·Cr (p)!. Denote 
the set of equivalence classes by [Pn] = ![PI]""'[Ps] I· 

Theorem 15: (a) cp E P~ if and only if 

cp = l:j= I cp (Pj )l:PE I Pi )/J" 
(b) cp E P~ if and only if Jcp E V In + II, where ® denotes; 

the symmetric tensor product. 
Proof (a) If cP = l:j= I cP (Pj )l:PE I p, I p' and gl -g2 then 

gl' g2 E [Pj] for somej. Hence, cP (gl) = cP (g2) = cP (Pj)· Con
versely, suppose that cP E P ~. Then 
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s 

cP = I cP (p)p' = I I cP (p)P' 
pEP" j= I pE Ip,] 

S 

= I cP (Pj ) I p'. 
j=1 pElp,] 

(b) If cP E P~, then by (a) we have 
s 

Jcp = I cP (Pj) I Jp' 
j=1 pE[Pj] 

= i cp(pj)l[pj]11/2eIP}01® .. ·®eIP}nl· 
j=1 

Hence, Jcp E V ®In + II. Conversely, suppose that 
Jcp E V ® In + II. Then we have 

s 

Jcp = I Cjelp}OI® .. ·®eIP}nl 
j= I 

for some Cj E C,j = 1, ... ,s. Hence, 

s 

I cP (Pj) I p'. 
j = I p E( Pj] 

It follows from (a) that cP E P~. • 
Let (Pn ,1,T),n = 1,2, ... be path spaces with the vector 

"'0 -1 and matrix T. The corresponding path chains 
! h JlJ= o,n = 1,2, ... then form a quantum process. Using the 
mapJ defined above, we can embed !(Pn.I.T):n = 1,2, ... 1 into 
the tensor space 

TV = C EB V EB V ® 2 EB V ® 3 EB ... 

and the process then works on TV. 

lR. P. Feynman, Rev. Mod. Phys. 20, 367 (1948). 
2R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals 
(McGraw-Hili, New York, 1965). 

3L. S. Schulman, Techniques and Applications of Path Integration (Wiley, 
New York, 1981). 

4E. W. Montroll, Commun. Pure Appl. Math. 5, 415 (1952). 
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Continued fraction expansions for the complete, incomplete, and relativistic 
plasma dispersion functions 

Anthony L. Peratt 
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87545 
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In our investigation of the linear theory of waves in plasma and the stability of relativistic beam
plasma systems, we have been led to consider methods for the evaluation of integrals of the form 
SdX(r -; )-Iexp( - X 2) and Sdxtt - ; )-1 exp[(1 - X 2)-1/2] for complex;. In this work, we 
report on the evaluation of this integral and its derivative by means of continued fraction 
expansions. The expressions derived allow the precise calculation of these integrals in previously 
inaccessible regions. Additionally, applications to non-Maxwellian particle distributions, such as 
those found in the analysis of plasma diodes, are included. 

PACS numbers: 02.60.Gf, 02.70. + d, 52.35. - g, 52.60. + h 

I. INTRODUCTION 

In the linear theory of wave propagation in hot plasma, 
or in the case of a charged particle beam penetrating a mag
netized plasma, one is confronted with integrals of the form 

(1.1) 

for integer m. For the plasma wave case, ; is usually a com
plex function dependent upon the constituent plasma pa
rameters through the argument 1 

(l.2) 

where w is the wave frequency, v is a collisional frequency, k 
is the wave number, n is the cyclotron frequency at harmon
ic n, vth is the thermal velocity, and the sUbscriptj pertains to 
the particle type or species. Thus, in evaluating Eq. (1.1), one 
must contend with singularities and resonances associated 
with either complex w, complex k, or both. 

For the case where the distribution of electrons or ions 
is Maxwellian, the limits of integration ofEq. (1.1) may be 
taken as ± 00, and the integral, when m = 1, is referred to as 
the plasma dispersion function Z (; ). 2 Tabulated values for 
the plasma dispersion function and its first derivative, as well 
as for the related complex error function, w(;) = Z (; )/ iIrl/2, 

are available, but only a finite number of the real and imagi
nary components of; can be selected from the tables.2

•
3 A 

significant loss of accuracy can occur when interpolating 
between tabulated values, especially when 1m ; < 0 [where 
zero's of Z (;) are known to be present]. In addition, some 
computation may be required to analytically continue tabu
lated values into other quadrants of the complex; plane. 

Some steps have been taken to provide approximations 
to the plasma dispersion function,4.5 but these generally re
sult in large relative errors. In Sec. II we present continued 
fraction expansions and algorithms applicable for the quick 
and precise evaluation of Z (; ) over all ;. 

When the distribution of particles is no longer com
pletely Maxwellian, but rather truncated as is the case for 
plasma diodes, the limits of integration on Eq. (1.1) are X and 
+ 00. This integral is known as the incomplete plasma dis-

persion relation.6 Expansions useful for its calculation are 
given in Sec. III. 

Lastly, in Sec. IV, the analysis is extended to include 
relativistic plasma supporting waves whose phase velocity is 
either above or below the speed of light. 

II. THE COMPLETE PLASMA DISPERSION FUNCTION 

The plasma dispersion function is defined by the inte
gral 

Z(;) = 1T- 112 J: oc dX(x -; )-1 exp( - X2
), 1m ;> 0, 

(2.1) 

and the analytic continuation of this for 1m ;.;;;0. The com
plex variable ;, Eq. (1.2), has the physical significance of 
being the ratio of the phase velocity of a wave in plasma to 
the plasma thermal velocity. 

A. Mathematical analysis of Z<S) 

We base our analysis of the function Z (; ) upon the 
mathematical properties of the confluent hypergeometric 
functions, M (a, b, ;) and U (a, b, ;), by means of the expres
sions 

and 

Z(;) = i1T1I2 exp( - ;2) - 2;M(1,~, - ;2). (2.3) 

Similarly, for the first derivative of Z (;), 

Z'(;)=~Z(;)= -2(1 +;Z), (2.4) d; 
we use the expressions 7 

Z'(;) = - U(I,~, - ;2) (2.5) 

and 

Z '(;) = i21T1/2; exp( -; 2) - 2M(I,~, -; 2). (2.6) 

466 J. Math. Phys. 25 (3), March 1984 0022-2488/84/030466-03$02.50 © 1984 American Institute of Physics 466 



                                                                                                                                    

For points at or near the origin we apply the power 
series and related continued fraction [Eq. (10.11) in Ref. 8] 

and 

z z'2 
M(I,e,z)=I+-+ + ... 

e e(e + 1) 

zn 
+ + 

e(e + 1) ... (e + n - 1) 

1 z ez 2z 
M(I,e,z)=----------

1- e+ e+2+ e+3-

nz (e - 1 + n)z 

e + 2n - 1 - e + 2n + 

(2.7) 

(2.8) 

Expressions applicable to points away from the origin 
may be obtained by noting that Eqs. (2.2) and (2.5) are asso
ciated with Prym's function. 7 We employ the integral repre
sentation associated with U (a, e, z) and Kummer's transfor
mation [Eqs. (13.2.5) and (13.1.29) in Ref. 3], while making 
use of Eq. (11.17) of Khovanskii, 8 and find 

1 i"" e - 't 1 - c U(I, e, z) = dt 
r(2 - c) 0 z + t 

1 2 - e 2(3 - c) 

z-e+2- z-e+4- z-e+6-

n(n + 1 - c) (2.9) 
z-e+2n+2-

Equation (2.9) immediately provides a contracted continued 
fraction upon replacement of the variablez = - (; 2. In addi
tion, the following asymptotic expansion [Eq. (13.4.2), Ref. 
3] is associated with Eq. (2.9): 

U(1 )_ ~ F(2-e+n) 
,e,z - - n-:-or(2-e)(-z)2n+2' 

3 3 
- -1T<argz<-1T. (2.10) 

2 2 
Equations (2.7)-(2.10) form the basis for the algorithms that 
follow. 

B. Description of the algorithms 

When 1m {; > 0, one finds, in terms of the continued 
fraction expansion ofEq. (2.9), that for e = 3/2, 

where 

a l = {; 
an + 1 = (nI2)(1 - 2n), n = 1,2,3, ... 

bn+1 = _(;2+!+2n, n=0,1,2, .... 

Similarly, for e = !, 
Z'({;) = ~~---'!.L"" 

bl + b2 + b3 + 
where 

a l = -1 

an + 1 = - (n/2)( 1 + 2n), n = 1,2,3, .. . 

bn + 1 = -(;2+~+2n, n=0,1,2, ... . 
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(2.11) 

(2.12) 

(2.13) 

(2.14) 

Equations (2.11) and (2.13) converge rapidly outside a region 
linearly approximated by Ixl + 31yl >O,y#O [convergence 
inside this region is possible with Eqs. (2.11) and (2.13), but 
only by retaining an increasing number of higher-order 
terms for arguments approaching the origin]. The continued 
fractions, (2.11) and (2.13), are evaluated using the recursion 
relations 

An+1 =bn+1 An +an+ 1 An-I' A_I = 1, Ao=O, 
(2.15) 

Bn+1 =bn+1 Bn +an+1 Bn _ l , B_1 =0, Bo= 1, 

and 

(2.16) 

For 1m {; < 0, we use 

Z (x - iy) = 2i1TI/2 exp[ - (x - iy)2] - Z *(x + iy). 
(2.17) 

The algorithms have been tested against programs for the 
evaluation of the complex error function. 9-11 A relative error 
ofless than 4.2X 10- 8 was maintained. 12 

III. THE INCOMPLETE PLASMA DISPERSION 
FUNCTION 

In situations where charged particles pass through po
tential barriers, the resulting distribution function, original
ly a complete Maxwellian, becomes truncated. This is the 
case for plasma diodes or triodes where ions may flow 
through grids or potential barriers unimpeded while the 
electrons may be reflected or trapped. 13 For this case, while 
the ions are Maxwellian, the limits of integration for the 
electron distribution may be X = vand + 00, respectively, 
and the integral Eq. (1.1) is referred to as the incomplete 
plasma dispersion function, 6 

(3.1) 

It can be shown that Eq. (3.1) satisfies the differential equa
tion 

Z' + 2{;Z _ exp( - v) = {- erfc(v), v>O, 
1T112(V _ (;) - I - erflvl, v<O. 

(3.2) 

While Eq. (3.2) can be integrated numerically to obtain 
Z (v, (;), difficulties exist because of the logarithmic singular
ity for v - {; and also because of the resonant denominator 
when X-Re{; iflm {; is small and Re {;> v. For these rea
sons, the following procedures have been used to calculate 
Z(v, (;). 

Since the complete plasma dispersion function is relat
ed to the incomplete function via the expression 
Z ({; ) = Z ( - 00, (;), then 

Z (v, (;) = Z ({;) - 1T- 1/2 f~ "" dxlr - (; )-1 exp( - X2),(3.3) 

where Z ({;) is obtained from Sec. II and the second term in 
Eq. (3.3) has no resonant denominator if Re {; < v. This im
portant case is applicable to the study of slow waves in plas
ma diodes. Secondly, for the study offast electromagnetic 
waves propagating within a nonrelativistic plasma whose 
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particle distribution has become truncated, ; is large and an 
asymptotic solution for Z (v, ; ) is readily found in terms of 
the chi-square probability function Q, 

Z (v 1-) _ - 1 ~ vexp( - v) 
,~ -21- 112 L" 1-(1-1) 

~1T 1~1 ~ 

X {_1_ 1 - 112 1 2 - 1/2 2 }. 
v+ 1+ v+ 1+ v+ ... 

(3.4) 

This expansion is easily used via the algorithms given in Sec. 
n by simply replacing the coefficients Eq. (2.12) with those 
ofEq. (3.4) and carrying out the indicated summation. 

IV. RELATIVISTIC PLASMA DISPERSION FUNCTION 

For relativistic plasma, a Juttner-Synge distribution 
function may be used to describe the particle placement. The 
integral obtained using this distribution defines the relativis
tic plasma dispersion function, 14 

T(z,;) = r I dv(v -Z)-I exp[ - ;(1- V2)-1/2], 

Im(;»O. (4.1) 

The parameter; == mc21kB T represents the inverse of the 
plasma temperature normalized to the particle rest energy 
while z is defined as the Langmuir wave phase velocity, 

z = wlkc, (4.2) 

where c is the speed of light. 
Analytic extension into the lower-half complex z plane 

through the real axis, for Izl > 1, is possible with 

T(z*,;)=T*(z,;). (4.3) 

For Izl < 1, a residue term due to the first-order pole in the 
integrand ofEq. (4.1) is acquired, 

T(z*,;) = T*(z,;) - [21Ti exp[ -; (1 - Z2)-1I2]J *. 
(4.4) 

A power series about z = 0, valid in the circle Izl < 1, 
has been derived,14 

T(z,;) = f an rn + I + i1Te - {;(J - :?)- 1/2, (4.5) 
n=O 

where 

ao = - 2;KI (;), 

a l = H;2Ko(;) - ;KI (;)], 

(4.6) 

an = [6(n - 1)(2n - l)an_ 1 + 3(;2 - (2n - 3)2)an_ 2 

+ 2(n - 2)(2n - 5)an _ 3 ]/(4n2 - 1), n> 1, 

where Ko and KI are modified Bessel functions. 
For Izl > 1 there exists a series in z- t, 

00 

T(z,;)= L anz- 2n - l
, 

n=O 
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a2 = - io;Kg) - loao + do(27 - ;2)alo 

an = {[3(2n - If - ; 2]an _ 1 - 6(n - 1)(2n - 3)an _ 2 

+ (2n - 3)(2n - 5)an _ 3 }/2n(2n + 1), n > 2. 

(4.7) 

Additionally, T (z, ; ) can be expanded aboutthe branch point 
z = 1, yielding the continued fraction 

T(z,;) = - 2Ko - 2K2 vlKo 
1 + 1 + 2K2 vi Ko + 

X 
- K4 vlK2 - K6 vlK4 

1 + K4 vi K2 + 1 + Kg vi K6 + 
+i1Tuexp( _;)(I_r)-1I2, (4.8) 

for; #Oandv = (1 - z)l(3 - z)aboutz = 1. Thequantityu 
is given by 

{

o Zj>O; Zj =0, IZRI>l 

u = 1 Zj = 0, IZR I < 1 

2 Zj <0 

(4.9) 

The discontinuity across the real axis Izl < 1 is due to the 
Stokes phenomena as is also the case for the complete and 
incomplete plasma dispersion functions. 

Equation (4.8) simplifies considerably the numerical 
evaluation of the relativistic plasma dispersion function near 
the branch points z = ± 1. 14 
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An integral equation equivalent to the interface problem is derived. A numerical scheme for its 
solution is given. Convergence of the scheme is established. 

PACS numbers: 02.60.Lj 

1. INTRODUCTION 

Consider the scattering problem: 

(V2 + k6)u = 0 in £1, ko> 0, 
(V2 + k ~)u = 0 in fiJ, kl > 0, 

u+ = u_ on r, 

on r, 

u = Uo + v, 

r 1 av - ikov 12 ds~, R ---+ ao • 
JISI =R ar 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Here Uo is the incident field which satisfies Eq. (1) in the 
whole space R3

, fiJ is a bounded obstacle with a smooth 
surface r, fiJ is the interior domain, N is the exterior unit 
normal on r pointing into £1, the exterior domain, ko (k 1) is 
the wave number in £1 (fiJ),p = const> O,p# 1, the sign + 
( - ) denotes the limit value on r from the interior (exterior) 
domain 

a;;=(;~) +' 

There is an extensive literature on the exterior boundary val
ue problem. The integral equation method is usually the tool 
of the studies. 1 The equivalence problem is important in 
these studies. For the Dirichlet and Neumann boundary 
conditions (corresponding to scattering by acoustically soft 
and hard obstacles), the integral equations obtained are not 
equivalent to the boundary value problems when k ~ belongs 
to some discrete set (the spectrum of the corresponding inte
rior problems). Various ways to modify the integral equa
tions at these exceptional values of k ~ were suggested by 
many authors. We will not discuss this question here since 
for the problem (1)-(6), the equivalence of the integral equa
tion and the problem ( 1)-( 6) is easy to establish. In Sec. 2 the 
uniqueness theorem is proved. This theorem is known,l but 
we included a very short proof of it for convenience of the 
reader. In Sec. 3 existence and uniqueness of the solution to 
the integral Eq. (17) and the equivalence of this equation to 
the problem (1)-(6) are proved. In Sec. 4 convergence ofa 
numerical method of solving the integral equation is proved. 
This result is connected with the T-matrix approach. 2 The 
integral Eq. (17), which is used in this paper, is of Fredholm's 
type and is convenient for a numerical treatment. One can 
derive a boundary integral equation of the type used in the 
usual T-matrix scheme, but in this equation one has integral 
operators with strong singularities, and this fact makes the 

theoretical numerical analysis difficult. 
Scattering by a permeable body was discussed recently 

in Ref. 3, where different integral equations were suggested. 
Numerical solution ofthese equations (which involve im
proper integrals) was not discussed. The basic integral equa
tion in Ref. 3 is of the first kind and its kernel is weakly 
singular. Thus this equation presents difficulties from the 
numerical analysis viewpoint. 

2. UNIQUENESS OF THE SOLUTION 

Theorem 1: If Uo = 0, then the only solution to problem 
(1)-(6) is U=O. 

Proof If Uo = 0, then u satisfies the radiation condition 
(6) and u solves (1)-(4). Here and below the bar denotes com
plex conjugation. From Green's formula, it follows that 

0= 1m u--u- S- u--=--u-- S. 1· i (au _aU)d i( au _au_)d 
R~"" lsi =R ar ar r aN aN 

(7) 

Applying (4) and Green's formula again, one obtains 

L(u
a
:N -ua;N )ds=pL(u~; _u

a
;; )dS=O. (8) 

From Eq. (7) and (8) it follows that 

1· i (au - au )d 0 1m U--U- S= . 
R~"" lsi =R ar ar 

(9) 

Condition (6) for u and (9) yield 

lim r {I au 12 +k~luI2}dS=0. 
R~"" Jisl = R ar 

(10) 

From (1) and (10) it follows that u =0. The last conclusion is a 
well-known result. A short proof of this result can be found 
in Refs. 4 and 5. 

3. BASIC INTEGRAL EQUATION, ITS EQUIVALENCE TO 
THE PROBLEM (1H6). EXISTENCE AND UNIQUENESS 
OF ITS SOLUTION 

Let us rewrite (2) as 

(V2 + k ~)u = KU, K=k ~ - k i. (2') 

From the Green's formula, it follows that 
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f!g(V
2 + k6)u + u8(x - y)Jdy 

=Ki gu dy + u(x) !2! 

I · i (au a
g

) I ( au = 1m g--u- ds- g--= 
R~oo lsi =R ar ar r aN 

- u_ ag)dS + '(gau+ _ u ag)dS 
aN Jr aN + aN 

= uo(x) + ' g(au+ _ aU_)ds 
Jr aN aN 

= uo(x) + (1 - p)' gau+ ds, xd', 
Jr aN 

exp(kolx - yl) g . 
41rlx - yl 

This can be written as 

u(x) = uo(x) - KTu + (1 - p)Qa, 

au+ 
0-==--

- aN' 

(11 ) 

(12) 

(13) 

Tu='gudy, Qa='gads. (14) 
J!2! Jr 

For any a, any function u which solves (12) solves (1), (2), (3), 
(5), and (6). This function will solve (4) iff 

0= Ip - l)auO _ Kip _ l)aTu 
aN aN 

+ (1 - p)~Aa 2+ a - Aa 2- a) 

or, which is the same, 

a= _ ~ aTu + I-p Aa+_2_auo , (15) 
p + 1 aN 1 + P P + 1 aN 

where 

Aa = 2' ag(s,s') a(s')ds', 
Jr aNs 

and the known formulas were used: 

(
aQa) = Aa ± a . 
aN ± 2 

(16) 

It is easy to check that (15) is equivalent to (13) if one takes as 
u(x) in (13) the right-hand side of(12). Equations (12) and (15) 
can be written as 

w=Bw+h, 

where 

w=(;). B= - ~~T ( 

-KT 

p+ 1 aN 

h=(~auo). 
p+ 1 aN 

(I- P)Q) 
I-p A ' 
l+p 

Equation (17) is equivalent to the equation 

au 
u = Uo - KTu + (1 - p)Q---±.... 

aN 
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(17) 

(18) 

(19) 

Let us consider B as an operator from H q = Hq G1 iiq _ 1/2 

into Hq. Here Hq = Wi(£0), q>O is the Sobolev space of 
functions which are q times differentiable and their deriva
tives belong to L 2(£0), iiq = Wi(F). It is known6 that the 
imbedding H q, --+iiq is continuous if q' >q + ~ and compact if 
q' > q + ~. For q < 0 the space Hq is dual to the space H lql 
with respect to H 0' Symbol G1 means that any element wEll q 
is uniquely representable as an ordered pair (~), where 
uEllq, aEiiq _ 1/2' and the inner product in H q is defined as 
(wI,WZ) = (U I ,U2)H + (a l ,a2lii . 

q q 112 

Lemma 1: The operator B:Hq--+Hq is compact. 
Proof Thi~ follows from the relations: T:Hq--+Hq + 2 is 

continuous, Q:Hq --+Hq + 3/2 is continuous, 
(a IaN )T:Hq--+Hq + I is continuous, A:iiq--+iiq + I is contin
uous, and from the compactness of the embeddings: 
H q, --+Hq if q' > q, H q, --+iiq if q' > q + ~. 

Lemma 2: Equation (17) and problem (1 )-(6) are equiva
lent. 

Proof 1). (1 H 6)=?( 17). This was shown above in the 
process of deriving Eq. (17). 2). (17)=?( 1 )-(6). If w satisfies 
(17), then (12) and (15) are satisfied. Ifu satisfies (12), then u 
solves (1), (2), (3), (5), and (6). If(15) holds, then a = au + IaN 
and (4) holds. 

Lemma 3: Equation (17) has no more than one solution. 
Proof Equation (17) is equivalent to (1)-(6), and (1)-(6) 

has no more than one solution (by Theorem 1). 
Theorem 2, If hEllq, then Eq. (1) has a solution in Hq 

and this solution is unique, 
Proof Theorem 2 follows from Lemmas 1 and 3, Fred

holm's alternative, and the inclusion hEllq. 

4. NUMERICAL SOLUTION 

Since B is compact in H 0, the con vergence of the projec
tion method of solving Eq. (17) is easy to establish (Ref. 4, p. 
192). Let us describe the projection method for Eq. (17). Let 
! <Pj J be a complete linearly independen!. system offunctions 
in H o, and! 'Ih J be a similar system in H -1/2' The union of 
the systems 

{~}, {~} 
is a complete linearly independent system in H Q. Let us take 

tP = (a<p
j
) . 

J aN + 

As I <Pj J, let us take the orthonormal system of eigenfunc
tions of the Dirichlet Laplacian in domain ..:1, £0 ca. As..:1 
one can take, e.g., box or a ball, so that I <Pj I is given explicit
ly. The system fjj I is complete inHQ• The system la<p/aN} 
is complete in H -1/2' Indeed, let 

(*)' f a<pj ds = 0, Vi 
Jr aN 

The bar denotes complex conjugation. Let us multiply (*) by 
<pj(x)/k], where (V2 + k ])<pj = 0 in..:1, <Pj = 0 on a..:1, and 

sum overj. Since ~j<Pj(x) <pj(s)lk] = G (x,s), 
- V2G = 8(x - y) in..:1, G = 0 on aLi, this yields 
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v(x) = f aG (x,s) !(s)ds = 0, xe.:i 
Jr aNs 

and fromjump relations for the potential of double layer, one 
sees that! = O. Let 

( 

rctlt/>j ) 

Wrn = i~tlat/>j . 

~l aN 

(20) 

The projection method consists in finding ctl, d r from the 
linear system 

(Wrn - BWm - h,'Tjj)Ho = 0, 1 <j<2m, 

where 

l<j<m, 

~j ~(:J m + 1<;;<2m 

(21) 

(22) 

The system (21) is a linear system of 2m equations for 2m 
unknowns ctl,d tl. From the known results [see Refs. 7 and 
8 for general theory and Ref. 2(a) and Ref. 4, p. 192 for the 
problems similar to (21 )], it follows that (21) is uniquely solv
able for all sufficiently large m and W rn -w in H 0, where W 

solves (17). 
We reduce by half the number of the unknowns if we 

use Eq. (15) [the second equation in the vector Eq. (17)] in the 
form (13), and set 

d lml =clml 
J J' 

In this case, the system (21) takes the form 

l<n<m, 
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(23) 

(24) 

where 

anj = (t/>j,t/>n) + K(Tt/>j,t/>n) 

at/>j 
- (I-p)(Q aN ,t/>n)' 

UOn = (UO,t/>n)' (f,g)=(f,g)Ho' 

(25) 

(26) 

The system (24) one can also obtain by applying the projec
tion method to Eq. (19). In this case, the proof of the conver
gence of the projection scheme requires further study. Th~ 
reason is that the operator Q (alaN) is not compact in H q. 

Remark: Ifp = 1 [see (4)], then (19) becomes 
u = Uo - KTu and the numerical scheme (24) [with the ma
trixanj defined by (25) withp = 1)] converges inHq provided 
thatuoEHq • Ifp = 1, then it follows from (12) that the values 
of u in !iJ define u in the whole space. Therefore, if urn (x) is 
the approximate solution defined from (24) by the formula 
Urn ==~j~ 4ctlt/>j' then the function uo(x) - KTu m converges 
to the solution u(x) of the problem (1)-(6)withp = 1 inHq, in 
CG'(J1R ), where J1R ==Ix:lxl >R J and!iJ C,qJ R' 

,qJ R =lx:lxl<R J. Ifq>2, thenuo(x) - KTurn-u(x) in CG'(JR3
) 

asm-oo. 
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Three-term recursion relations for hydrogen wave functions: Exact 
calculations and semiclassical approximations 
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Three-term recursion relations with respect to the angular momentum 1 are given for the 
normalized hydrogen wave functions associated with r, Pr' P (r is the radial polar coordinate in 
configuration representation,Pr is the momentum conjugated to r,p is the radial polar coordinate 
in momentum representation). These three-term recursion relations [Eqs. (4), (6), (16)] are found 
numerically stable in the order of decreasing 1 values, even for large quantum numbers. The three
term recursion relations in rand P are used to derive semiclassical approximations for the radial 
wave functions Pn,I(P) and Rn,k). These semiclassical approximations [Eqs. (67) and (84)] are 
valid even at the classical turning points and are still markedly good at small quantum numbers. 

PACS numbers: 02.70. + d, 03.65.Ge, 03.65.Sq, 31.50. + w 

I. INTRODUCTION 

Atoms in highly excited, or Rydberg, states are now 
currently studied experimentally as well as theoretically. 
Computations based on the explicit expressions for the wave 
functions are time-consuming and may also introduce severe 
round-off errors (see, e.g., Ref. 1), due to the summation of 
numbers of nearly equal magnitude but of opposite signs. In 
the presence of an external field, and when the eigenstates 
are expressed in the basis of zero-field eigenstates, I numeri
cally stable recursive algorithms between states of different 
angular momentum 1 appear desirable. 

The purpose of this paper is twofold: 
(a) In the first part (Sec. II), three-term recursion rela

tions in 1 are given for normalized nonrelativistic hydro genic 
wave functions: Rn.l(r), Qn,I(Pr), Pn.t!p). Rn,l(r) is the usual 
radial wave function in configuration representation. The 
recursion relation for Rn,t!r) corresponds therefore to the 
usual three-term recursion relation between Coulomb func
tions (see, e.g., Ref. 2). Up to now the numerical stability for 
the discrete spectrum has not been studied, at least to our 
knowledge. Qn,l (p r) is the wave function associated with the 
conjugated momentum of r. An explicit expression for 
Qn,I(Pr) has been published recently by Lombardi? Pn,I(P) is 
the radial wave function in momentum representation. The 
explicit expression for Pn,dp) is known already for a long 
time (see Podolsky and Pauling4

). To our knowledge the 
three-term recursion relations for Qn,l (p r) and P n.l (p) were 
not given previously in the literature. As the most significant 
result, all these three-term recursion relations provide nu
merically stable algorithms when used in the order of de
creasing I values. 

(b) In the second part of this paper (Sec. III), the three
term recursion relations are used to derive semiclassical ex
pressions for Pn,l (p) and Rn,dr). To our knowledge, no semi
classical expressions for Pn.l(p) have been given previously. 
The semiclassical expressions are valid even at the turning 
points and are accurate at small quantum numbers. The pro
cedure involved is in close analogy to a previous work of 
Schulten and Gordon.5 Their investigations show how one 

can derive semiclassical approximations for the Wigner's 3 j 
and 6 j coefficients starting from the three-term recursion 
relations satisfied by these coefficients. The derivation in
volves a discrete analog of the WKB method. 

II. THREE-TERM RECURSION RELATIONS AND EXACT 
COMPUTATIONS 

A. The three-term recursion relations 

Atomic units will be used throughout and, for simpli
city, we consider the case of unit charge (Z = 1). The starting 
point for the derivation is the factorization of the Schro
dinger equation for the hydrogen atom (see, e.g., Ref. 6) 

[I + (I + 1)( :r - ~) ]Rn.l(r) = E(n,1 + I)Rn.l + dr) 

(ifO<I<n - 2), (I) 

[1 -/( :r + (l: 1) ) ]Rn,l(r) = E(n,/)Rn.I _ 1 (r) 

(if 1<I<n - I), (2) 

where 

E(n,l)=[I- (1In)2] 1/2 (3) 

and Rn.l(r) are the normalized radial wave functions. 
Equation (I) still remains valid for 1 equal to n - I if the 

right-hand side is then taken equal to zero.6 
Elimination of the derivative of R n,l (r) in Eqs. (1) and (2) 

leads to the well-known recursion relations between Cou
lomb functions2

: 

IE(n,l + I)Rn,l+ I(r) + (I + I)E(n,l)Rn.I_I(r) 

-(2/+ 1)[1-/(/+ l)/r]Rn,l(r) =0. 

The operator Pro which is not an observable3 may be 
expressed in terms of the variable r: 

Pr = + [ ; .p + p. ; ] = - i( :r + + )-

(4) 

(5) 

Introducingpr in Eqs. (1) and (2) and eliminating 1/r 
leads to a three-term recursion relation for Qn,I(Pr): 
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12E(n,1 + I)Qn,/+ 1 (Pr) - (I + I)2E(n,l)Qn,/_1 (Pr) 

- (21 + 1)[ - 1 + il(1 + I)Pr ]Qn,/(Pr) = O. (6) 

The three-term recursion relation for Pn,dp) is more 
difficult to obtain, since the relation between Pn,/(p) and 
Rn,/(r) is I-dependent: 

Pn,/(p) = ( - ill ~ 100 

dr rj/(pr)Rn,/(r), (7) 

wherej/(z) is the usual spherical Bessel function. 2 Multiply
ing Eq. (1) from the left by 

(-i)/+I~ 100 

drrj/+I(rp), 

Eq. (2) from the left by 

( - i)/-I~ 100 

dr rj/_I (rp) 

and making use of the orthogonality condition, 

(00 dr rjA (kiVA (k 'r) = ~ 8(k - k '), Jo 2k 

we obtain 

E(n,l + I)Pn,/+ 1 (p) 

= - (i){ - (I + I)pPn,l(p) + ! l°Odr r 

Xj/ + 1 (rp)loo dp' p'2j/(rp')Pn,/(P')} 

E(n,l)Pn,l_1 (p) 

= i{ -lpPn,/(p) + ! 100 

dr r 

Xj/_I (rp)loo dp' p'2j/(rp')Pn,l(P')}' 

(8) 

(9) 

(10) 

In the derivation of Eqs. (9) and (10) use has been made 
of the facts that the operators ( - d /dz + I/z) and (d / 
dz + (I + l)/z) appearing in Eqs. (1) and (2) are the raising 
and lowering operators associated with the spherical Bessel 
functions2

: 

( -! +; )j/(Z) =j/+ dz), (11) 

(! + I: 1 )j!lZ)=j/_I(Z). (12) 

We now use the relations: 

j/ + 1 (z) + j/_ 1 (z) = (21 + 1)j/(z)/z, 

L + -2 Pn,t\p) = - dr rj/(rp) ( 
2 1) 2 Loo 

2 2n 1T 0 

X Loo dp' p'7/(rp')Pn,l( p'). 

The last equation comprises the fact that the states 
I n,l,m) satisfy the Schrodinger equation: 

(
p2 1) 1 --- In,l,m) = --2In,l,m). 
2 r 2n 

(13) 

(14) 

(15) 

Substracting Eq, (10) from Eq. (9) we finally obtain the de
sired recursion relation 7 

: 
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E(n,l + I)Pn,l+ 1 (p) - E(n,l)Pn,/_1 (p) 

_ (21 + 1) i(np __ 1_ )Pn,/(P) = O. 
2n np 

(16) 

For the special value p = lin this recursion becomes a 
two-term recursion relation. The following section has the 
purpose of finding stable algorithms for the computation of 
Rn,/(r), Qn,l(Pr)' and Pn,/(p) from the Eqs. (4), (6), and (16), 

B. The algorithms 
The numerical stability of a three-term recursion rela

tion may depend critically on the direction of recursion. For 
the recursions given by Eqs. (4), (6), and (16), numerical sta
bility can be a priori expected only if the recursive evaluation 
proceeds from the classically forbidden region towards the 
classically allowed region. The situation is quite analogous 
to the one corresponding to recursive evaluation of 3 j and 6 j 
Wigner's coefficients. 8 

The classical regions are determined as follows, For 
fixed values of n and I, there is associated with a classical 
motion on an ellipse of semimajor axis equal to n2 and of 
eccentricity e(n,1 ) 

e(n,/) = [1-1(/+ l)/n2] 1/2. (17) 

Therefore, for a given value of r between 0 and 2n2, I 
belongs to the classical region if 

(18) 

Using the classical relation between r,Pr'P' 

2 p2 I I __ =L __ =-.':...+ (+ 1) (19) 
2n2 2 r 2 2r r 

the classical regions of I for fixed values of P rand P are found 
to be 

e(n,/)~1 I 
/ ?' Pr , (20) 

1

1 - n2
p2 I e(n,/» 2 2 . 

l+np 
(21) 

Equations (18), (20), and (21) show that progressing 
from the classically forbidden domain of I towards the al
lowed domain requires the use of recursion relations (4), (6), 
and (16) in the order of decreasing I values. 

It can be seen that only one initial value is necessary to 
generate the recursion relations, namely Rn,n _ 1 (r), 
Qn,n -I (Pr), and Pn,n _ 1 (p). In fact, the recursion relations 
(4), (6), and (16) which are defined for 1 <,I<,n - 2, are still 
valid for I equal to n - 1 if the undefined products zero 
XRn,n (r), zero X Qn,n(Pr)' and zero XPn,n(p)appearingfor I 
equal to n - 1 are taken equal to zero. The reason for that is 
that Rn,n _ 1 (r) satisfies the following equation [see the re
mark just after Eq. (3)]: 

[ ( 
d (n - 1) )] 1 +n dr --r- Rn.n_l(r)=O. (22) 

Then it follows from Eq. (16) that Pn./(lIn) is zero if n - I is 
even. 

Still it remains to give the expressions for Rn,n _ 1 (r), 
Qn.n - 1 (Pr), and Pn.n _ 1 (p). Using the phase convention giv
en in Ref. 6 the explicit expression for Rn,t\r) is6 : 
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R r = 2( - It - I - I [ (n + l)! ] 112( 2r )1 
n.l( ) n2(21 + I)! (n -1- I)! n 

X IF{ - n + I + 1,21 + 2; ~ )exp( - : ) 

(23) 

which reduces for I equal to n - 1 to 

R n•n - I (r) = ( ~ r + 112 ;2~;! exp( - : ). (24) 
LombardP derives the expression for Qn.I!Pr) from its 

integro-differential equation. In order to obtain normalized 
expressions with a phase compatible with the choice of Eq. 
(23), it is more convenient to use the direct transformation 
between Rn.k) and Qn.I(Pr)' Ifpr is given by Eq. (5), the 
transformation can be written as 

1 l"" . Qn,I!Pr) = -- dr rexp( - zrPr)Rn,I!r). 
fiii 0 

(25) 

Because Rn,l(r) is real [Eq. (23)], the relation 

Qn.l( - Prj = Qn,I!Pr)* (26) 

holds, and from the orthogonality properties of Rn.l(r) one 
obtains 

(27) 

Expressing the confluent hypergeometric function of 
Eq. (23) in terms of a Laguerre polynomial, and using the 
relation9

: 

l"" dt exp( - st)t f3L ~(t) 
r (/3 + 1) r (a + n + 1) 

n! rIa + Ij.sP+ I 

X2FI( -n,/3+ l;a+ 1;+) 
(ifRe/3> - 1 and Res> 0), (28) 

one obtains 

(- l)n-I-1 (I + I)! 
Qn,l(Pr) = 2fiii (21 + I)! 

X [ (n + l)! ]1I2( 2. )1+2 
(n -1- I)! 1 + mPr 

X2FI( - n + 1+ 1,1 + 2;21 + 2; 2. ), (29) 
1 + mPr 

and therefore 

Qnn-I(Pr)=-- .' (30) 
1 n! ( 2 )n + I 

. 2fiii ~(2n - I)! 1 + mPr 

The expression for Pn,l( pI, as defined by Eqs. (7) and (23), is4 

221+3 I' 
P () (')1 2' 

n,l P = - I fiii n (21 + I)! 

X [ (n + I)! ] 112 (np)1 
(n -/- I)! (1 + n2p2)1+2 
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and, therefore, 

(32) 

It should be pointed out that for the special case of 
1= 0, the expression (29) for Qn.I(Pr) and (31) for Pn.l(p) can 
be rewritten in forms directly suitable for numerical compu
tation: 

Qn.o(Pr) = -21 ~2n (1 2. )2(: - ~nPr )n-I, 
'\j 21T + mPr + mPr 

P () 4 ~ 1 
n.O P = '\j 21T p(1 + n2p2) 

X sin [ n arccos ( ~ ~ ::;: )], 

with the obvious symmetry properties 

Qn,o(1/(n2Pr)) = (- It(nPr)2Q~,O(Pr)' 

Pn,o(1/(n2p)) = ( - l)n -1(np)4pn.o(p). 

(33) 

(34) 

(35) 

(36) 

The symmetry given by Eq. (36) is also valid for I #0 [with 
( - It -1- I in place of ( - It - I] and results from the dy
namic symmetry of the hydrogen atom. 10 

The calculated values of Qn.o and Pn.O obtained from the 
exact relations (33) and (34) have been used as references for 
checking the recursively computed values. A test has been 
made for n = 100 and the recursive algorithms have been 
found to be stable. Some numerical results are given in Table 
I, for values of Pr and P covering a large domain centered on 
lin. All recursive calculations were made in single precision 
on a Cray computer. It was found that the recursive algor
ithms introduce only relative errors which are close to the 
machine accuracy, except, of course, in the closed vicinity of 
the nodes. For Rn.I!r) the numerical stability of the recursive
ly computed values has been tested by comparing Rn.o(r) to 
Rn.o(r) which is the value obtained after a relative error of 
10-4 for R n•n _ 2 (r) has been introduced. This error is not 
amplified during the recursive process. Some numerical re
sults are reported in Table II for values of r covering a large 
domain centered on n2

• 

III. SEMICLASSICAL EXPRESSIONS FOR Pn,/(p) AND 
Rn,,(n 

A. Introduction 

First we like to summarize some general results ob
tained by Schulten and Gordon,5 which are essential for the 
present work. These authors have shown that approximate 
solutions of the following difference equation: 

fIx + 1) + fIx - 1) - 2f(x)cos(k (x)) = 0 (37) 

are also approximate solutions for 

( ~ + k 2(X))( sin k (x) )1I2f (X) = 0 
dx2 k(x) 

(38) 
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TABLE I. Numerical results for values ofp, andp covering a large domain centered on 1/n. I computed from Eq. (33). II computed recursively. III computed 
from Eq. (34). (a, b) = a + ib. 

10-4 

10- 3 

10-2 

10- 1 

10 

1(0.78l9792l9607396E + 01, - 0.1585 1498 1099567E + 01) 
II(0.781979219607129E + 01, - 0.15851498199504E + 01) 

I( - 0.331955574889624EOI, - 0.725463964515129E + 01) 
II( - 0.331955574889447E + 01, - 0.725463964514978E + 01) 

1(0.369430400728700E + 01, - 0.69828 148 1097695E + 01) 
11(0. 369430400728943E + 01, - 0.698281481097101E + 01) 

1(0.39894228041432E + 01, O.OOOOOOOOOOOOOOOE + 00) 
II(0.398942280400938E + 01, - 0.241917597065822E - 12) 

1(0.369430400728468E - 01, 0.698281481097416E - 01) 
II(0.369430400728419E - 01, 0.698281481096714E - 01) 

I( - 0.331955574889260E - 03, 0.725463964514367E - 03) 
II( - 0.331955574888673E - 03, 0.725463964513437E - 03) 

1(0. 781979219607388E - 05, 0.158514981099565E - 05) 
II(0.78197921960666IE - 05, 0.158514981099378E - 05) 

0.317029962198930E + 06 III 
0.317029962198891E + 06 II 

0.145092792902893E + 06 III 
0.145092792902831E + 06 II 

0.139656296219514E + 05 III 
0.139656296219400E + 05 II 

O.OOOOOOOOOOOOOOOE + 00 III 
O.OOOOOOOOOOOOOOOE + 00 II 

- 0.1396562962195l2E + 01 III 
- 0.139656296219354E + 01 II 

- 0.145092792902891E - 02 III 
- 0.145092792902661E - 02 II 

- 0.317029962198933E - 06 III 
- 0.317029962198682E - 06 II 

provided that k (x) is a "slowly" varying function in x. As 
approximate solutions of the differential equation, they ob
tained5 

In the following paragraphs it will be shown how the 
recursion relations (4) and (16) for Rn.l(r) and Pn,I(P) merge 
into the form ofEq. (37) for large quantum numbers. A simi
lar procedure could be applied for Qn,I(P,) [Eq. (6)] with the 
difference that k (x) will be complex with both real and imagi
nary part being nonzero; this more complicated case will not 
be considered here. 

if k (x) is real 
(39a) 

{

c IlJ(x)11/4 F(lJ(x)) 
[sink (x)F/2 

fix) = C IlJ (x)11/4 F lJ 
[sinhlk (x)l] 1/2 ( (x)) 

if k (x) is purely (39b) 

imaginary, 

where C is a constant, F is a linear combination of regular 
and irregular Airy functions, denoted by Ai and Bi, respec
tively, and 

nix) = 2 Xu 

{ 
- ( l..1 LX k (x')dx' I yl3 if k (x') is real 

+ ( 23 I iX"k (x')dx' I )2/3 if k (x') is purely 
imaginary. 

(40a) 

(40b) 

Xo is either of the zeros of sin k (x). For more details we refer 
to Ref. 5. 

TABLE II. Numerical results for values of r covering a large domain cen
tered on n2

• I computed recursively. II computed recursively after a relative 
error of 10- 4 has been introduced at the beginning of the recursion (see text). 

r 

10- 1 

10 

1Q2 

10' 

10' 

475 

R 100. 0 (r) 

- 0.18066E - 02 I 
- 0.18067E - 02 II 

- 0.56598E - 03 I 
- 0.56603E - 03 II 

- 0.11252E - 03 I 
- 0.11253E - 03 II 

- 0.15031E - 04 I 
- 0.15032E - 04 II 

0.20660E - 06 I 
0.20662E - 06 II 

0.77177E - 06 I 
0.77177E - 06 II 

0.37372 - 270 I 
0.37376 - 270 II 
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We note that, for a fixed value of E (n,!) [Eq. (3)], one 
obtains 

E(n,l) = [E(n,I-!)E(n'!+!)lI12 + o (lIn 2
), (41a) 

12 = (/- !)(I +!) + o (lIn 2
), (41b) 

1(1 + 1) = (I + !)2 + o (lIn 2
), (41c) 

o (lIn 2
) denotes terms decreasing as lIn 2

• On the other 
hand, for 1 near its maximum value, n - 1, E (n,l) cannot be 
considered invariable as n increases; in that case the correc
tion term in Eq. (41a) decreases as lin only. Equations (41b) 
and (41c) are, of course, not valid for 1 near its minimum 
value (lmin = 0). 

Using the relations (41a, b, c) and setting 

x = I+!, (42) 

both recursions relations (4) and (16) are transformed into 
the form of Eq.(37), as will be shown in the following para
graphs. First x will be considered as varying continuously 
between zero and n; then it will be considered as verifying 
Eq. (42). 

B. Semiclassical approximations for PnAp) 

Let us first consider the case P < lin. Setting 

f(l + !,p) = jl [E(n,1 + m 1/2Pn.l(p) 

and 

x 
cos k (x) = (lInp - np) 

2nE(n,x) 

(43) 

(44) 

one verifies from Eq. (16) thatf(x, p) satisfies within the semi
classical approximations [Eqs. (41a, b, c,)] the difference 
equation (37). The condition p < lin ensures that cos k (x) 
[Eq. (44)] increases from zero to unity asx varies from zero to 
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its maximum classical value, denoted by xo; hence k (x) van
ishes for Xo and becomes purely imaginary for x > Xo' Re
placing 1(/ + 1) by (/ + !)Z in the Eq. (21) yields 

Xo = n[2np/(1 + nZpZ)]. (45) 

In the classical domain (x ,;;;xo) 

k (x) = arccos[xa/nE (n,x)], (46) 

with 

a = !(lInp - np) (47) 

and the analytic integration of S~" k (x')dx', abbreviated as 
w(x, p), yields 

w(x, p) = xk (x) - n arctan! [E (n,x)/ a] sin k (x)!. (48) 

For x<xo the semiclassical expression forf(x,p) can 
therefore be written as [see Eq. (39)]: 

f(x,p) = C(p)Blw(x,p)l] 1/6 

xF( - [~lw(x,p)I]ZI3)/[sink(x)]IIZ (49) 

where C (p) is a normalization constant. The analytic con
tinuation into the classically forbidden domain x > Xo yields 
[see Eqs. (39), (40)]: 

f(x,p) = C(p)[~lw(x,p)l] 1/6 

xF( + [~lw(x,p)1 ]ZIV[sinhlk (x)l] 1/2, (50) 

where now 

Ik(x)1 = arccosh[xa/nE(n,x)] (51) 

Iw(x,p)1 = Ixlk (x) I - n arctanhUE(n,x)/a]sinhlk(x)1 J I· 
(52) 

To obtain a functionf(l + !, p) which decreases towards 
zero as / penetrates into the classically forbidden domain, the 
irregular Airy function Bi must be suppressed for the dis
crete value / + !, where F is taken equal to the regular Airy 
function Ai. The same procedure is repeated for the case 
p > lin by defining 

g(/ + !,p) = (- l)m( - i)1 [E(n,l + m 1/2Pn,l(P)' (53) 

cosj(x) = - [x/2nE(n,x)](lInp - np), (54) 

in place of Eqs. (43), (44); again this ensures that the argu
ment of the cosine,j(x), is zero for Xo' The solution for g(x, p) 
is given by the right-hand sides of Eqs. (48) and (49) where a 
[Eq. (47)] is now defined as 

a = !llInp - npl. (55) 

The integer min Eq. (53) will be determined in order to 
ensure approximate continuity of the semiclassical wave 
functions. 

In the following the variable x will be treated as a pa
rameter taking only the discrete values I + ! [Eq. (42)]; this 
requires 

f(1 + !, lin - E)=( - 1)1 + mg(1 + ~,lIn + E) (56) 

in the limit where E approaches zero from positive values. 
The value lin lies inside the classical domain in p, p I <p <P2; 
withpl>Pz given by Eq. (21): 

=~( l_E(n,I+!))1I2, (57a) 
PI n 1 + E (n,1 + !) 

476 J. Math. Phys., Vol. 25, No.3, March 1984 

_ 1 ( 1 + E (n,/ + !) ) 112 pz-- . 
n 1 - E (n,! + !) (57b) 

For p inside the classical domain Iw(x,p)1 is large (ex
cept in the close vicinity of p I and Pz), and in that case5 

.J7i! Blw(x,p)l] 1/
6Ai( - Blw(x,p)1 ]ZI3)} 

=cos( - Iw(x,p)1 + 17'/4) 

so that relation (56), together with the equality 

w(1 + + ' ~ -E) = W(l + + ' ~ + E) 

implies 

(58) 

(59) 

cos[(l + 1 - n)(1T/2)] = (- 1)/+mcos[(l + 1 - n)(17'/2)]. 
(60) 

Therefore m can be chosen as 

m = 1- n. (61) 

For the determination of C( p) we use relation (58) and 
note that cos[ - Iw(x, p)1 + 17'/4] oscillates rapidly inside the 
classical domain except for I near n - 1. Normalizing the 
semiclassical wave function to unity inside this classical do
main one may replace the squared cosine by its mean values 
and obtain: 

(P'dp p2 IC(pW = 1. (62) 
Jp , 21Tsin[k(x)]E(n,x) 

The integrand in Eq. (62) can be interpreted as the clas
sical probability density in p. Classically, p varies between PI 
and P2 monotonically as the time t progresses. Therefore the 
classical probability density, denoted by D (p) which is pro
portional to the time elapsed between p and p + dp is 

D(p)=~ J ~ J, (63) 
T dp 

where T is the time elapsed between p I and Pz, that is, the 
half-period of motion. Tis equal to 1Tn3.11 Using Eq. (19) and 
the equality Pr = dr/dt, one obtains 

D(P)=_I_J dt ~ J 

1Tn3 dr dp 

1 4 
1Tn3 (pz + lIn2) 2 

Xl-~np+-{ [
I + I ( 1 )]2} -1/2 
2n np 

(64) 

and therefore 

IC(pW = 8/[n3pZ(p2 + lIn2)2]. (65) 

At this stage, it is worthwhile to note that, for a straight 
line Bohr trajectory [/ (I + 1) = 0], one obtains from Eqs. (64) 
and(33): 

D(p)=~ 2 4 2)2 =2IQn,o(PW. (66) 
1Tn (p + lin 

Since classically Pr is equal to ±P for a straight-line trajec
tory [see Eq. (19)], IQn,o(PrW corresponds exactly to the 
classical probability density associated with Pr' This is not 
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true for p2 IPn•o(pW which differs from D (p) [Eq. (66)] by 
oscillating terms. 12 

The semiclassical approximation to Pn.l( pI, denoted by 
q; n.t! p) is now summarized in a form convenient for direct 
application. Determining the overall phase factor by com
parison with the exact result (31), and defining 

{
I ifp<lIn 

/3= (-lr- I - 1 ifp> lin, 
(67a) 

a = ~llInp - npl, 

c = (I + ~)al[nE(n,1 + m, 
one obtains 

(67b) 

(67c) 

with 

y = E(n,1 + ~)S, (67e) 

s = 11 - e2 11/2, (671) 

{ 

- {H - (l + ~)k + n arctan(yla)] J2/3 

if e< 1 

z = + (H + (I + !)k - (nI2)ln[(a + y)/(a - y)] Jj2/3 

if c;;' 1, 
(67g) 

k _ {arcos(e) if e< 1 
- In(e + (e2 - 1)1/2) ife;;'l. 

(67h) 

It can be seen that q; n.1 (p) is continuous if n - 1 is odd, 
and it exhibits a small discontinuity at the node p = lin for 
n - I even. This discontinuity becomes smaller and smaller 
as n -/ increases as seen from Eq. (59) and relation (58). 
Using this latter relation, a continuous solution of the WKB 
type, denoted by Wn•1 ( p) can be obtained in the classical do
main (e< 1): 

Wn.l(p) = (_ j)I/3 2( _2_ )112 
1m

3 

X cos((/ + ~)k - n arctan(yla) + 1T14) . (68) 
p(pZ + lIn2)(y)1/2 

A systematic study of the accuracy of q; n,I(P)' Wn.t!p), 
with respect to all the parameters n, I, p is difficult. As an 
example we have considered these functions for n = 3, and 
have compared them to the exact solutions [see Fig. l(a), (b), 
(c)]. The accuracy of q; 3.t!P) is remarkably good for such a 
low principal quantum number. The discontinuity of q; 3.1 at 
p = j is negligible at the scale of the graph. The accuracy of 
the WKB type approximations is also good for W3•0 (p) [Fig. 
l(c)] and W3•1 (p) [Fig. 1 (b)] which are indistinguishable from 
the exact solutions at the scale of the graphs, except of course 
near the classical turning points. It should be noted that the 
divergence of W3•0 (p) near the value p2~4 [see Eq. (57b)] 
cannot be represented on Fig. l(c) sincep2 is too large for the 
scale (the accuracy of q; 3.0(P) for P"'Pz has been verified}. 
The agreement of W3•2 (p) compared to the exact solution is 
not very good. In that case q; 3.2 (p) provides a much better 
approximation. 
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c. Semiclassical approximations for RnA!) 

A similar procedure, as was outlined in III B for 
f!jJ n./(P), can be applied for Rn.J!r); it will only be described 
briefly. Defining 

1(1 + !,r) = (- 1)/+m[E(n,1 + ~)/(I + ml/2 

XRn./(r) ifr<n2, (69a) 

g(1 + !,r) = [E (n,1 + !)/(I + ~)] 112 

XRn,/(r) if r > n2, (69b) 

where m is an integer, and 

cos k (x) = a(x2/r - 1)/E(n,x), (70) 

with 

(71) 

again it can be shown from Eq. (4) that, within the semiclassi
cal approximations (41 a, b, c)/(x,r) and g(x,r) satisfy the 
difference equation (37). For r < n2

, cos k (x) increases from 
minus unity to unity as x varies from zero to its maximum 
value, xo, which is equal to [see Eq. (IS)] 

(72) 

For r> n2, cos k (x) decreases from unity to 2(n2/r)(r/ 
n2 - 1 )1/2 as x increases from zero to (r/n2 - 1)112, and then 
rises to unity for x increasing to xo.f(x,r) and g(x,r) are then 
both determined by the right-hand sides of Eqs. (4S) and (49), 
where now r replaces P; k (x) is determined by 

k(x) = arccos[a(x2/r- 1)/E(n,x)] ifx<xo (73) 

Ik(x)1 =arccosh[a(x2/r-l)/E(n,x)] ifx>xo (74) 

and, after analytic integration of f~o k (x')dx' denoted by 
lU(x,r): 

lU(x,r) = xk (x) - ar[E (n,x)lx ]sin(k (x)) 

( 
E (n,x) sin k (x) ) - an arctan r ------'--'-

x n - r/n 

if x<xo, (75) 

IlU(x,r) I = xlk (x) I - ar[E(n,x)lx]sinh(lk (x)l) 

h( 
E(n,x) sinh Ik(x)1 ) - an arctan r --- ---'---'---'-'-

x n - r/n 

if x;;;,xo. (76) 

The irregular Airy function Bi must be suppressed for 
the discrete values x = I + ! to ensure thatl(l + !, p) and 
g(1 + !, p) decrease towards zero as I crosses over into the 
classically forbidden domain. Approximate continuity at the 
point r = n2 for x = I + ~ requires 

1(1 + !,n2 - €)"-'( - 1)/ + mg(1 + !,n2 + €) (77) 

in the limit where € approaches zero from positive values. 
The value n 2 lies inside the classical domain in r, r l <r<r2 
with rl' r2 given by Eq. (IS): 

r l = n2(1- E(n,1 +!Jj, 
r2 = n2(1 + E(n,! + m. 

Equation (75) yields 

lU(1 + ~,n2 - €) 

(7Sa) 

(78b) 

= (I + !)arccos[ - E (n,1 + m - nE (n,! + !) - n(11/2) 

= -lU(1 + !,n2 + €) + (I + ! - n)1T. (79) 

Note that lU(x,r) is always negative inside the classical do
main x <Xo sincek (x) is positive. Using relation (5S) requires 

cos [lU(1 + !,n2 - €) + 1T/4] 

= ( - 1)/+ mcos[ -lU(1 + !,n2 - €) 

(SO) 

Therefore ( - 1) 1 + m - n must be equal to unity, and conve
niently m may be choosen as 

m=-n-l. (SI) 

C(r) is determined in the same way as for C(p). This 
implies that we identify riC (rWx/[21TE (n,x)sin k (x)] with 
the classical probability density: 

D (r) = ~ I dt I = 1 
T dr 1Tn3 lPr I 

- 1Tn --- ~ +-_ { 3[ 1 ( I + 1 )2 2] 112} - 1 

n2 r r 
(S2) 

and therefore 

(S3) 

The overall phase factor can be determined by direct 
comparison between the exact result (23). Finally the semi
classical approximation to Rn,l(r), denoted by f!ll n,/(r), is sum
marized in the following in a form convenient for direct ap
plication. Defining 

{
( - l)n -/- 1 

/3= 
1 

e = a((1 + !)2/r - I)1E(n,1 + !), 
one obtains 

with 

( 
2 )1/2 

f!ll n,/ (r) = /3 n3 

IzII/4Ai(z) 
r(y)1I2 

y = E (n,! + !)s/(l + ~), 
s= Il-e2

1
112

, 

(S4a) 

(S4b) 

(S4c) 

(S4d) 

(S4e) 

(S40 

z _ { - {~ [ - (I + ~ )k + ary + an arctan( n :!r/n )]} 2/3 if e< 1 

- + {2- [+ (I + ~)k _ ary _ a .!!...-In( n - r/n + ry )]}2/3 ife;;;.l, 
2 2 2 n - r/n - ry 

(S4g) 
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{
arccos(e) if c";;; 1 

k-
- In[e + (e2 - 1)1/2] if e> 1. 

(84h) 

f7t n,/(r) exhibits a small discontinuity for r = n2 which 
becomes smaller and smaller as n - I increases [see Eq. (79) 
and relation (58)). Relation (58) may also be used to obtain a 
WKB type approximation denoted by Yn,/(r) in the classi
cal domain (e < 1): 

Yn,/(r) 

= (_lr-l-l(_2_)112 ~ 
1Tn3y r 

x cos { _ ry _ n arcsin( r/n2 - 1 ) 
E(n,1 +~) 

+ (I +! )arcSij r - (I + ~)2) _ (n _ I _ 1)~}. 
2 U\ rE(n,1 +!) 2 

(85) 

Equation (85) represents the usual WKB approximation. 13 

This was expected right away recalling that [see Eq. (73)] 

Indeed the last integral corresponds to the classical ac
tion associated with the variable r. In the geometric picture 
the definition of k (x) [Eq. (73)] corresponds to the polar angle 
in the plane of a classical trajectory. 11 

In Figs. 2(a), (b), (c) f7t n,/(r) and Yn,/(r) are compared to 
the exact wave function for n = 3. The agreement is quite 
good for f7t 3,/(r), except near the discontinuity at r = n2 for 
maximum I, i.e., 1= 2. For this value of I the WKB approxi
mation Y 3,2 (r) [Fig. 2(a)] is not good. The accuracy of 
Y 3,l (r) [Fig. 2(b)] and Y 3,o(r) [see Fig. 2(c)] is much better, 
except of course near the classical turning points. 

IV. CONCLUSION 

Highly excited atomic states require particular method 
of computation. Selected matrix elements may be obtained 
by simple analytic integration; also the classical evaluation 
applying the correspondence principle may lead to useful 
results. For more general or more complex cases, however, 
numerical integration may be necessary. The algorithms 
presented in this paper allow rapid and accurate calculations 
which are particularly suitable for Rydberg atoms in the 
presence of an external field when the basis is chosen to rep
resent the zero-field eigenstates in polar coordinates. The 
recursion relations allow us to generate useful semiclassical 
approximation of the wave functions as outlined in Sec. III. 
The semiclassical approximations (67) and (84) extend the 
domain of validity of the WKB approximation in the region 
of the turning points. The semiclassical approximations are 
very useful since they provide direct information on the gen
eral shape of the wave functions (position of the nodes, etc ... ) 
which may not be obvious from the exact explicit expres
sions. 

ACKNOWLEDGMENTS 

The author would like to thank J. Pascale for helpful 

E. de Prunels 479 



                                                                                                                                    

discussions and H. Telle for a careful reading of the manu
script. 

1M. L. Zimmermann, M. G. Littman, M. M. Kash, and D. Kleppner, Phys. 
Rev. A 20, 2251 (1979). 

2M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions 
(Dover, New York, 1965), 5th ed. 

3J. R. Lombardi, Phys. Rev. A 22,797 (1980). 
4B. Podolsky and L. Pauling, Phys. Rev. 34, 109 (1929). 
5K. Schulten and R. G. Gordon, J. Math. Phys. 16,1971 (1975). 
6L. C. Biedenham and J. D. Louck, "Angular momentum in quantum 

480 J. Math. Phys., Vol. 25. No.3. March 1984 

physics," in Encyclopedia of Mathematics and Its Applications (Addison
Wesley, Reading, MA, 1981), Vol. 8. 

'Using a different phase convention, the recursion relation (16) can also be 
derived from Eqs. (27) and (27·) ofFock's classical paper, "Zur theorie des 
Wasserstoffatoms," Z. Phys. 98, 745 (1935). 

8K. Schulten and R. G. Gordon, J. Math. Phys. 16, 1961 (1975). 
91. S. Gradshteyn and I. M. Ryzhik, Table of Integrals Series and Products 
(Academic, New York, 1965), 4th ed. 

lOA. M. Perelomov and V. S. Popov, Zh. Eksp. Teor. Fiz. 50.179 (1966) 
[Sov. Phys. JETP 23, 118 (1966)]. 

IlL. D. Landau and E. M. Lifshitz, Mecanique (Edition Mir. Moscow. 
1969), 3rd ed. 

l2E. de Prunele, J. Phys. B: Atom. Mol. Phys. 13, 3921 (1980). 
13L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, New 

York, 1958). p. 170. 

E. de Prunele 480 



                                                                                                                                    

Explicit integrability for Hamiltonian systems and the Painleve conjecture8
) 

B. Dorizzi and B. Grammaticos 
Dept. de Mathematiques App/iquees (MTI), Centre National d'Etudes des Telecommunications, 38-40 Ave. 
du General Leclerc, 92131 Issy Les Moulineaux, France 

A. Ramani 
c.P. T. Ecole Poly technique, 91128 Palaiseau, France 

(Received 16 June 1983; accepted for publication 7 October 1983) 

We analyze a class of Hamiltonian systems in two dimensions for which we proved that a second 
constant of motion exists. It is shown that, using the two first integrals, the equations of motion 
can be written in a form which allows their integration by quadratures. An analysis of the 
eqnations of motion in this reduced form establishes the behavior of the solutions in the complex
time plane. It is shown explicitly that the systems belonging to this class possess the "weak 
Painleve" property, i.e., their solutions in complex time can present singularities of a specific 
algebraic type. 

PACS numbers: 03.20. + i, 02.30. + g 

In a recent work we have used the dual approach: Pain
leve analysis of the equations of motion and direct search of 
constants of motion, to study two-dimensional Hamiltonian 
systems from the point of view of integrability. I Two inter
esting results were the fruit of this analysis. We were able to 
identify all the 2-D Hamiltonians which possess a second 
integral of motion quadratic in the velocities, generalizing 
the results of Oarboux, 2 Wintemitz et af., 3 and Fokas et af.4 

Seven distinct classes of Hamiltonians were found in all, 
three of which correspond to complex potentials. The singu
larity analysis of the equations of motion related to these 
Hamiltonians revealed the following interesting feature. Al
though associated to an integrable system the solutions in 
the complex-time plane did not possess the Painleve proper
ty, i.e., their movable singularities were not just poles. Rath
er the singularities were cuts of the type (t - to)l/n. 

This was in contradiction with a naive generalization of 
the ARS conjecture. 5 That conjecture associated the Painle
ve property to integrability for POE's. Our counterexample 
shows that it is not valid as it stands for ordinary differential 
systems, namely such systems can be integrable without hav
ing the Painleve property. This has led to the formulation of 
the "weak Painleve" conjecture.6 

We have thus conjectured that a two-dimensional Ha
miltonian system will be integrable whenever the solutions 
present movable singularities of the form (t - to)lIn, where n 
is determined solely by the dominant behavior of the system 
at the singularity. The exponent l/n is called then a "natu
ral" power and determines fully the nature of the algebraic 
singularities of the solutions. 

The aim of the present paper is to show that for the 
above classes of Hamiltonians the solution of the equations 
of motions can be reduced to quadratures, through a proper 
change of variables. The singularity structure in this new 
system of coordinates will be examined in particular in rela
tion to the weak Painleve property. 

aJ The authors dedicate this work to their Soviet colleague Alexander Y offe. 

I. EXPLICIT INTEGRATION OF THE EQUATIONS OF 
MOTION 

In Ref. I we have analyzed the question of integrability 
for Hamiltonian systems in two dimensions, and found all 
the systems with a second integral quadratic in the velocities. 
Seven distinct classes of potentials have resulted, three of 
which corresponded to complex potentials. In this section 
we will show how the two integrals of motion can be com
bined in order to reduce the computations of the trajectories 
of the system to quadratures. We wi1llimit ourselves to the 
more physical case of real potentials. (The treatment of the 
complex ones can be performed along the same lines). 

The four classes of real potentials we have identified are 
the following: 

V=F(x)+G(y), (1) 

V=F(p)+(l/p2)G(q?), (2) 

V= F(p+y)+G(p-y) , 
p 

V= F(u) + G(v), 
u2 _ v2 

where x = p sin q?, y = p cos q?, and 
2u2 = p2 + a2 + (( p2 + a2)2 _ 4a2X2) I /2 and 
2v2 = p2 + a2 _ ((p2 + a2)2 _ 4a2X2)1/2. 

(3) 

(4) 

The integrals of motion associated to these systems are 
the following: 

c = x2 + 2F(x), 

C = (xy - YX)2 + 2G (q? ), 

C=x(xy - yx) 

+ (p+y)G(p-y)-(p-y)F(p+y) , 

p 

C ( . ')2 2' 2 + 2[u2F(u) - v2G (v)] =xy-yx +ax 2 2 . 
V -u 

(5) 

(6) 

(7) 

(8) 

The integration of case (1) is immediate. The potential is 
separable in x and y. The Hamiltonian in each direction is a 
constant 
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E J = ~:e +F(x). 

E2 = !.y2 + G (Y). 

and the integration for the trajectory straightforward. One 
thus obtains t = t (x) and t = t (y) which can in principle be 
inverted to give x = x(t), y = y(t). 

Case (2) is also quite simple. Rewriting the Hamiltonian 
and the constant C in polar coordinates, we have 

H = !(p2 + p2~ 2) + F(p) + (l/p2)G(tp), 

C = p4~ 2 + 2G (tp ). 

Combining the two constants of motion. we obtain 

p2 = 2E _ 2F(p) _ C /p2, 

• 2 _ C - 2G (tp ) 
tp - 4 • 

P 
Although this is not completely separable in the usual 

sense, it is still true that the variable p separates out. Its 
integration can be performed by a simple quadrature. Once 
p(t) is found, the equation for tp can also be reduced to a 
quadrature: 

f dtp f dt 
~C - 2G (tp) = ± p2(t)' 

Case (3) can be treated in a natural way in parabolic 
coordinates. We put 

x = 2t1], 

Y =t2 _1]2. 

(9) 

The two constants of motion can be written in this coor
dinate system as 

E = 2(t 2 + 1]2)(t2 + iJ2) + F(t) + G(1]) 
t2 + 1]2 ' 

(10) 

C=2(t 2+1]2)(t21]2_iJ2t 2)+ 1]2F(t)-t
2G

(1]). 
t2 + 1]2 

Solving for g. iJ we readily obtain 

We thus remark that although the system is not separa
ble in parabolic coordinates. the equation for the trajectories 
does indeed separate. Once this equation is integrated to 
yield t = t (1]), the time dependence is then also reduced to a 
quadrature. 

Finally case (4) can be treated in elliptical coordinates. 
We put 

482 

x = a cosh t cos 1]. u = a cos 1], 

y = a sinh t sin 1]. v = a cosh t. 
We obtain thus for the two integrals of motion 
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C = a4(sinh2 t + sin21]) [COS21]g 2 + cosh2 tiJ2] 

+ 2 [COS
21] F(t) - cosh2 t G (1])] 

(cosh2 t + sin21]) 

Analogous to case (3) we obtain 

dt 
~ - C + 2azE coshZt - 2F(t) 

= ± ~==~~d=1]~~~~ 
~C - 2azE COS

21] + 2G (1]) 
dt = ± -------------

a2(sinh2 t + sin21]) . 

Once again the equation for the trajectories separates 
and the solution is reduced to quadratures. 

II. EXAMPLES 

In what follows, we present some examples of integra
tion of the equations of motion for potentials belonging to 
the case (3). We start with the reduced equations of motion 
(11). We restrict ourselves to potentials polynomial in x and 
y. This amounts to taking F(t) = P(t2) and 
G(1]) = - P( _1]2). where Pis a polynomial. The reason for 
this choice is that this class is nontrivial while being simpler 
than case (4). Several systems of physical interest belong to 
this class (see Refs. I and 7) and moreover the discussion of 
the weak Painleve property has been (and will be) based on 
examples from this class. 

In this paragraph, we further restrict ourselves to the 
case where P is a monomial, i.e .• F(t) = t 2(m + I) and 
G (1]) = ( - It 1]2(m + I), C = 0, in order to simplify thecalcu
lations: 

dt 

v1(t 2 + 1]2) 
(12) 

[with the + choice of signs in (11)]. Puttingt 2 = X.1]2 = ¢" 
we get 

d¢' v1dt 

(x + ¢') 
(13) 

A remark can be made at this point, as far as the trajec
toryisconcemed. Ifm = 2n, one remarks thatEq. (12) fort, 
1] and n is the same as Eq. (13) for X, ¢' and m. So one obtains 
identical trajectories for potentials of degree nand m = 2n 
for n even and. of course, C = O. 

We consider first a potential of degree m = 2P• Equa
tion (12) can be transformed, putting t m = X, 1]m = ¢' to the 
following: 

dX d¢' 
--~~- = --~---
X~E - XZ ¢'..fif=IIl 

(14) 

Integrating (14) we obtain for the trajectories 

~x2(A. 2 _ W = 4E [A.XtP(A. - W - A. 2(x - ¢')2]. (IS) 

Note that for real X and ¢'. the integration constant A. 
must be positive. If m = 2, X = t 2, ¢' = 1]2, one can easily 
find the trajectories in terms ofx andy. Equation (IS) be
comes 

(16) 

Dorizzi, Grammaticos, and Ramani 482 



                                                                                                                                    

Indeed, for m = 2 the potential is harmonic, 

V=y2 +x2/4. 

The ratio of the frequencies is 2. Choosing C = 0 corre
sponds to taking the trajectory that goes through the origin 
and (16) can indeed be parametrized by 

x =A sine, 

y =Bsin2e, 

i.e., the correct Lissajoux curve for ratio 2. 
In a similar way one can obtain the analytic form of the 

trajectories in terms of x and y for m = 2p for any p. For 
example, for m = 4 we find 

( :2 riA 2 _ W = 4E [A ( : riA -W - A 2y2(X2 + y2)]. 

However, further explicit integration (12) for the time depen
dence is not possible in general, unless m = 2 of course. 

Another case where we can give an expression for the 
trajectories is the Henon-Heiles potential for the choice of 
parameters for which J. Greene7 has given the second con
stant of motion. Treatingjust the homogeneous cubic part of 
the potential, we have m = 3 in expression (12). Introducing 
E = a3

, X = (lJa)S 2, tP = (lJa)1l, we obtain 

X - + const. f l d 100 

dtP 
x xl1=? - '" tPff+1i7 

(17) 

The integration of (17) is straightforward but tedious. 
We obtain finally, the trajectory in terms of elliptic functions 

(u + v)(1 + a) + a(f(u) -f(v)) 

- ll(tp,y,k) - ll(w,y,k) = c, 

where 

costp=cnu= 

cosw=cnv= 

1 1 
y= 2" + v'3 ' 

and 

v'3-1+X 
v'3+1-X' 

tP+ 1-v'3 
tP+ 1+v'3' 

1 + v'3 a= ---
I-v'3' 

As in the m = 2p case the integration for the time de
pendence does not seem possible, given the complexity of the 
expression for the trajectory. 

III. SINGULARITY STRUCTURE OF THE EQUATIONS OF 
MOTION 

483 

The structure of singularities for case (c) where 

V = F(..JT+? + y) + G (..JT+? - y) 

.jx2 + y2 
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(18) 

has been investigated in Ref. 1, using the ARS algorithm,5 in 
the special case where V is a polynomial in terms of x and y, 
i.e., F(u) is a polynomial and G (u) = - F( - u). In this sec
tion we will show directly how this structure follows from 
(11), which now writes 

ds ± d'TJ 
.j'TJzE-C+F(-'TJZ) 

± dt (19) 
V1(S2 + 'TJ2) , 

where 

y = S2 - 'TJ2, 

x=2S'TJ· 

The most general singularity arises when, for some val
ue to of t, one of the variables, say S, diverges while the other 
does not. IfF is of degree p + 3 of its argument (i.e., degree 
2p + 6 in S ) then the leading singularity is of the form 

S -It - to) - lip. 

To obtain an expansion of S in terms of (t - to)' we first 
find 'TJ in terms of S, then (t - to) in terms of Sand 'TJ(S) and 
invert. This expansion of S around to will be of the form 

(20) 

similarly 

(21) 

If p = 1, this expansion is of Painleve type. If p = 2, we 
will see later that only an's and bn 's for even n do not vanish 
and'TJ and S 2 have Painleve-type expansions, although S does 
not. For other values of p, there does not exist any power of S 
or 'TJ that exhibits the Painleve property. Indeed S P would 
have a pure pole only if all the an's vanish except those with n 
a multiple of p, and we will show that this is not possible. 

In terms ofx andy, one immediately sees thaty diverges 
as (t - to) - 2/p and x as (t - to) - liP. (Note that the degree of V 
in terms ofx andy isp + 2). This corresponds to one of the 
possible singular behaviors studied in Ref. 1, namely the 
only one that has the maximal dimensionality, i.e., that de
pends on four arbitrary constants. In that paper we showed 
that two of these constants were to and the coefficient of the 
dominant term of x, and that the two others were related to 
what we called the "resonances." Here we will show directly 
how these four arbitrary constants follow from (19) and thus 
illustrate the meaning of the "resonances." 

The four free constants in integrating the equations of 
motion are E, C, and the two integration constants of (19). 
One will be taken as the value to of t where S diverges, the 
other as the value 'TJo of'TJ at to. Where do these parameters 
enter in the expansion of S? The first one, to, is obvious. Then, 
'TJo enters because dt is proportional to S 2 + 'TJ2. From this 
one sees that 'TJo determines a2 in (20). 

Near to, at the lowest order, 'TJ behaves as 

'TJ-'TJo + ('TJ02E - C + F( - 'TJ~))(t - toll + 21P. 

Thus, E and C will first appear in the expansion of'TJ in bp + 2' 

through the combination ('TJ~E - C). In the expansion of S, 
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because of the (5 2 + 1J2) factor in dt, it will appear two orders 
later, namely in ap + 4' This is the only combination of E and 
C that will enter until the order (t - to)2 + 4/p. At that order, 
because of the t Z E term in the square root under dt, E will 
determinea2p + 4' Indeedt zEissmallerthanF(t z) by t 2p + 4, 

Fbeing of degree p + 3. Consider two solutions for which t 
diverges at the same value to of t, that have the same value 1Jo 
for 1J at to, and different values of E and C, chosen in such a 
way that 1J~ E - C has the same value. Then, their respective 
expansions for t will be identical up to azp + 3 • 

In summary, the four arbitrary constants to, 1Jo, E, C, 
are equivalent to to, az, ap -+- 4 (or bp -+- z) and a2p + 4' 

These are precisely the arbitrary constants which re
sulted from the singularity analysis in Ref. 1. Indeed, going 
back to thex,y coordinates, 1Jo corresponds to the freedom of 
the coefficient of x, bp + 2 (i.e., ap + 4) corresponds to the reso
nance (1 + 21p) in x, and azp + 4 corresponds to the reso
nance 2 + 4/p. The coefficients ofthe polynomial Fwill first 
appear in the expansion of t, one after the other, through 
a2k , k = 2 to P + 1. As for the two lowest-order coefficients 
of F. their interpretation is the following. The only signifi
cant quantity is F(u) - Eu - C, as can be checked in (19). 
Changing the linear and constant terms in Fjust redefines E 
and C. One can immediately check that the corresponding 
potential V is shifted accordingly. 

Note that ifp is even, only an's and bn 's with even n will 
be non vanishing, and thus 1J and t 2 have expansions in terms 
of (t - to)I/P', where p' = p12, and in this case the "natural" 
power as defined in Ref. 8 is indeed lip' rather than lip. In 
particular, if p = 2, the expansion for 1J and t 2 is indeed of 
Painleve type. 

On the other hand, for p > 2, t p does not have a Painle
ve-type expansion offull dimensionality, since the arbitrary 
parameter a2 would destroy this property unless it is chosen 
equal to zero. For all p, however, the expansions are of what 
we called "weak Painleve type.,,6 

Similarly one could study the case where t and 1J di
verge at the same value of too These solutions have a lower 
dimensionality, namely three, because it corresponds to 
choosing 1Jo equal to infinity. Again, one finds by direct 
study that the structure of the singularity in this case is ex
actly what has been found through the ARS algorithm in 
Ref. 1. There, the lower dimensionality was associated to the 
negative value of one of the resonances. 

IV. DISCUSSION AND OUTLOOK 

It is important to realize that the free parameters in the 
expansions of t and 1J appear at exactly the same powers of 
(t - toJ as in the expansions of x and y. This illustrates the 
intrinsic character of the resonances. The variables t and 1J 
are obviously the natural ones as they lead to an explicit 
integrability for the equations of motions, and even in these 
good variables, the weak Painleve character persists (for 
p > 2J. From this, we surmise that no other change of varia
bles will be able to restore the full Painleve property. The 
answer to the question asked of us by M. D. Kruskal, namely 
whether the weak Painleve character could not be converted 
to full Painleve by an appropriate change of variable there
fore appears to be negative. 

484 J. Math. Phys., Vol. 25. No.3, March 1984 

However, it is possible to take the analysis one step 
further. If one takes F and G as two arbitrary functions of 
their respective arguments, rather than two closely related 
polynomials, we can introduce movable singularities of any 
character, without destroying the integrability of the system. 
Still, t and 1J will obviously remain the natural variables and 
it is quite improbable that these movable critical singularities 
will be removed by another choice of variables. 

The fact that arbitrary movable singularities do not 
compromise integrability for two-dimensional Hamiltonian 
systems contradicts the weak-Painleve conjecture. There
fore it would appear to make it useless as an integrability 
detector. This, however, is not true. The weak-Painleve cri
terion, as a heuristic tool, keeps its predictive power. 

Indeed suppose we start with two arbitrary functions 
F(t) and G (1J). One can thus always construct a potential V 
for an integrable Hamiltonian problem in terms of x and y. 
However, in general, the variables t and 1J will be quite "visi
ble" in the expression of V. Therefore, a cursory glance at V 
will suggest the right change of variables. Indeed, for general 
F and G we have 

V = [F(y + ~X2 + y2) + G (y _ ~X2 + y2)]/~X2 + y2. 

Except for very special F' sand G 's the radicals will nev
er regroup. If this ever happens, as for example for 

V= lnx , 

R+? 
(F(u) = G (u) = ~ln u) one would expect anyway the existence 
of a logarithmic singularity because the potential itself con
tains a logarithm. In that case, this singUlarity will not sug
gest nonintegrabiIity. 

On the other hand whenever V is such that x and yare 
the only "obvious" variables and moreover does not contain 
built-in singularity-generating terms, then integrability is 
conditioned by the "weak-Painleve" property. 

Another interesting question has been asked of us by A. 
Fokas, on whether the weak-Painleve property was always 
associated to systems for which the second constant of mo
tion is quadratic in velocities. In a future publication, we will 
show that this is not the case, by exhibiting several weak
Painleve systems with nonquadratic second integrals of mo
tion. 

Finally, the above analysis will serve to shed a new light 
on the relationship between integrability and the analytic 
properties of the solutions of the equations of motion. 9 
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1. INTRODUCTION 

If at a time, say t = 0, a Hamiltonian system is in the 
state (q(O),p(O)), it is a truism that the set of constants, ! qi(O), 
Pi(O): i = 1, n l, may be associated with the subsequent time 
evolution of the system through infinitesimal time transla
tions generated by the Hamiltonian. In principle, we may 
write 

qi(O) =f(q(t ),p(t), t), 

Pi(O) =gi(q(t),p(t), t) 
(1.1) 

so that theft and gi may then be called first integrals. Any 
other first integral of the motion may be expressed as a func
tion ofthef andgi . Unfortunately, we must stress the phrase 
"in principle." When we come to treat an actual system, 
knowing that first integrals exist will not guarantee success 
in finding them. 

Over the last several years there has grown a consider
able literature devoted to the determination of first integrals 
for explicitly time-dependent dynamical systems. The meth
ods used have been various: canonical transformations, 1-5 
general dynamical symmetries and Noether's theorem,6--1I 
direct ad hoc approaches, 12-14 and the study of systems with 
Ermakov-type coupling. IS The usual goal when applying 
any of the methods is either to find explicit formulae for first 
integrals of Hamiltonian systems or to provide a basis for 
some computational procedure or both. The methods listed 
above may be stated in general terms. In order to obtain 
results with a particular method some restriction on the 
form of the first integral, the nature of the Hamiltonian or 
the way in which the method is applied must be introduced. 
By way of example, in the first paper of this series,5 canonical 
transformations were used to find an exact invariant and the 
related potential for Hamiltonians of the form 

H=!p2+ V(q,t). (1.2) 

The restriction was to take the canonical transformation as 

Q = Q(q,p,p(t )), P = P(q,p,p(t ),p(t j), (1.3) 

where pit ) is some function to be determined, the so-called 
auxiliary function. Furthermore, the transformed Hamil
tonian was specified by 

K=(J(t)P. (1.4) 

The first integral was found to be quadratic in the momen
tum and a more direct approach to obtain first integrals po
lynomial in the momentum was adopted in the second paper 
of the series. 13 This simply required the solution of the equa
tion 

dI = aI + [I, H ] = 0, 
dt at 

where 
n 

I(q,p,t)= Lpif(q,t) 
i=O 

(1.5) 

(1.6) 

and H has the form off 1.2). The result provided a generaliza
tion of that found in Ref. 5 and has been confirmed subse
quently in Refs. 14 and 9 by other methods. 

Restrictions similar to those mentioned above can be 
seen in each of the methods which have been used to obtain a 
system for which a first integral is explicitly known. The 
application of canonical transformations in Refs. 2 and 5 was 
restricted in regard to the nature of the time dependence of 
the transformation. In Refs. 13-15 it is rather the assumed 
structure of the invariant or of the Hamiltonian which is 
restricted, while in Ref. 9 the infinitesimal transformation 
was confined to being a point transformation. There is now 
the question of whether the restrictions were necessary to 
obtain results. Furthermore, we may ask which method, un
der a relaxed restriction, will lead to a more general result 
with the least possible effort. Of one thing we may be nearly 
certain: Ifwe perceive how to relax a restriction and achieve 
a more general result by one method, it will soon become 
obvious how to obtain the same result using other methods. 

The present paper may be viewed as being motivated by 
the remarks at the end of the previous paragraph as applied 
to the first paper in this series. 5 The restrictions of that paper 
are summarized in Eqs. (1.2)-( 1.4). That the theoretical con
tent of the present paper is somewhat different from that of 
Ref. 5 is due to a simple observation to be made in Sec. 2 
below. However, the starting point was to see how much 
could be determined when the restrictions (1.2) and (1.3) 
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were removed. The theoretical treatment is applied to a sys
tem of one degree of freedom. This is motivated solely by a 
desire for clarity. In the examples we show how the results of 
previous papers can be recovered, present a result not given 
in those papers, and indicate how the method may be ex
tended to systems of more than one degree of freedom. 

2. THEORETICAL DEVELOPMENT 

As indicated above, for purposes of simplicity the dis
cussion is limited to systems with one degree of freedom. 
There is no great difference for the case of a multidimen
sional system. The general result will be given in Sec. 4 in 
which we also treat a two-dimensional example. 

Let 

(q, p)-(Q, P: Q = Q (q, p, t), 

P=P(q,p,t), [Q,Pl qp = 1) 
(2.1) 

be a canonical transformation which transforms the Hamil
tonianH(q,p, t ) to the new HamiltonianK(Q,P, t). In terms 
of the generating function F(q,p, t) defined through 

aF = p _ P aQ, aF = _ P aQ , (2.2) 
aq aq ap ap 

the two Hamiltonians are related according to Ref. 5: 

aQ aF 
K(Q(q,p, t), P(q,p, t), t) = H + Pat" + at". (2.3) 

The integrability of (2.2) is guaranteed by the canonicity of 
the transformation so that (2.3) is a well-defined relation at 
least locally. If we define 

;(q,p, t) = - P aQ _ aa'F, (2.4) 
at t 

(2.3) may be written as 

H = K(Q(q,p, t), P(q,p, t), t) + ; (q,p, t). (2.5) 

We now make an observation so simple that it is not 
found in the standard texts. The new canonical variables and 
the function; (q, p, t) are related by 

aQ -+ [Q,;] =0, 
at 

(2.6) 

One way oflooking at (2.6) is to state that Q and P are first 
integrals of; (q, p, t) regarded as the Hamiltonian of a dyna
mical system. However, as we started with the canonical 
transformation (2.1), we may view (2.6) as defining the func
tion ;(q,p, t) in terms of its derivatives. Thus we may rear
range (2.6) to give 

a; iii = [Q, P ]qt' 
a; 
ap = [Q,P]pt (2.7) 

where 

P _ aQ ap _ aQ ap 
[Q, lap - aa ap ap aa . (2.8) 

The consistency of the two equations in (2.7) follows from 
(2.1). Equation (2.7) defines; (q, p, I) up to an additive func
tion of time which may be disregarded. 
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The basic theoretical result may now be stated. If I (Q, 
P) is some function of Q and P and we may write 

K(Q, P, I) = R (I(Q, P), t), (2.9) 

then I (Q, P) is a first integral of H (q, p, I ). Alternatively we 
could state the result as follows. Given a canonical transfor
mation of the type (2.1), we may construct a; (q, p, I ) accord
ing to (2.7). Then there exists a family of Hamiltonians l! (q, 
p, t) with first integrals I (Q (q, p, t ), P (q, p, t ), where I IS an 
arbitrary function, defined by 

H (q p, t) = R (I (Q, P), t) + ; (q, p, I). (2.10) 

This form of statement of our result emphasizes a construc
tive approach. In essence, we are determining the classes of 
Hamiltonians which possess a first integral associated with a 
particular selection of the canonical transformation (2.1). 

The viewpoint of the previous paragraph is not the only 
one which can be adopted. We could, for instance, go back to 
(2.6) and imagine starting with an; (q,p, t) and solving those 
equations for Q and P. This is equivalent to solving Hamil
ton's equations with; (q,p, t) as the Hamiltonian. The diffi
culties associated with any attempting to solve Hamilton's 
equations for any but the simplest (time-dependent) systems 
suggest that this would not be a fruitful approach. 

The general procedure to be followed in the applica
tions gi ven below is this. A pair off unctions Q (q, p, I ) and P (q, 
p, I) which are canonically conjugate are chosen. The func
tion; (q, p, t ) is determined from (2.7) and the family of inte
grable Hamiltonians follows from (2.10). (Strictly for one 
degree of freedom only; in the case of more than one degree 
of freedom it would be necessary to find more than one first 
integral.) In particular, because of the differentiation 
between q and p to be found in physical Hamiltonians, we 
could envisage establishing hierarchies of families of Hamil
tonians according to the nature of the dependence on p cho
sen for Q and P. 

We shall illustrate this point in Sec. 3 and conclude this 
theoretical discussion with the following remarks: 

(i) In selecting the canonically conjugate variables Q 
and P, it is essential that they contain explicit time depen
dence when written in terms of q, p, and I. If Q and P do not 
contain t, then Iisjust a function of q andp and; (q,p, I ), from 
(2.7), just an ignorable function of time. The relation (2.10) 
then does not produce a particularly interesting class of 
Hamiltonians. 

(ii) In practical applications, the considerations above 
often would have to be supplemented by a third stage. Once a 
pair (Q, P) had been chosen and a family of appropriate Ham
iltonians of the form (2.10) constructed, one would be left 
with the task of matching a given Hamiltonian H (q, p, I ) with 
a member of the family (2.10) for a suitable choice of the 
functions R and I. It would be aniticipated that this match
ing would lead to the introduction of auxiliary differential 
equations of the type which have played such an important 
role in previous work. 

(iii) There is a context beyond the scope of the present 
work in which Eq. (2.6) could be preferred to (2.7). It may be 
imagined that similar ideas could be developed in the context 
of perturbation methods. The function; (q,p, I), treated as a 
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Hamiltonian, could be solved order by order with respect to 
some small parameter. Such a perturbation technique would 
be quite unconventional because one would not begin by 
solving the zeroth-order part of the equations of motion cor
responding to H. 

3. EXAMPLES WITH ONE DEGREE OF FREEDOM 

In these illustrative examples we shall consider simple 
choices for Q and P and construct; (q,p, I). Rather than 
simply substitute this into the general relationship (2.10) we 
shall further impose a specific form on H (q,p, I). This is the 
familiar 

H = ~p2 + V(q, I), (3.1) 

which arises so frequently in applications. Our intention is to 
go part-way along the procedure outlined in remark (ii) in 
Sec. 2 in that we shall determine the structure of the poten
tial along with the associated first integral. In view of the 
opinion expressed in remark (i), we take p as a preferred coor
dinate. 

Let the canonical variables be 

Q = a(q, I), P = b (q, I) P + e(q, I), 

where 

~b= 1. 
aq 

Equation (2.7) becomes 

a; 
-aq=p[a,b]qt + [a,eL" 

a; = -b~. 
ap al 

It follows that 

aa Jq 

;(q,I)= -bp-+ [a,e]q'tdq' 
al 

and so 

aa Jq 

H=R(I(Q,P),/j-bp-+ [a,e]q'tdq'. 
at 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

This gives, for various R, the class of Hamiltonians with first 
integral I (Q, P). 

We now look for a first integral quadratic in the mo
mentum for a Hamiltonian of the type in (3.1). Without loss 
of generality, we may take 

R (I, t) =1 Ip2, 

I(Q, P) = ~ (Q)P 2 + C(Q). 

(3.8) 

(3.9) 

Substituting for H, R, I, P, and Q in (3.7) and separating by 
coefficients of powers of p, we find that 

A 2b 2 =p2, (3.10) 

A2e=p2~: (b¥O), (3.11) 

V(q, t) = ;2 (~2e2 + C) + r [a, e]q't dq'. (3.12) 

From (3.3) and (3.10) we see that 

a(q,I)=E((q-a)lp), (3.13) 
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A(a)=E', 

b (q, I) = piE '((q - a)lp), 

(3.14) 

(3.15) 

where E is an arbitrary function of its argument and a(1 ) an 
arbitrary function of time. It follows immediately that 

c(q,t) = - rap +p(q - a)]lE' (3.16) 

and after some manipulation that 

V(q,t) = (l/p2)U((q - a)lp) - iip - ~p[(q - a)lpj2,(3.17) 

where U is an arbitrary function of its argument, to within an 
arbitrary function of time. The first integral is 

1= Hp(p - a) -p(q - aW + U((q - a)lp). (3.18) 

This result replicates formulae found in Refs. 9, 11, and 12. 
For our second example we intend to move firmly away 

from a first integral which is quadratic in the momentum. 
We take Q and P to both be linear in the momentum by 
defining them as 

Q=a(q,t)p+b(q,t), P=T(t)Q-e(q,t), 

where the requirement of canonicity is satisfied by 

ae 1 
-=-
aq a 

(3.19) 

(3.20) 

and T(t) a nonzero function of time. The first integral is de
fined by 

I(Q, P) = P IQ. (3,21) 

Equation (2.7) is now 

a; 1· a 2 
-a =-T-

a 
(ap+b) -p[a,e]qt-[b,C]qp 

q 2 q 
a; 1, a 2 ac (3.22) 
-=-T-(ap+b) -a-
ap 2 ap at 

so that 

1, 2 ae Jq 
, ; = - T(ap + b) - ap - - [b e) , dq. 2 at' qt 

(3.23) 

Again we confine our attention to a Hamiltonian of the type 
(3.1). The function R (I, f) has to be such that we may write 

R (I, t) = R (T __ e_ ,t) 
ap+b 

1 1 . ae 
=_p2+ V(q,f)- -T(ap+b)2+ap-

2 2 at 

+ r [b, c]q't dq'. (3.24) 

As the right-hand side of(3.24) is polynomial inp, in terms of 
p, R (I, t) must be polynomial in p. Observing that 

T - I = e/(ap + b), (3.25) 

we may write 

R (I, t) = S (( T - I) - I, t ) 

= strap + b )Ie, f), (3.26) 

where S is polynomial in its first argument. In fact it is suffi
cient to take S to be linear in (ap + b )Ie, i.e., 

S ((ap + b )Ie, t) = r(f )(ap + b )Ie. (3.27) 

Substituting and separating coefficients of like powers of p, 
we have 
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· 2 1- Ta =0, 

_ Tb+ oe =L (a#O), 
at e 

1 . 2 sq yb 
V=-Tb - [b,e]q't+-' 

2 e 

Defining pit ) as 

T(t) = r p-2(t') dt', 

from (3.28) and (3.20), respectively, 

a=p, c=(q-a)/p, 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

where a(t) is an arbitrary function of time. From (3.29) 

b = - ap - p(q - a) - yp3/(q - a) (3.33) 

and so the potential is 

V(q, t) = + ~ (q - a)2 - ii(q - a) - iTlog(q - a) 

1 c? 
- 2 (q_a)2' 

(3.34) 

where 

u = yp2. (3.35) 

The first integral is 

1= T _ (q - a)/p (3.36) 
pip - el) -p(q - a) - up/(q - a) 

It will be observed that the potential (3.34) is not ofthe class 
(3.17) because it contains a third arbitrary funciton of time, 
u(t ). The same potential was derived earlier by Sarlet, '6 who 
used a generalization to time-dependent transformations of 
the techniques in Ref. 2. It has also been found by yet another 
method by Lewis and Leach. '7 

4. MORE THAN ONE DEGREE OF FREEDOM 

The extension of the considerations of Sec. 2 to a system 
with more than one degree of freedom is straightforward. 
Under the canonical transformation 

(q, p)---+(q, P: Q = Q(q, p, t ), 

P = P(q, p, t), [Qi' lj J = t5ij) 
(4.1) 

the old and new Hamiltonians are related according to 

H(q,p, t) = K(Q(q, p,t), P(q,p,t), t) + ;(q,p, t), (4.2) 

where the function; (q, p, t) is defined according to the rela
tions 

(4.3) 

(4.4) 

The bracket relation has a slightly modified meaning com
pared with the given in (2.3). Now 

[Qj' Pj Jat = L (aQj alj _ aQj o~). (4.5) 
j aa at at aa 

Each Qj (q, p, t ) and Pj (q, p, t) is a first integral of; (q, p, t ) 
regarded as a Hamiltonian system as is any function of them. 
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If we write K in the form 

K(Q, P, t) = R (Ij(Q, P), tl, (4.6) 

then the functions Ii (Q(q, p, t), P(q, p, t)) are first integrals of 
a class of Hamiltonians defined by 

H(q, p, t) = R (Ii (Q(q, p, t), P(q, p, t)), t) + ;(q, p, t). 
(4.7) 

The remarks made at the end of Sec. 2 are equally applicable 
in the case of more than one degree of freedom. The Hamil
tonian system will be completely integrable if there are n 
functions Ii in involution, where n is the number of degrees 
offreedom. More usually, we will be concerned with a Ha
miltonian of specific structure, and the problem ofintegrabi
lity will be not so much the existence of n functions Ii in 
involution, but whether or not H can be expressed in terms of 
them by (4.7) with suitable selections of the function R. 

We shall illustrate the procedure for determining the 
Hamiltonian and first integral with a particularly simple 
choice of a canonical transformation in an example with two 
degrees of freedom. Let the canonical transformation be 

Q, =q/a" P, =aUJ, +f3,q" 
(4.8) 

in whicha" a 2,f3" andf32 are function oftime only. Integra
tion ofEqs. (4.3) and (4.4) yields 

el, elz 
;(q" q2,P"P2' t) = -qUJI + -q2P2 

a, a2 

1 (a'l f3,) 2 1 (a~ f3z) 2 (49) 
+---q, +----q2· . 

2 a~ 2 a~ 
We shall consider the case of H of the form T + Vand desire 
to have one first integral quadratic in the momenta. The first 
integral will be of the form 

I = ~Pi + BPIP2 + !CP~ + DP, + EP2 + F, (4.10) 

where A to Fare functions of Q, and Q2 only. The function R 
will necessarily be of the form 

R (I, t) =f3(t)I 

so that (4.7) becomes 

!pi + !p~ + V(ql' q2' t) 

(4.11) 

=f3(t)(~P~ + BP,P2 + !CP~ +DPI +EP2 +F) 

+ el, qUJ, + el2 q2P2 + ~ (a~,) qi 
a, a 2 2 a, 

+ ~ (az/32) q;. 
2 a~ 

(4.12) 

Equating coefficients of like powers of PI andp2 to zero, we 
have 

f3Aa~ = 1, f3Ba la z = 0, f3Ca; = 0, 

f3(AaJ3lql + BaJ32qz + Dad + (el,/adq, = 0, 

f3 (Bf3,azq, + Caz/32qz + Ea2) + (elZ/a2)q2 = 0, 

V(ql' q2' t) 

=f3(!Af3iqi + Bf3J32qlq2 

+ !Cf3~q~ + Df3,q, + Ef3ZQ2 + F) 

+ H(aJ3,)/ai]qi + H(az/32)/a~ ]Q;. 
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The first three of Eqs. (4.12) give 

A=a- 2
, B=O, 

a I = ap, a z = cp, 
(4.14) 

where a and c are constants and /3 (t) has been replaced by 
p-z(t). The next two equations give 

D (QI' Qz) = - QI(PP + p/3l/a), 

E(QI' Qz) = - Qz(Pp + p/3z/c), (4.15) 

and without loss of generality we may take D and E as zero 
by setting 

/31 = - ap, /3z = - cpo (4.16) 

The last of Eqs. (4.12) gives the potential as 

1 P 2 V(ql' qz, t) = - --ql 
2 P 

_ l.. P q~ + l.. U(~, qz), (4.17) 
2 p pZ P P 

where 

U(~, qz) = F(!lJ...., qz). (4.18) 
pp apcp 

The first integral is 

I = ~(PPI - pql)Z + !(ppz - pqz)Z + U(q/p, qz/p). (4.19) 

This result is easily generalized to n dimensions with 
translation included. We simply quote the result that a Ha
miltonian of the form 

H = l.. pZ + l.. v(q - a) _ l.. P (q _ a)Z - (i.q 
2 p2 P 2 P 

(4.20) 

has the first integral 

I=Hp(p-a)-p(q-aW+ V((q-a)/p). (4.21) 

5. CONCLUSION 

In this paper we have outlined a procedure for the si
multaneous construction of first integrals and Hamiltonians 
which possess those first integrals. In essence the method is 
based upon a reinterpretation of the relationship among an 
original Hamiltonian, the transformed Hamiltonian, and the 
canonical transformation relating the two. If the difference 
between the two Hamiltonians is treated as a Hamiltonian, it 
has as first integrals the new canonical coordinates. If the 
transformed Hamiltonian K (Q, P, t) is written in the form 
R (I (Q, P ), t ), thenIis a first integral of the original Hamilton
ian. In the first example considered we obtained the most 
general result [for Hamiltonians of type (1.2)] found in the 
recent literature. We have produced a new result with three 
arbitrary functions of time and have indicated how these 
results may be extended to problems of more than one degree 
of freedom. 

In the particular case of Hamiltonians which have the 
form T + V, to extend the type of potential for which a first 
integral exits, it is necessary to go to a first ingetral which is 
not quadratic in the momentum. The extent of possible 
further results is determined by the choice of canonically 
conjugate variables from which; is deduced and by the 
choice of the form of the invariant, in particular, the nature 
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of its p dependence. It may well be that further results will 
arise from choices which are not much more complicated 
than the choices made here. 

We have not addressed ourselves to one task mentioned 
in Sec. 2 [remark (ii)], which is determining whether or not a 
given Hamiltonian belongs to one of the classes of Hamilto
nians for which a formula for a first integral is available. This 
is a task of some complexity in itself as can be seen in a recent 
article by Sarlet and Bahar. IZ However, there is one area of 
possible application in which the simultaneous construction 
of Hamiltonian and first integral is actually desirable. This is 
the study of self-consistent problems such as the Vlasov
Poisson and Vlasov-Maxwell equations. In order to derive a 
set of nonlinear Maxwell equations, momentum integrals in
volving distribution functions (i.e., our first integrals) have to 
be performed as functionals of the potentials. If the momen
tum dependence of the first integrals is specified, it may be 
possible to manipulate the integrals before finding the poten
tials which are not specified a priori in self-consistent prob
lems. It is due to the great interest in self-consistent particle 
dynamics problems (in plasma research, in particular) that 
we have stressed Hamiltonians of the form y,2 + V(q, t). We 
have already seen that the procedure outlined here provides 
something new for the class of admissible potentials. 
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I. INTRODUCTION 

In analytical mechanics, the classical properties of dif
ferentiability are used in a multifarious manner. 1.2 Accord
ingly, the restrictions on the used functions are very severe. 
In this paper, however, variational principles should be sum
marized when no restrictions of differentiability are consid
ered. For this, obviously, some new mathematical notions 
which are used in the theory of optimization and the calculus 
of variation are suitable. 3,4 

Letj:lRm _ [ - 00, + 00] be a lower semicontinuous 
function and let epifbe the epigraph4 off We define the 
generalized gradient (in the sense of Clarke3

) off at x by 

af(x) = [z E lRm I (z, - 1) E Nepif(X,J(X)) J ' (1) 

where Nepif(x,J(x)) is the normal cone to epif at the point x. 
Iffis continuously differentiable at x, then 
af(x) = [gradf(x) J . 

Iffis convex, then af(x) denotes the classical subgradient in 
the sense of convex analysis. There is an equivalent defini
tion of the generalized gradient through an inequality, as has 
been proposed by Rockafellar.4 To this end, we define the 
upper derivative4 by 

fIx' + Ity') - fIx') 
r(x,y) = lim sup inf . 

x' ~ ,x y' ~ y It 
;[JO 

Now for the generalized gradient, we have 

af(x) = [ZE lRmI r(x,y»y;[ ~ '0' y E RmJ 

(2) 

(3) 

(summation convention with respect to the Greek indices). 
We shall call the inequality in (3) "hemivariational inequa
lity".5 Iffis Lipschitzian around x, expression (2) reduces to 

r(x,y) = lim supf(x' + ry) - fIx'). 
x' -x 'T 

(4) 

rIO 

If, moreover, the functionfis subdifferentially regular at x 
(which it is in the cases wherefis convex or a "max func
tion,,4), then 

f
l( ) l' fIx + ry) - fIx) x,y = 1m . 

rIO r 
(5) 

II. THE CENTRAL INEQUALITY IN PARAMETRIC FORM 

Here we will use a parametric form of mechanics,6-8 
which has the following advantage. Usually, in analytical 
mechanics, the Hamiltonian function is introduced by a Le-

gendre transformation applied to the Lagrangian function. 
For this, the differentiability of the Lagrangian must be pre
sumed. But there is another possibility: to define a Hamil
tonian function without any assumption concerning differ
entiability, where the property is used that the time-space 
velocities cannot be considered as independent variables.9 

The time-space configuration of a mechanical system 
should be characterized by n + 1 variables x = (xO,x1, ... ,xn), 
where XO is added to the other spatial variables in order to 
take the time into consideration. A curve x:r - x(r) is an 
absolutely continuous function from [O,T] to lRn + 1 with der
ivative x = (XO,x 1 

, ••• ,.in) almost everywhere (a.e.) in [O,T]. 
Now we can introduce a time t along a curve by 

~=/3= f(x,x»O, 
dr 

(6) 

where we suppose the function x~ f(x,x) to be sublinear [the 
easiest case for fisf(x,x) = XO Ie, x > 0, e = const > 0]. 

Let us define the velocities by 

. Xi dXi 
v'=-=-, i=O,I, ... ,n. 

/3 dt 
(7) 

Because of the sublinearity for J, we have 

1 = f(x,v), (8) 

so that the velocities cannot be considered as independent 
variables. We shall assume that the relation is solvable for vO

, 

i.e., 

(9) 

where v = (V
I
,V

2
, ••• ,vn

). 

In analytical mechanics, we can start with a (general
ized) principle of d' Alembert (compare Goldstein, I Lanc
zos/ and Heinz9

•
1O

), 

which must be valid for all {)x = ({)XO,{)xl, ... ,{)xn
) if con

straints are avoided. We suppose the momenta 

(10) 

P = (Po, PI"'" Pn) to be a function of the configuration and 
the velocities, i.e., Pi = Pi(X,V). Because of (7) they could be 
considered as positively homogeneous functions of degree 
zero with respect to x: Pi = Pi(X,x). If the forces K = (Ko, 

K1, ... ,Kn) could be derived from a generalized potential V, 
we have 

(11 ) 
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and d' Alembert's principle yields a hemivariational inequa
lity 

(12) 

The differential equations of motion must be replaced now 
by a differential inclusion 

_ dp eaV(x). 
dt 

(13) 

From now on, we shall consider such systems for which 

8p).';~K),8~ (14) 

is fulfilled, i.e., for all (8x,8x), we have 

pl(x,x,8x,8x~~fJ(x,x)KA(X,x)8~ V (8x,8x) (15) 

and thus 

pl(x,x,O,8x~~O Vox. (16) 

Ifthep;'s are differentiable, we get from this, 

ap). . .xA=O, i=O,l, ... ,n. (17) 
ax' 

Instead of(14) or (15) we can also write, because ofd'Alem
bert's principle, 

.xA8p).~p).8~, (18) 

which is a generalization in space and time of Heun's central 
equation2 for those systems which do not possess the usual 
properties of differentiability. 

III. THE LAGRANGIAN FUNCTION AND THE EULER
LAGRANGE INCLUSION 

Now we introduce a Lagrangian function L (x,x) which 
should satisfy 

L l(x,x,<5x,<5x)X'pl(x,x,8x,8x) + p).(x,x)<5.xA V (<5x,(5X). 
(19) 

Using the central inequality (18), we have 

L T(x,x,8x,ox)p).8~ + PA8X' V (<5x,8x) (20) 

or, equivalently, 

(p,p)e aL (x,x). (21) 

The Euler-Lagrange inclusion (21) is a counterpart ofthe 
usual Euler-Lagrange equation which is valid if L is differ
entiable. If the momenta and the Lagrangian, respectively, 
are Lipschitzian and subdifferentially regular, then (19) is 
fulfilled by L = X'p). because of 

L T(X,x,ox,<5x) 

. (X' + T8X') p;. (x + TOX,x + T8x) - xAp;. (x,x) 
= 11m ----------------

flO l' 

= lim !~{p).(x + TOX,x + T8x) - p;.(x,x)}/T 
'1'10 

+ + 8xAp;.(x + TOX,x + TOX)} 

= ~pl (x,x,8x,ox) + <5X'p;. (x,x). (22) 

Here, we should remark that the Euler-Lagrange inclu
sion is connected with Hamilton's principle like in classical 
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mechanics with the differentiable Lagrangian. Consider the 
following problem: 

Minimize {iTL (X(T),x(T))dT} over all curves which satisfy 

x(O) = X O' x(T) = x T • 

If x(o) is a (local) solution of the problem, then there is (under 
very mild assumptions, see Clarke! 1.12) an absolutely contin
uous function p: [O,T]~lRn + I with 

(P(T),p(T))eaL(x(r),x(r)) a.e. in [O,T], 

L (X(T),x(T)) - P).(T)X'(T) = const a.e. in [O,T], 

L (x,(r),x(r) + y} - L (x(r),x(r))~p). (1') yA 

V y a.e. in [0, T ] . 

IV. THE HAMILTONIAN FUNCTION AND THE 
CANONICAL INCLUSIONS 

(23) 

(24) 

(2S) 

Po is a function of the configuration and the velocities. 
Considering (9), we get 

Po = 1T(X,V). (26) 

We shall assume that the space momenta ft = (PI,P2,·'" Pn) 
are functions of the configuration x and the space velocities 
only, i.e., 

p = fJY(x,v). (27) 

If the mapping v ~9 (x,v) is Lipschitzian and if (x,v) is a 
point so that each matrix y, which is element of 

{(Yik)13{~}~vsuCh that r;i(X,;;l}--+Yik}' 

is nonsingular, then there exists a neighborhood of v and a 
neighborhood of fJY (x,iJ) such that (27) is solvable for p, 

fj = Q (x,p), (28) 

where Q is Lipschitzian.4 Therefore there must exist a func
tion H, which we shall can Hamiltonian and for which we 
have 

H(x,p) =Po -1i(x,Q(x,p))==O. (29) 

This should be valid for all admissible variations too, and we 
have to consider this relation as a constraint for the central 
inequality (18), where the <5xi's and8pi's are not independent. 

We shall assume that H, as a function of (x,p), is Lips
chitzian. We may choose (ox,oft) independently, and ale) 
should be fixed by 

Po + a(€) - 1i(x + €/jx,p + €8p) = 0, (30) 

where € is given. Now we apply a generalized chain rule: Let 
a = GoFwhere G: Rm---+R is a Lipschitzian function and F: 
R~Rm is continuously differentiable. Then,4 

oa(€)C{Zi = i w). OF~ IWeaG(F(€))}. 
A=J ax 

(31) 

From this, we have 

oa(O)C !u).o~ + )'~lrloPX }, (32) 

i.e., for all (ox,8ft), there is one - 8poeOa(O) such that 
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with 

- (U,q)E aH (x,p). (33) 

With a Lagrangian multiplier y, which is arbitrary at first, 
and by the help of the central inequality, we get 

(tf + yk')8p" + (u" - yj>,,)8x">0 V 8x,8ft,y. (34) 

Now we can choose y to be such that yxO = - qO and, hence, 
it follows from (34) that 

-
yx' = - q', yp; = U;, i = O,l, ... ,n, i = 1,2, ... ,n. 

(35) 

Finally, we get the canonical inclusion by the help of (33): 

y( - j>,X)E aH (x,p). (36) 

Let us consider now an admissible transformation 

x = x(x,p), p = p(x,p), 

i.e., that the inverse transformation 

x = x(x,p), p = p(x,p) 

exists. If the first part of (38) is solvable for x too, i.e., 

x=x(x,p), 

(37) 

(38) 

(39) 

and if there exists a function W(x,p) for which we have 

W t (x,p,8x,8p»p" (x,p)8x" + x"(x,p)8p" V (8x,8p), 
(40) 

then we shall call this a "special generalized transforma
tion." Here, it is 

(p,x)EaW(X,p). (41) 
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W becomes a generating function in the classical sense if it is 
continuously differentiable. Now we shall find a special gen
eralized transformation for which (41) is valid and for which 
Wis independent ofp. We set 

W(x) = W(x,p = a), (42) 

where a is a suitable constant. Then it is 

qEaW(X)=>qE{p!3 x such that (p,X)EaW(X,a)}, 

and if (x,q) is given by a motion, the identity (29) for the 
Hamiltonian must be fulfilled, hence 

H (x,aW (x)) = 0, (43) 

which is a generalization of the Hamilton-Jacobi equation. 
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The Ornstein-Zernicke relation is examined for the class of intermolecular potentials with a hard
core term. The nonlinear integral equation relating the direct correlation function outside the 
hard-core region with the inside one is proposed. A class of analytical solutions is obtained. 

PACS numbers: 03.20. + i, 05.20. - y, 02.30.Rz 

I. INTRODUCTION 

Modern methods of the statistical mechanical descrip
tion of a classical system in equilibrium are based on the 
concept of two-particle correlation functions. Several ap
proximate theories provide a functional relationship 
between the pair distribution function and the direct correla
tion function. The use of the exact Ornstein-Zernicke equa
tion to these relationships yield nonlinear integral equations. 
The high machine-time requirements for numerical calcula
tions limit the applications of these methods at present. 

An important role in the development of the theory is 
played by analytical solutions for some special cases. 1-5 One 
well known and widely used example is the solution of the 
Percus-Yevick equation for the single-component system of 
hard spheres given by Wertheim I and Thiele. 2 In this case, 
the direct correlation function C (r) vanishes for r > R, where 
R is the diameter of a sphere and the radial distribution func
tion vanishes for r < R. The last condition simply reflects the 
impenetrability of a hard sphere and is called the core condi
tion. In case of C (r) for r > R of a Yukawa potential form, the 
analytical solution for C(r), r<R has been found by Wais
man. 3 Hoye and Blum4 extended the solution to an arbitrary 
number N ofYukawas using the Baxters factorization tech
nique. They transformed the initial Ornstein-Zernicke 
equation with the core-potential condition into a set of N + 2 
nonlinear algebraic equations. 

In this work, we give a detailed analysis of the proper
ties of the direct correlation function of the system with the 
core condition imposed. In other words, we consider a sys
tem of molecules with a hard-core term in intermolecular 
pair potential. We develop a slightly different approach to 
that given by Wertheim. I As a consequence of the core con
dition, it is possible to eliminate the pair distribution func
tion from the Ornstein-Zernicke equation and formulate an 
equivalent, quite new integral equation (56) concerning only 
C (r) and relating C (r) for r < R to C (r) for r > R. The relatively 
simple linear approximation (48) ofthis equation should be 
useful for practical purposes. In the case of N Yukawas, the 
solution of proposed equation (56) gives N nonlinear algebra
ic equations, instead of the N + 2 derived by Hoye and 
Blum.4 We derive a new relationship between the inverse 
compressibility of the system and the integral characteristics 
ofC(r). 

81 Present address: Department of Physics, University of Toronto, Toronto, 
Ontario, M5S lA7, Canada. 

II. GENERAL FORMALISM 

The impenetrability property of a hard molecular core 
of diameter R can be expressed in terms of a total correlation 
function h (r) as the so-called core condition 

h(r)=-I, r<R. (I) 

In the following, without loss of generality, the diameter R 
will be put equal to unity, R = 1. We introduce, for conve
nience, the normalized density of the system S = 1T/6p, 
where p is the number of molecules per unit volume. The 
Ornstein-Zernicke equation relating the direct correlation 
function C (r) and the total correlation function h (r) of a clas
sical three-dimensional system of molecules can be ex
pressed in bipolar coordinates in the form 

125 L"" lr+, C (r) = h (r) - - th (t )dt xC (x)dx. 
r 0 Ir - t 1 

(2) 

The core condition (1) leads to the discontinuity of C (r) and 
h (r) in r = 1. Let us define 

rC(r) = {CI(r), r< 1, (3) 
C2(r), r> 1. 

In this work, we consider the case of CI and C2 being analyti
cal functions in the region rE(O, (0). The problem to be solved 
is to find C I (r) if C2(r) is known. In order to do this, we apply 
the Laplace-transform technique. 

We introduce the following transforms: 

C(s) = LX> rC(r)e- sr dr==2' !rC(rll , 

H(s) = 2'!rh (r)), 

HI(s) = 2'{rh (r)8(l - r)}, 

H2(S) = 2'{rh (r)e(r - 1)), 

A (s) = 2'! CI(r) J, 
B.(s) = -e- s 2'!CI(r)e(r-I)J, 

Bz(s) = eS 2" { cz(r)e (r - 1)), 

B (s) = B I (s) + B 2(s), 

where 

{
I, r;;;'O, 

err) = 
0, r<O. 

We note that 

C (s) = A (s) + B (s)e - s • 

(4) 

(5) 

For s large enough, the expansion of A (s) and B (s) with re-
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spect to inverse powers of s reads 

) C'(O) C"(O) 
A(s)= CI(O + _1 _ + _1 _ +"', 

s S2 S3 
(6) 

.dC .dC' .dC" 
B(s) = - + - + -- +"', s S2 S3 

(7) 

where 

.dc(n) = c~n)(l) _ qn)(l). (8) 

The Laplace transform of derivative of (2) with respect to r 
can be written in the form 

sC(s) =sH(s) + 125 [H(S)(C(S) - C( -s)) 

+ B (s) e - S _ B ( _ s) ~ + B2(S) + Bz( - s) 
~ ~ s 

_ B2(S) - Bz( - s) + 2 {' tCI(t) dt ] 
S2 S Jo 

+ 125 (A (s) - A ( - s)) - 125 ('" th (t) dt 
S2 JI 

xi'" e- S'[C2(t + r) + C2(t - r)] dr. (9) 

We substract sC ( - s) from (9) and get 

H(s)-H(-s) 

= (C(s) - C( - s))[l - (125/s)(H(s) - H( - s))]. (10) 

The choice of C (r) in the form (3) leads to discontinuities of 
higher-order derivatives of h (r) in points r = 2,3,.··. There
fore, we can express H (s) in the following way 

H (s) = - 1Is2 + Q (s)e - S + Q2(s)e - 2s + Q3(s)e - 3s + "', 
(11) 

where Qn (s) describes the discontinuity of rh (r) and its de
rivatives of an arbitrary order in point r = n. This can be seen 
from the expansion 

Qn(s) = .dH(n) + .dH'(n) + .dH"(n) + "', (12) 
s S2 S3 

where 

.dH(I)(n) = [rh (r)]~!:n+o - [rh (r)J~!:n-o. (13) 

Collecting terms with the same powers of e - S in (10), we find 

A(s)-A (-s) 

= - (125/s)[B (s)Q ( - s) + B ( - s)Q (s)], (14) 

B (s) = Q (s) + (125 Is)[D (s)Q (s) - B ( - S)Q2(S)], (15) 

and, for every n = 2,3,.··, 

Qn(s) = - (125/s) 

X[D(s)Qn(s) + B(s)Qn -I(S) - B(s)Qn +I(S)], (16) 

where 

D (s) = !(A (s) - A ( - s)). (17) 

This set of equations has a convergent solution of the form 

11; Q(s)e- S 1< 1. (19) 

Hence 

Q(s) 
B (s) = 1 + (125Is)2Q (s)Q ( _ s) 

(20) 

and 

H(s) = _ ~ + Q(s)e-
S 

S2 1 + (125 /s )Q(s)e- S 
(21) 

The relation (20) can be practically applied to express the 
Taylor expansion of h (r) in the region fE(1,2) in terms of 
.d c(n) [see Eq. (8)]. Expansion of (20) with respect to inverse 
powers of s gives directly 

"" rh (r) = I Hn(r - 1)" In!, 1 <r<2 (22) 
n=O 

with 

Ho=.dC-1, H,=.dC'-l, H 2=.dC", 

H3 = .dC"', H4 = .dC(4) - al.dC, Hs = .dC(S)~ al.dC', 

H6 = .dC(6) - aAC II - az.dC, 

H7 =.dC(7) - al.dC'" - a 2.dC', 

Hs = .dC(S) - a l.dC(4) - a 2.dC II - a~c, 

H9 = .dC(9) - aAC(S) - az.dC'" - a 3.dC', 

HIO = .dC(IO) - a!.d C (6) - a
2
.dC(4) - a 3.dC" - a4.dC, 

HIJ = .dCO!) - a!.dC(7) - a
2
.dC(5) 

- a~C'" - a4.dC', etc., 

where we introduced 

a l = (125.dCj2, 

a 2 = al(2.dC.dC" - (.dC'j2), 

(23) 

(24) 

a 3 = a l(2.dC.dC(4) - 2.dC'.dC(3) + (.dC")2 - 2a1(.dC)4), 

a4 = a 1(2.d C.dC(6) - 2.dC'.dC(S) + 2.dC".dC(4) 

- (.d C "')2 - 3a2(.d C n 
Elimination of Q from (14) and (20) gives the following basic 
equation relating properties of C (r) in r = 0+ with those in 
the vicinity of r = 1 [see Eqs. (17), (6), and (7)]: 

B (s)B ( - s) = - (s/125)D (s) - D 2(S). (25) 

This relation is equivalent to Eq. (51) given by Wertheim.! 
Adding sC ( - s) to (9) gives another basic relation: 

A (s) +A (-s) 

= _ 2 + 245 [B2(S) +B2( -s) 
S2 s S 

_ B2(S) - B2( - s) + 2 (I tC!(t) dt] 
S2 s Jo 

245' 100 

- - th(t)dt 
s I 

X 100 

e -sr[C2(t + r) + C2(t - r)] dr. (26) 

if 

(18) Ifwe restrict our attention to the solutions for h (r) with Four
ier transforms, we must fulfill the condition rh (r) = 0 for 
r--+oo. The equivalent condition imposed on H (s), namely, 
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lims---+o sH (s) = 0, leads directly to the following Taylor ex
pansion of Q (s) in the vicinity of s = 0: 

Q(s) = qls + qzS2 + q3$3 + q4s4 + q~ + "', (27) 

where ql, ... ,q5 are equal to 

ql = - 5/12, q2 = ql' q3 = q1/2, 
(28) 

q4 = q j /6 - qi, q5 = ql/24 - qi· 

Employing (20), (14), and (26), we prove that the Lorant se
ries of A (s) and B (s) in the neighborhood of s = 0 have the 
form 

(29) 

(30) 

where 

and 

bo = ao + a l + a2/2 + a3/24, 

bl = a l + a2 + a3/6, 

b2 = a2 + a3/2, 

(31) 

(32) 

The functions U (s) and W (s) introduced above exist in s = 0 
and can be expanded in the Taylor series 

U(s) = Uo + Uls + U2S
2 + U3S

3 + "', (33) 

W(s) = Wo + Wls + W2S
2 + W3S3 + .... (34) 

After substituting (29) and (30) with expansions (33) and (34) 
into (25) and collecting terms with square and 4th reciprocal 
powers of s, we find two conditions: 

b i + a l + 20002 - 2bob2 + 2a3(WO - WI + UJ! = 0, 

a6 - b~ + 2b lWo + 2a3(W2 - W3) - 2b2 W I 

+ a2/125 + 2a2(UI + U3) = O. (35) 

Hence, some simple but tedious algebra leads to the impor
tant relations 

where 

(38) 
4J = Wo + 125 (WoI6 + W2 - WI/2 - W3 + U3)· 

For completeness, we can also note that 

b - + 125 4J 2 + 5 (1 1/1) 
o - ao (1 _ 5 )2 - 2( 1 _ 5 )2 + , 

b = 245(1- 55+ 45
2

) <P- 125ao 
I (1 _ 5)4 1 - 5 

_ 1- 65+ 55
3 

(1+1/1) (39) 
(1- 5)4 ' 
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b - 245(1 - 85 + 165
2

) <P 125ao(55 - 2) 
2 - (1 _ 5 )4 + (1 - 5 f 

+ 35(2 - 45 - 75
2

) (1 + 1/1). 
(1 -5)4 

It can be seen from (26) that (terms ~S-2) 

a l = - 1 + 245 LX> rC(r) dr. (40) 

So, - a l is the inverse compressibility and thus (36) is the 
key expression of the theory. We remark that if Wi' Ui-o, 
Eq. (36) reproduces the Wertheim results for the hard-sphere 
system. A justification of this fact can be easily derived from 
Eqs. (26), (29), and (30). Hence ao, I/I,<P-o if C2-o· 

III. ANALYTICAL SOLUTIONS 

In this section, we examine some particular cases ofC2• 

Let us consider C2(r) of the form 
N 

C2(r) = L Fie - XI', 

i= 1 

(41) 

where F;, Xi can, in general, be complex variables with C2 

real. We expect CI(r) to be of the form 

CI(r) = ao + aIr + a2rl2 + a3r4/24 
N 

+ L (Aie-x,r +B/"). (42) 
i= I 

The condition CI(O) = 0 implies 
N 

ao=- L(Ai+B;). (43) 
i= 1 

By performing a Laplace transform on (42), one gets 

A (s) = a3 + a2 + ~ + ao 
~ S3 S2 S 

~ ( A B) + ~ --'-+--'-, 
; ~ 1 S + X; s - X; 

_ B (s) = a3 + a3 + b2 + !!J. + bo 
~ ~ $3 ~ s 

~ (Ai -F; -x B; x) 
+~ e'+--e'. 

i ~ 1 S + Xj s - Xj 
(44) 

After substitution of these explicit forms (44)-into Eq. (25) 
and a comparison of the terms with the same orders of singu
larity in s = Xi one finds two conditions on Ai' B;: 

(Ai - Bi)2 = - 4B;Fi' (45) 

mli(A; - F;)e- XI + M2iBjeXI 

= aMi + Bi) + (x;/4)(Ai + Bi)2 - (x;/2) 

X [(Ai _F;)2e- 2X'+B;/xI] -X~ 

X ± {(A; _ Fi)e -x, An - Fn e -Xn + B;exi 

n#i Xn +Xj 

where 
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m li = boX; + blx; + b:zX7 + a3Xj + a3 , 

m21 = boX; - blx; + b:zX7 - a3x1 + a3, 

a j = x~/245 + aoX: + a~; + a3· 

(47) 

For the simplest case, N = 1, it is seen that elimination of Ai 
from (45) and (46) yields a polynomial of 4th order with re
spect to Bi . This equation has for some range of changes ofF, 
x four real solutions (if F < 0); one of them fulfills condition 
(19). IfF> 0, we have only two real solutions. In this case, for 
a given x there exists F mIL< such that for F> F max' there are 
no real solutions. At this point a I = O. These results were 
obtained from a numerical analysis. 

The set of equations (45) and (46) can be solved by an 
iteration procedure. For this purpose we expand unknowns 
Ai' Bi , m Ii' m2i , a i in powers of Fj. The result consists of two 
terms, linear and nonlinear with respect to Fj . The nonlinear 
part gives us a perturbation term. Neglecting this term, we 
get a linear approximation. The solution in this case can be 
expressed as follows: 

where 

m 1 = boX4 + blx
3 + b~2 + ii3X + ii3, 

-b 4 -b 3+-b 2 - -m 2 = oX - IX ~ - a~ + a3 , 

a = x6/245 + ii:zX2 + ii3, 

bo = _ 2+5 b-
2(1- sf' 1-

35(2- 45- 75f 
(I - 5)4 

(I + 25)2 
(1 _ 5)4' ii3 = 125a1' 

35(5+ 2f 
(1- 5)4 ' 

(48) 

(49) 

and where for convenience we have omitted the label i, be
cause the same relations are valid for all components. We 
present here only this branch of solutions which fulfills con
dition (19). The exact numerical calculation given by Wais
man3 and the above approximate solution (48) with the same 
parameters differ by about 10%. So we expect that the iter
ation procedure applied to (45) and (46) with the first approx
imation of the form (48) can, in practice, be highly conver
gent. 

Consider now a more general class of functions C2(r): 
N 

C2(r) = L Pni(r)e - Xi', 

;=1 

where Pni (r) are n-order polynomials, 

Pn;{r) = POi + Plir + '" + Pni~' 
We expect C I (r) to be of the form 

497 

CI(rl = ao + air + a2r/2 + a3r4/24 
N 

+ L (An;{r)e - Xi' + Bn;{r)eXi
'), 

i=1 
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(50) 

(51) 

(52) 

where Ani' Bni are polynomials. Performing Laplace trans
forms on (50) and (52), we see that A (s) and B (s) are the only 
functions having only multiple poles in s = 0, s = ± Xi as 
singularities. After a comparison of the coefficients in front 
of the same poles in (25), we can find a set of algebraic equa
tions for unknown coefficients of polynomials Ani' B ni' The 
consistency between (25) and (26) can easily be proved, but 
we shall omit here the mathematical details ofthis problem. 
It can be shown, too, that for a given i, the polynomials A j' 
Bi , and Fi are of the same order. It is impossible, unfortu
nately, to write down explicitly a set of algebraic equations 
relating Anj , Bni , and Fni for arbitrary n. The existence of 
many solutions of this set and the choice of the one which 
fulfills condition (19) complicates the problem considered. 

IV. INTEGRAL EQUATION RELATING C1 WITH Cz 

In the limit Xi -I - x i-<>, we recognize (41) as the La
place transform representation of C2(r). Replacing the sums 
in (41), (42) by integrals, we can write 

Cz(r) = 100 

F(x)e- X
' dx, (53) 

CI(r) = ao + aIr + azrl2 + a3r4/24 

+ 100 

(A (x)e - x, + B (x)e"") dx. (54) 

From (45), we have 

(A (x) - B (xW = - 4B (x)F(x), (55) 

and from (46) we find the following basic integral equation 
relating unknown functions A (x) and B (x) to F(x): 

m 1 (X)(A (x) - F (x))e - x + mz(x)B (x)e'" 

= a(x)(A (x) + B (x)) - x5 100 

{(A (x) - F (x))e - x 

X A (x') - ~(x') e-x' + B(x)e'" A (x') - F(x') e- x' 

x +x x-x' 

+ (A (x) -F(x))e- X B(x') e"" 
x-x' 

+ B (x)e'" B (x') eX' 
x+x' 

- x(A (x) + B (x)) A (x') + B (x') } dx', (56) 
x 2 _x'z 

where 

ml(x) = boX4 + blx
3 + b:zXz + a3x + a3, 

mz(x) = boX4 
- b1x

3 + b~2 - a3x + a3, (57) 

a(x) = x6/245 + aoX4 + a:zXz + a3, 

and 

ao = - 1"" (A (x) + B (x)) dx. (58) 

This equation can be solved by the iteration procedure de
scribed in the preceding section. A linear approximation 
leads to expressions (48) and seems to be accurate for a num
ber of cases. In general, however, more detailed numerical 
calculations comparing this approximation with an exact so
lution are stilI needed. 
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V.SUMMARY 

In this work, we have presented new exact relations 
concerning the direct correlation function C (r) of a one-com
ponent system with a hard-core repulsive term in intermole
cular potential. In particular, we have obtained a new 
expression relating inverse compressibility of the system 
with integral characteristics of the direct correlation func
tion [see Eq. (36)]. We have considered C (r) for r> I in the 
form of a sum of Yukawa potential-like functions and have 
found a solution for C (r) in the region 0 < r < I. On the basis 
of this solution, it is possible to write a quite general integral 
equation which must fulfill C (r). This equation appears as a 
consequence of the imposed core condition and, in contrast 
to the Ornstein-Zernicke equation, does not contain an un
known pair distribution function. The sum of a few 
"Yukawas" with, in general, complex Xi can be practically 
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used as a good approximation to C (r) for r > I. The proposed 
iteration procedure of calculations, together with the expli
citly given linear approximation, should substantially de
crease the labor accompanying such numerical calculations. 
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The li~htlike contractions of electromagnetic fields are discussed. In particular Dirac's delta type 
be~a~lOr on null hyperplanes is established and the lightlike limit of the electromagnetic field of a 
spmmng, charged particle is obtained. 

PACS numbers: 03.30. + P 

1. INTRODUCTION 

Consider a charged particle moving along a straight line 
in the Minkowski space-time, with the velocity v < I (the 
velocity oflight c= I). Then if the limit of the electromagnet
ic field, as v-I, is taken in the sense of generalized functions, 
one obtains the solution of the Maxwell equations which 
vanishes outside a null hyperplane and has Dirac's o-type 
singularity on it. I This field can be interpreted as the electro
magnetic field of a charged, lightlike particle. 

Although there is no experimental evidence that the 
rest-mass-zero particles have electric charges or any type of 
an electromagnetic structure it is still of theoretical interest 
to study such fields, at least as approximations of electro
magnetic fields of fast moving particles. 

The proccess described above is called a contraction of 
the electromagnetic field. It can be stated equivalently as 
follows. Let Fbe an electromagnetic field on the Minkowski 
space-time M. Consider next a one-parameter group of mo
tions (/) u :M-.M, I v I < 1, corresponding to Lorentz boosts. Its 
-action on F produces the one-parameter family of electro
magnetic fields, namely C/J.uF. Then the question is about the 
limits ofthat family as v approaches + I or - 1. 

It is natural to generalize these concepts by considering 
an arbitrary one-parameter family of diffeomorphisms on 
the space-time which is not necessarily fiat. The correspond
ing contractions may be expected to provide new solutions of 
the field equations or at least to throw new light on old 
ones.2

•3 

The purpose of this paper is to study the linear theory. 
In Sec. 2 the necessary concepts and means are introduced. 
In Sec. 3 an analysis oflightlik~ contractions for electromag
netic multipole structures is given. Section 4 deals with the 
problem of lightlike limits for the electromagnetic field of a 
spinning charged particle. 

2. THE NOTION OF CONTRACTIONS AND RELATED 
TOPICS . 

Let (M,dr) denote a space-time, not necessarily that of 
Minkowski; that is, a pair consisting of a four-dimensional 
differentiable manifold and a smooth metric struct~re with 
the physical signature. 

Let (/)" where t E )tl,t2( be a one-parameter family of 
diffeomorphisms of M. (t I and t2 are permitted to be equal to 
± 00.) The action induced by rtJ, provides a one-parameter 

family of metrics on M, (/), dr. If at the same time another 

-/ On leave of absence from Technical University of Kielce. Poland. 

tensor field (for example an electromagnetic one) F is given 
on M, then (/),F denotes the corresponding family. The met
ric dr and the field F are subjected to some covariant, differ
ential constraints, the field equations. It is clear, therefore, 
that the same relations hold between (/), dr and (/),F as t 
approaches tl or t 2• There are two questions related to the 
problem of limits: 

(i) What type of a convergence does one have in mind? 
(ii) Are the limits, if they exist, the solutions of the field 

equations? 
The situation is especially simple if a linear theory on 

the Minkowski space-time is considered and {(/), J is as
sumed to be a one-parameter group of motions. The conver
gence of (/),F is understood then as the convergence of distri~ 
butions on M.4.5 The limit of (/),F, if it exists, in that sense, 
fulfulls again the field equations. It follows from the fact that 
the linear algebraic operations as well as differentiations 
make sense for generalized functions and are continuous, 
e.g., they commute with the operations of taking limits.4 

In the particular case when) - 1,1 (3 v-(/) u is a one
parameter group of the Lorentz boosts, the corresponding 
limits of (/)u F are referred to as lightlike limits. One can gen
eralize slightly this construction, considering from the very 
beginning instead of a field F, a one-parameter family Fu and 
then a new family (/)uFu' In that case the limits are called 
lightlike contractions. 

Consider an electromagnetic field F, which is stationary 
in the Minkowski coordinate system {t,x,y,z J , and the one
parameter group (/)u of the Lorentz boosts of the form 

10(/)-1= t-vz XO(/)u-I=x, 
u (1 _ V2)1/2' 

Y0cjl-I=y Z0(/)-I= z-vt (2.1) 
u , u (l_v2)1/2' 

Then the induced family of electromagnetic fields is 

I 
(/)u F = (1- V2)1/2 F,x°(/)v-l(dt-vdz)l\dx 

1 + (1 _ V2)1/2 F,y o(/); I(dt - v dz) I\dy 

I 
+ (1 _ V2)1/2 Fyz o(/) v- Idy 1\ (dz - v dt) 

I + (1 21/2 Fzx o(/); I(dz - v dt) I\dx 
- v) 

+ F,z o(/) u- I dt 1\ dz + Fxy o(/) v- I dx 1\ dy. (2.2) 

Because offurther applications we assume for a moment that 
the components of F are locally integrable. Lemma 1 below 
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provides then the conditions on F,." under which the limit of 
(2.2) exists. Denote by f any component of F,.". 

Lemma 1: Letf( x.y,z) be a locally integrable function 
on R? such that for almost all ( x.y) the function 
fx.y (z): = f( x.y,z) is an integrable function of z and the func
tion 

L+",'" I f( x.y,z)ldz 

is locally integrable on H2. Then for an arbitrary test func
tion t/! (infinitely differentiable with a compact support) 

lim ( 121/2fO(/)v-I,t/!) 
v-±I (I-v) 

= i, dx dy du (f-+ COCO f( x.y,z)dz) t/J(u,x.y, ± u), 

where u is a new variable running from - 00 to + 00. 

Proof Indeed, taking into account (2.1), we have 

Cl _ ~2)112 f°(/) v- I,t/!) 

= 1 2 1/2 r dt dx dy dz 
(1 - v ) JR' 

Xf(x,y, (lz_-V~~/2)t/!(t,x.y,z) 

= 12112 r dt dx dy dzf( x.y,z) 
(I-v) JR' 

X .1. ( t + vz z + vt ) 
." (1 _ V2)1/2 ,x.y, (1 _ V2)1/2 

= r du dx dy dZf( x.y,z)t/!(u,x.y,uv + (1 - V2)1/2Z). 
JR' 

(2.3) 

Now we observe that the functionsf( x.y,z) 
X t/J(u,x.y,uv + (1 - V2)1/2Z) are integrable on H4 and as 
v--+ ± 1 they converge pointwise tof( x.y,z) Xt/J(u,x.y, ± u) , 

which are integrable. Besides that, 1ft x.y,z)t/J(u,x.y,uv 
+ (1 - V)1/2Z)1 "Cx(u,x.y)lf( x.y,z) I, where C is a constant 

and X (u,x.y) the characteristic function of the projection of 
supp(t/!) on three-dimensional space. 

Then from the Lebesgue theorem6 we infer that the 
right-hand side of(2.3) converges to 

i, du dx dy (f-+ ","" f( X,y,z)dZ) t/!(u,x.y, ± u) . • 

3. LIGHTLIKE CONTRACTIONS OF THE 
ELECTROMAGNETIC MUL TIPOLE FIELDS 

Consider an electromagnetic field singularity, that of 
N·pole type, with time-independent structure. Then in its 
rest frame of reference the electromagnetic potential is of the 
form7 

Aa = q"b, ... b"ab, ••. ab,.,(r- ' ),8 (3.1) 

where r = (x2 + r + r)I12, and constants q"b, ... bN are re
stricted by the following conditions: 

(i) q"b, ... bN = 15~~I···bN + pab, ... bN, where pab, ... bN is ortho-

gonal to 15 ~ . 
(ii) ~b, ... bN) = €' .... bN and pa(b, ... bN) = pab, ... bN. 

(iii) €" ... bN and pab''''bN are orthogonal to 15~ in all indices 
and are tracefree in (bl .. ·bN ) indices. 

(iv) p(ab, ... bN) = O. 

Next it is easy to construct F = - ciA and then (/) v F 
with (/)v given by (2.2). We also use the notation 
(t,x.y,z)=( XO ,x1,x2 ,x3) and ( Xl ,x2)=( :xB). 

For convenience we discuss the electric and magnetic 
structures independently. To be as general as possible we 
admit the multipole moments to be dependent on v, which 
means that instead of one field F a family Fv is considered. 

A. Electric type singularities 

(/) F=- 1 ~I .. ·b"ab ... ab (~) o(/) -Idxt A(dt-vdz)-€,,· .. bNab ... ab (~) (/) -'dzAdt. (3.2) 
v (1 _ V2)1/2 I N r.A v. I N r ,% v 

Consider the first part of (3.2). For an arbitrary test function t/! we have4 

- a ... a - o(/) - I .1. 
( 

~1 .. ·bN ( 1 ) ) 
(1 _ V2)1/2 b, bN r ,A v ,." 

( 
€" ... bN ( 1 ) ) 

- (1 _ V2)1/2 abl .. ·abN -; .A ,t/!°(/)v 

€" ... bN ( I)N r xt a a t/! ( t + vz z + vt ) dt d d d (3 3) 
(1 _ V2)1/2 - JR.7 b, '" bN (1 _ V2)1/2 ,x.y, (1 _ V2)1/2 x Y z. . 

To discuss limits take at first the term in (3.3) of the form 

I - et,···AN 
( _ I)N r ~ a ... a t/! ( t + vz z + vt ) dt dx d dz (3 4) 

v - (1 _ V2)1/2 JR' r A, AN (1 _ V2)1/2 ,x.y, (1 _ V2)1/2 y. . 

Then applying Lemma I with t/! replaced by t/!.A, ... A" forf = xt fr, we obtain 

lim Iv =2(-I)N ~I···AN r x: aA ... ·aANt/J(U,x'y,±u)dudxdy= (215(t +zi~I'''ANaA ... ·aAN(xtfp2),t/!>, (3.5) 
I>--+± I JR' P 

where p2 = x2 + y2 and 

lim et,· .. AN: = ~I .. ·AN. (3.6) 
I>--+± I 
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Next consider the term of (3.3) containing contractions with CA, ... AN- I • 

/(1)= (_I)NN CA ... A i xA a .,.( t+vz z+vt ) 
v (l_v2)1/2 IN-I R.7aAI···aAN-1 z'" (l_v2)112 ,xJl, (I_V2)1/2 dtdxdydz 

= (- I)N N .-3A ···A r xA a a ( .1. .")d d d d 
(I_V2)1/2" IN-I JR· 7 A,'" AN_I v"'. I +",,4 U X Y z, (3.7) 

where u = (t + vz)/(1 - V2)1/2 and ,I and ,4 denote the partial derivatives with respect to the first and fourth arguments. 
However, a",lau = "',I + V"',4; hence (3.7) takes the form of 

(3.8) 

Applying again Lemma I with aA, .. ·aAN_1 "',4 instead of"" for/=xA 1,3 we infer that the limit of(3.8) as IJ-+ ± I is 

lim /~I)=2(_I)NKcA, ... AN-1 i ~2 aA .. ·aA _ ",,4(u,xJl,±u)dudxdy 
IJ->±I R'P I NI 

= (+ 2NCA, ... AN- 16'(t +z)(xA Ip2t"""'AN_
I
'''')' 

where 

lim (I - V2)1/2CAI···ANN_I: = CA, ... AN-,. 
v-±I 

(3.9) 

(3.10) 

An application of the argument which led to (3.8), for the term of (3.3) containing contractions with C···3B, ... BN-. for 
1 < k<.N, provides the following condition on the existence of the corresponding limit as IJ-+ ± 1 

lim C···3A, ... AN_ '(1 _ V2)k12 = C···3A, ... AN_'. 
~±I 

However, because of(ii) and (iii), C···3A , ... AN-, is linearly dependent on E"", ... AN and CA, ... AN-,. Therefore [see (3.6) and (3.10)] 

lim c···3A, ... AN-'(1 - V2)k12 = 0 for k> 1. 
....... ±I 

Now consider the second part of (3.2). 

( - ~1···bNa ... a (1/r) ot/> - 1.,.) 
b l bN .z v ''f' 

= ( - ~1···bNab, ... ab)1/r),z,,,,ot/>v) 

( I)N.JJ ... bNl z a a .,.( t+vz z+vt )d d d d = - ,t I .-3 b , '" bN'" 2 1/2 ,xJl, 2 1/2 t X Y z. 
R·r (I-v) (I-v) 

The limit of (3.ii) is equal to zero. Indeed (3.12) does not contain the factor 1/(1 - V2)1/2 as (3.3) does. 
Thus the following theorem is true. 

(3.11) 

(3.12) 

Theorem 1: Let Fv be a family of electromagnetic fields of electric N-poles, N-,O. Then the lightlike contractions of the 
family t/>uFv, as IJ---+ ± I, exist, if there exist the limits 

lim E"", ... AN = ~I···AN and lim CA, ... AN-, (1 _ V2)1/2 = CA, ... AN-,. 
1>-+ ± I 1>-+ ± I 

Then 

lim t/> uFv = 26(t + z)eA l
•••

AN [(xl p2).AI ... AN dx + (yl p2).AI ... AN dy] A (dt + dz) 
IJ-> ± I 

+ 2N6'(t +Z)CA, ... AN
_

, 
[( Xlp2).AI"'AN_, dx + (ylp2).AI ... AN_1 dy] A (dt +dz). • 

As a corollary we have 
Corol/ary 1: Let Fbe an electromagnetic field of an eleCtric N-pole, N-,O. Then its lightlike limits as IJ---+ ± I are 

lim,t/>vF= U(I +z)E"", .. ·AN [( Xlp2).AI ... ANdx + (ylp2).AI ... ANdy] A(dt +dz). 
....... ± • 

B. Magnetic type singularities 

t/> F = 11 b, ... bNa ... a (r-I) ot/> - I dxA A dxB 
v v r-A b , bN ,B v 

(3.13) 
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A discussion of the limits for (3.13) is similar to that for (3.2). 
Consider at first the second term in (3.13). The limit exists 
and is equal to zero if 

and 

lim p,AB •... BN = ji,AB •... BN 

l>-+ ± I 

lim p,A3B •... BN _.(I_ U2)1/2 =ji,A3B •... BN_ •. 
l>-+ ± I 

(3.14) 

(3.15) 

[It vanishes because we have to integrate (r-I),z with respect 
to z; compare with Lemma 1.] Then the limit of the first term 
is zero. The last term converges if 

and 

lim p,3B •... BN = ji,3B •... BN 
l>-+ ± I 

(3.16) 

lim p,33B, ... BN _. (1 _ U2)1/2 = ji,33B •... BN _,. (3.17) 
".....±I 

Of course we have to assume that the dependence on u is such 
that (3.15) and (3.16) are compatible [see (iv)]. Further, be
cause of(ii), (iii), and (iv), (3.17) is a consequence of(3.14), and 
necessarily ji,33B •... BN_, = O. 

Hence the following theorem follows. 
Theorem 2: Let Fv be a family of electromagnetic fields 

of magnetic N-poles, N> O. Then the lightlike contractions 
of the family 4> v Fv , as ~ ± 1, exist if there exist the limits 

and 

lim p,AB •... BN = ji,AB •... BN, lim jl3B •... BN = ji,3B, ... BN 

l>-+ ± I l>-+ ± I 

lim p,A3B •... BN _·(1 _ U2)1/2 =ji,A3B •... BN_., 
l>-+ ± I 

wherejl3B .... BN andjlA 3B··.BN_, are related by (iv). Then 

lim f/JvFv = - :M(t =t=Z)ji,3A •... AN 

l>-+ ± I 

X [(X/p2),A. •... AN dx + (y/p2),A. •... ANdy] 

A (dz =t= dt ). • 

Corollary 2: Let F be an electromagnetic field of mag
netic N-pole, N> O. Then its lightlike limits, as ~ ± 1, are 

lim 4> vFv = - :M(t =t= Z).U3A •... AN 
l>-+ ± I 

X [( X/p2),A. •... ANdx + (y/p2),A. •... AN dy] 

A (dz =t= dt ). • 

4. LIGHTLIKE LIMITS FOR THE ELECTROMAGNETIC 
FIELD OF A SPINNING CHARGED PARTICLE 

This field was discovered by P. Appel and it was dis
cussed by many authors in various contexts.9,10 

In the first part of this section we summarize its basic 
properties. We are interested in the global nature of the field; 
therefore the emphasis is put on the structure of singulari
ties. 

A. DeriVation of the field 

We recall at first that any electromagnetic field 
F = !fl'v dxll Adxv can be split into self-dualF(+) and anti-
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self-dual F(-) parts according to the formula 

F = !I,.v dxll Adxv 

= l(l,.v + fl'v)dxll Adxv + l(fl'v - fl'v)dxll Adx
v 

= F(+) + FH, (4.1) 

wherefl'v = (j/2)EI-'vpuj"u' Then 

F=2ReF(+). 

Consider next the Coulomb field for which 

A = (e/r) dt and F= - dA. 

One finds, then, that 

2F(+) = - dOJ, 

where 

(4.2) 

(4.3) 

(4.4) 

OJ = :. dt _ eiz x dy - y dx. (4.5) 
r r X 2 +y2 

The relation (4.4) unlike (4.3), does not hold globally, even if 
OJ is considered as a generalized one-form. Indeed, (4.4) being 
satisfied would imply} I' = 0 (where) I' denotes the current). 

Now the self-dual part of the electromagnetic field of a 
spinning charged particle is obtained from (4.5) by a complex 
translation. Thus we have 

e d . z + ia x dy - y dx 
OJ = - t - el ---",::--'-:--

R R X2+y2' 
(4.6) 

where R = [x 2 + y2 + (z + ja)2] 1/2. 

B. Properties 

Because of the remarks related to (4.4) we are interested, 
in fact, in the real part of (4.6) only. There is, however, an 
ambiguity in (4.6) which results from the fact that 
R = [x2 + y2 + (z + ia)2j1/2 has two branches as a complex 
function. (The branch point of the square root corresponds 
to the ring x 2 + y2 = a2, z = 0.) Therefore, to construct a 
field one has to cut off a two-dimensional surface S spanned 
on that ring. Then those two branches can be joined appro
priately, defining a field which is discontinuous on S. To see 
that explicitly let R - I be represented as a sum of its real and 
imaginary parts. It occurs that 

l/R = (a ± + if3 ± )[(r - a2)2 + 4a2z2) -112, (4.7) 

where 

a ± = ± (l/v'2H r - a2 + [(r - a2)2 + 4a2z2) 1/2}1/2, (4.8) 

f3 ± = =t= (z/v'2JzJH [(r - a2)2 + 4a2z2j1/2 - (r - a2W12· 

The various possibilities are depicted below. 
(i) 

a± f3± z>O 
------- ----:~-------- Z = 0 

S 
z<O 

(ii) 

(iii) 
S a'f f3'f S z>O 

--------------- z=o 
a± f3± Z<O 
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(iv) S 

~-

Next we notice that there is a coordinate system well 
suited to the problem discussed here. 10 If(r,8,<P) denotes the 
usual spherical coordinates, then the new coordinates (r,B, ~ ) 
are defined by the formulas 

r = {,-2 - a2 + [(,-2 - a2)2 + 402,-2 cos2 8 ] 1/2 J 1/2 X r 112, 

(4.10) 

cos OJ = r cos 81r, 

A. rcos<P-asin<P cos 'Y' = ------::--,--
(a2 + r)1/2 ' 

. A. rsin<P +acos<P sIn 'Y' = ----:,---:~~-, 
(a2 + r)1/2 • 

And the inverse transformation is 

r = (r + a2 sin2 B )112, 

cos 8 = (rlr) cos B, 
"" rcos~+asin~ 

cOS'Y'= ----~-
(r +a2)1/2 ' 

. "" rsin<P-acos~ sIn 'Y' = . 
(r + a2 )1/2 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

The coordinates (r,B,~) as well as the spherical ones 
cover a3 almost everywhere. Indeed, one has to exclude 
from the domain of (r,B, ~ ) the points on the z axis as well as 
those from the disk D: z = 0, x 2 + y2<a2. One can find out 
also that the surfaces of a constant r are ellipsoids which 
degenerate to D as r-o. 

The volume element in (r,B,~ ) coordinates is of the form 
I 

dV = (r + a2 cos2 B )sin B Or dB d~. (4.18) 

The real part of (j) (4.6) can be now represented in the form of 

A = Re (j) = ± er _ dt 
(r + a2 cos2 8 

± ear sin B (r cos ~ + a sin ~) d 
(r+a2 cosB)(r+a) y 

ear sin B (r sin ~ - a cos ~) d =F 2 - x, (4.19) 
(r + a cos2 8)(r + a2

) 

where signs depend on the physical situation, one among (il
(iv). 

One observes then, that the components of A are locally 
integrable (compare with 4.18). One can show also that the 
same property holds for the electromagnetic field 
F = - dA. The field itself is singular on the ring z = 0, 
x 2 + y2 = a2 only, and is discontinuous on S . 

Henceforth we discuss the case (i) only, and we choose 
the branch of R -I in (4.7) corresponding to a + and p +, 

which are denoted further by a and p. 

C. Limit transitions 

The electromagnetic field of a spinning charged particle 
is axially symmetric. Therefore, to find its lightlike limits in 
an arbitrary direction, it suffices to consider a family of elec
tromagnetic fields (<P voRl) )F, where Rl) is the rotation in the 
( x,z) plane by the angle 6, 0..;6 (; 1T 12, while <P v is as before in 
(2.1). 

tOR 8 1 = t, 

xoR l)-I = x cos 8 -zsin6, 

yoRl)-1 =y, 

zoR l)-I =x sin 8 +zcos6. 

Then one finds that 

(4.20) 

1 a- a-
- (<Pv oRl»)F = --7"2 ""'1/~2 -At dx 1\ (dt - v dz) + 2 1/2 At dy 1\ (dt - v dz) 

(1 - v) ax (1 - v) ay 

1 (a- a-) 
- 2 12 sin6- A x +cos6-Ax dxl\(dz-vdt) 

(1 - v )1 ax az 

1 (a- . a- ) - 21/2 -Ay +sm6-Ax dyl\(dz-vdt) 
(1 - v) az ay 

a- (a- a-) + -At dz 1\ dt + -Ay -cos6-Ax dxl\dy, 
az ax ay (4.21) 

I 
where the factor 1/(1 - V2)1/2 [see (2.3)]' Next we observe that the 

a- At: = (~(AtOR l)-1))0<P v-I, 
ax ax 

a- A : = (!... (A oR - I))O<P - I ayt ayt l) v' 

and soon. 

Now it is clear that to find the limits of (4.21) we can 
apply Lemma 1. 

It is immediately seen that the last two terms of(4.21) 
vanish as v approaches 1 or - 1. Indeed, they do not contain 
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terms like (1/(1- v2)1/2)(a- laz)Ax also converge to zero. 
Indeed, let t/J be an arbitrary test function; then 

. ( 1 a- ) hm I -Ax,t/J 
I>->± I (1 - V2)1 2 az 

= i dudx dy (f+ co dz!... (Ax oR l)-I)) 
R' - co az 

Xt/J(u,x,y, ± u)=O. 

The explicit form of the remaining limits depend on the inte-
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and 

f+ 00 .dz ~ (Ax oR 6- I). 
-00 ay 

Making use of (4.6) and (4.20) we easily find that 

A,oR/j-I=Re e 12' 
[( x + ia sin 6)2 + y2 + (z + ia cos 6)2] I 

and then 

..!.....- (A oR /j- I) = _ e Re x + ia sin 6 ( z + ia cos c5 ) , 
ax ' [ y2 + ( X + ia sin 6)2] [( x + ia sin 6)2 + T + (z + ia cos 6)2] 1/2 .z 

~ (A oR 6- I) = _ e Re y ( z + ia cos 6 ) . 
ay , [y2 + (x + ia sin 6)2] [( x + ia sin 6)2 + T + (z + ia cos 6)2] 1/2 .z 

Next one shows that 

(4.22) 

(4.23) 

(4.24) 

iy[( x + ia sin c5)sin 6 + (z + ia cos 6)cos 6] (4.25) 
Ax oR 6- 1 = e Re I ' 

{T + [( x + ia sin 6)cos 6 - (z + ia cos c5)sin c5]2) [( x + ia sin 6)2 + r + (z + ia cos 6)2] I 2 

and after some additional work one obtains 

..!.....- (Ax oR 6- 1) = e Re {iY{ ($2 + r + 112)(1] sin 6 - S cos c5) - S11(11 cos c5 + S sin c5)}} , 
ax· ($2 + r)($2 + y2 + 112)1/2[ r + (11 sin c5 - S cos 6)2] .z 

(4.26) 

~ (Ax oR 6- 1) = _ e Re { i{S(11 sin 6 - S cos 6)($2 + r + 112) + 11y2(11 cos 6 + S sin 6)}} , 
ay ($2 + r)($2 + y2 + 112)1/2[ r + (11 sin c5 - S cos 6)2] .z 

(4.27) 

where S = x + ia sin 6 and 11 = z + ia cos 6. 
A further comment is needed to clarify the formulas (4.23H4.27). All of them contain under the sign of differentiation 

with respect to z the term 

..!.. oR - 1 _ a + i/3 oR - 1 

R 6 - [(r _ a2)2 + 4a2r] 1/2 6' 

which is discontinuous on D. D is a disk region: x sin 6 + z cos 6 = 0, (x cos c5 - z sin 6)2 + y2<.a2. Thus, integrations with 
respect toz have to be performed cautiously. Indeed, the integration along a line within the cylinder defined by the projection 
of D on the z = 0 plane has to be split into two parts defined by the point of intersection of that line with D 

Then one obtains 

z I 
I 

--+---
z=o 

f + 00 (a- . a- ) 2x 2x(a + y sin 6)96 ( x,y) 
G= _ 00 -ax-A, + smc5-ax-A

x dz= - -x::-2 +-(-y-+-a-s-in-c5)-=-2 + (a2 cos2 6 _ y2 cos2 6 _X2)1/2[ x 2 + (y + a sin 6)2]' 

where 9 6 ( x,y) is a characteristic function of the subset 
D6 CR2, D6 = {(x,y):x2 + y2 cos2 c5<.a2 cos2 6). 

The lightlike limits of the electromagnetic field are 

lim Fv = -6(t +z)(Gdx+Hdy)l\(dt =J=dz). (4.30) 
l>-+ ± 1 

The field corresponding to 6 = 11"/2 can be obtained from 
(4.30) by taking the limit c5--rr/2. 
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(4.28) . 

I 
D. Discussion 

As one could expect, contracted electromagnetic fields 
are of Dirac's delta type on null hyperplanes. It was demon
strated also in Sec. 2 that during the process of contraction 
the multipole structures of higher order than monopole can 
survive. For the electromagnetic field of a spinning, charged 
particle the relation between them is, however, such that in 
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the limit the external field differs from that of the Coulomb 
merely by the translation. Therefore, the external field does 
not contain information about the "spin" of a particle. 

If the global nature of the field is taken into account 
then one observes that in fact we have a one-parameter fam
ily of fields, labeled by the parameter 0, with sources con
fined to the DIl region. 
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"'!'Ie discuss ~he notion of polarization, as defined in a geometric quantization scheme recently 
mtrod~ced, m t~rms of the role played by the evolution operator of the quantum system. The 
analysl~ use~ ~n mtegral transform representation of the group WSp(2,R). This clarifies the group 
theoretic ongm of the natural polarizations and the meaning of the polarization changing 
transformations. 

PACS numbers: 03.65. - w, 02.20. + b, 02.30.Qy 

1. INTRODUCTION AND STATEMENT 
OF THE PROBLEM 

A method of geometric quantization has been intro
duced very recentlyl, based on the definition of a group G, 
the quantum group, from which all the essential ingredients 
of the theory are derived. 2 In the terminology of the usual 
quantization scheme4 this means that given G there exists a 
procedure to construct the quantum manifold and the basic 
quantum operators (which prequantizes the system) and that 
a full quantization may be achieved by defining the appropri
ate polarization. This method uses the definition of the ca
nonicalleft I-form on G, and in particular of its vertical 
component e l the "verticality" being defined by the fact 
that G [V( 1), G IU( 1 )=G] is a principal bundle of structure 
group U( 1) I as well as of the right and left invariant vector 
fields on G in order to define quantum operators and polari
zations, respectively. In fact, the use of G as the starting 
point allows us to work directly on the evolution space, mak
ing it unnecessary to base the theory on the usual (contact) 
quantum manifold which, nevertheless may be obtained 
from G if one so wishes, 1 the contact I-form being derived 
frome. 

The so-called quantum group G is defined as a central 
extension by U( 1) of a group G1k ) (dynamical group5 of the 
system under study) which contracts to the usual Galilei 
group for the case of the free system. If the problem under 
consideration is that of an interacting particle, the constant k 
in G1k ) is a constant which switches off the potential in the 
limit k-o. Once G has been determined, the quantization 
may be performed by means ofthe following stepsl: 

(a) derivation of the left and the right invariant vector 
fields (LIVF and RIVF); 

(b) construction of the canonical left I-form; 
(c) definition of the basic quantum operators (by means 

ofRIVF); 
(d) definition of the polarization (by means of LIVF). 
In the usual approach to geometric quantization, the 

last step-that of defining a suitable polarization-is the 
least precise one. In the approach based on the quantum 
group G, a polarization may be defined as a subspace of XL 
(6 )-the space ofL-vector fields on G-which contains C(j' e 
-the characteristic module of e 6 -which is projected onto 
a subalgebra of the Lie algebra ofxL(G). It is the purpose of 

8
1Pennanent address: lIMAS, Universidad Nacional Autonoma de Mex· 
ico, Apdo. Postal 20·726, 01000, Mexico D.P., Mexico. 

this paper to explore further the proposed definition to ex
hibit how it leads to the definition of a natural polarization 
associated with the system (and accordingly, with the corre
sponding quantum group) under consideration. 

This will be done by considering the following four one
dimensional systems: the free particle, the free fall, the har
monic oscillator, and the repulsive "oscillator." The poten
tials which correspond to these situations are the 
representative of four orbits of the wsp(2,R) algebra under 
the adjoint action of the corresponding group (Sec. 2). These 
are all orbits which include sp(2,R) elements (containing the 
kinetic energy, as we shall see in Sec. 2). Thus, the group 
WSp(2,R) includes the quantum dynamical groups of the 
above one-dimensional systems and will be used as the start
ing point for their study. To this aim, Sec. 2 will be devoted to 
describe the WSp(2,R) group, its algebra, and the group of 
integral transform associated with it. Section 3 will present 
the simplest case of the free particle and the derivation of its 
Schrodinger equation. It will be found that the natural polar
ization leads to the momentum space Schrodinger equation, 
and that configuration space is obtained by means of an au
tomorphism in Sp(2,R) (the Fourier-integral transform). The 
essentially similar case of the free fall will be considered in 
Sec. 4. Sections 5 and 6 will be devoted to the harmonic 
oscillator and the repulsive "oscillator" (which is obtained 
through a change of sign in the harmonic oscillator poten
tial). In all cases the vector fields ofxL(G) defining the polari
zations will be found to define maximal invariant subgroups 
in the corresponding "classical groups" G = G IU( 1) in ac
cordance with the given definition. Moreover, the condition 
that the polarization vector fields must include C(j' e will tum 
out to be very helpful in finding the polarization. Indeed, 
C(j' e characterizes the time evolution of the system, and so 
the determination of the polarization will be associated with 
the problem of diagonalizing the time evolution (Hamilton
ian) part in G. This will immediately yield the suitable polar
ization for each case. In particular, the polarization which 
corresponds to the harmonic oscillator case will be found to 
be the one which leads to the Bargmann-Fock-Segal pic
ture, and the "rotation" which leads to the usual harmonic 
oscillator eigenfunctions will be seen to be the Bargmann 
transform. 

2. THE WSp{2,R) GROUP 

This group is the semi direct product of the two-dimen
sional real symplectic group Sp(2,R) [zSU(I,I)zSL(2,R)] 
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by the Weyl group Was a normal factor. We shall present 
this group in the context of a particularly convenient basis. 
Consider the three abstract operators Q, P, ll, as a basis for a 
Lie algebra with brackets 

[Q,P] =11, [Q,ll] =0, [P,ll] =0, (2.1) 

which is the well-known Heisenberg-Weyl algebra w.7 Con
sider now the universal enveloping algebra w as a Lie algebra 
induced by (2.1) through the Leibnitz rule and in particular 
the finite-dimensional subalgebra whose basis is the set of the 
three independent second-order generators 

p2, ! Q,Pj +=QP + PQ, QZ (2.2) 

in the representation where II is the unit operator. The opera
tors (2.2) constitute a basis for the metaplectic representa
tions of the symplectic algebra sp(2,R). When we sum (2.1) 
and (2.2) as vector spaces, we naturally obtain the six-dimen
sional algebra wsp(2,R), where w is a three-dimensional 
ideal. The exponential mapping of this Lie algebra yields the 
WSp(2,R) group together with a local parametrization of its 
manifold9 

exp(i[ap2 + {3! Q,Pj + + rQ2 + 8Q + EP + Oll]) 

g{ e ! ), ~,q), Z}' (2.3a) 

where ad - be = 1 and 

a = cos 15-{3s-' sin 15, s= ±~(ar-{32), 

b = - as-I sin 15, 

e = ys-I sin 15, 

d = cos 15 + {3s- J sin 15, (2.3b) 

P = ~(rE - {38)s-z(1 - cos 15) + ~8s-1 sin 15, 

q = ~IPE - a8)s-2(1 - cos 15) + !ES-
I sin 15, 

Z = 0 - !(a82 + rc - 2{38E)s-z(l - ¥-I sin 15). 

The group composition law, *, may be established to be 

g'! M' ,u' ,z' j*g! M,u,z 1 
= g"! M'M,u'M + u, z' + z + !u'MnuT j, (2.4a) 

where 

-1) 
O· 

(2.4b) 

The unit element is given by e = g! 1l,0,0 j and the inverse is 
[g[M,u,zj]-1 =g[M- ' , - UM-', - zj. The adjoint action 
of the group on the algebra may be found, and it can be 
ascertained to consist of six distinct orbits. 10 Representative 
of these orbits are pZ, pZ + Q, pZ + Q2, p 2 _ Q2, P, and ll, 
the first four of which are germane to the present work since 
they include a p2 term. The algebra wsp(2,R) is thus the 
common dynamical algebra for the free particle, the linear 
potential (or free fall, p2 + Q), the harmonic (lPz + QZ) and 
the repulsive (lP2 - Q2) oscillators. Moreover, this six-di
mensional algebra is the largest finite algebra with a semi
simple factor within w. II 

Let us now turn to the generalized representation basis 
where Q is diagonal, i.e., Qf(x) = xf(x). In this basis, the 
Weyl group acts as a Lie transformation group through 
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gf(x)f---+[g! 1I,(p,q),z V](x) 

= exp [i(z + ! pq + px) ]f(x + q). (2.5a) 

The Sp(2,R) group is generated by up-to-second-order opera
tors in these generators, and its action is that of a group of 
integral transforms l2

: 

gf(xr.-[g{ e : ).O'0}l ](X) = i dx' CM(x,x'lf(x') 

(2.5b) 

with kernel13 

CM(x,x') = (21rb )-I/ze - i"./4 exp[i(ax/z - 2xx' + dx2)/2b] 
(2.5c) 

which is unitary in X'2(R). In the two-parameter subgroup 
of Sp(2,R) of lower triangular matrices [those with b = 0, 
generated by all algebra elements with no pZ summand in 
(2.3a), a = 0] the integral transform (2.5b) collapses to a Lie 
transformation group action, 

gf(X)f---+(g{(: a~I),O,O}f](X) 
= a- 1

/
2exp[(icx2/2a)V(x/a). (2.6) 

The full WSp(2,R) group action may be obtained through the 
composition of (2.5a) and (2.5b). The composition of integral 
transforms (2.5) follows the group composition property 
(2.4) modulo a sign 12 [it is a faithful representation of the two
fold covering of Sp(2,R), called the metaplectic group 
Mp(2,R)]. Thus, there exists a local isomorphism between 
WSp(2,R), the hiperdifferential operators (2.3a), and the in
tegral transforms (2.5). In the limit M----+lI (or b----+O, with 
arg bEl - 17',0]), the integral kernel (2.5c) has as weak limit a 
Dirac 8, as can be inferred from (2.6). Finally, the inverse of 
the integral transform (2.5) associated with a matrix M is 
that corresponding to M- 1

; it has a kernel which is the com
plex conjugate of the original one. 

One can subject the WSp(2,R) integral transform action 
to analytic continuation in the complex parameter plane, 
with certain restrictions. In order that the domain remain 
X'2(R), one needs that 1m b *a;;;.O and, when a = 0, then 
1m b = 0. [This defines a subsemigroup ofSp(2,q, called 
HSp(2,q.] The elements of the complex-extended integral 
transform semigroup can be made to have the unitarity prop
erty when we consider them as mappings between X'2(R) 
and Bargmann-Fock-Segal-type Hilbert spaces of analytic 
functions 14 f!lJ M whose defining inner product is on the com
plex plane: 

if ,g)M = L d,uM (s,s *If*(S )g(s ), (2.7a) 

d,uM{S'S*) = 2(21TV)-1/2 exp[(us Z - 2ss* 

+ u*s *2)12v]d Re S dIm S, (2.7b) 

u = a*d - b *e, v = 2 1m b *a. (2.7c) 

The transform kernel inverse to that corresponding to M 
[(2.7b)] is obtained by putting M -I in (2.7a), and thus maps 
f!lJ M back to X'Z(R). 

In essence, we use HSp(2,q in order to act through 
similarity on the relevant ("Galilei" -type) quantum group G, 
and correspondingly on its generators (adjoint action of the 
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group on a subalgebra). This is required to perform the task 
of diagonalizing the Hamiltonian-generated time evolution 
group [see (2.3a)]. If this matrix cannot be diagonalized-the 
first two cases to be considered-then it should at least re
duce to a triangular matrix having an invariant subspace. 

In terms of generators, diagonalizing the Hamiltonian 
under consideration means rotating it onto the change-of
scale operator ~! P,Q J + = - i(xa/ax + !). This may be 
done using Sp(2,R) transformations in the repulsive oscilla
tor case, where ~(P2 - Q2) and H P,Q J + belong to the same 
orbit under Sp(2,R). In the harmonic oscillator case, ~ 
(P2 + Q2) and!! P,Q J + are in different orbits under Sp(2,R), 
but on the same orbit under HSp(2,C). They are mapped onto 
each other by the Bargmann transform; this will change the 
structure of (i.e., the inner product defining) the Hilbert 
space. 

Having defined this operational machinery, we now 
turn to the study of polarizations for the approach described 
in the previous section and for the four one-dimensional sys
tems mentioned above. 

3. THE CASE OF THE FREE PARTICLE 

This is the simplest case; since there is no interaction, 
k = ° (Sec. 1), and G is directly given by the central extension 
of the ordianry GaIileigroup Gby U(I), i.e., G =G(m) .15 Since 
for the free particle only the kinetic term is relevant, the 
elements of G(m) are given by the subgroup of WSp(2,R), 
which is generated by H free = p212m (a = - t /2m) and the 
Weyl subgroup in (2.3a), i.e., by 

G(m) = g{ (~ t ~m). (o,q), o} 

=exp( -i;~t)eXp[i(OQ+qp+OI)]. (3.1) 

The composition law (2.4) applied to (3.1) reproduces thus 
the usual one: 

t" = t' + t, 
pH =p' +p, 

q" = q' + q + (o'/m)t, 

0" = 0' + 0 + !(oq' - p'q) + (l/2m)pp't 

(3.2) 

in terms of the evolution space variables (t, p, q) and the 
Bargmann cocyle15 for the U( 1) part of G(m) . 

The left invariant vector fields are easily derived from 
(3.2) with the result 

X~ = m~ + m qE, [all others] = 0, 
ap 2 

XL -i~~=:: 
~ - a~--' 

(3.3) 

where ~ = exp iO and the subindices t, q, and v indicate that 
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they parametrize translations in time, position, and velocity 
("boosts"). The "vertical" component of the canonical form 
satisfiese(Xt;Xq;Xv ) = 0, e(X~) = 1 and is given bye = ~ 
(0 dq - q dp) - (o2/2mJdt + d~ /i~; it is easily verified that 
9f: e generated by X,. 

It is now clear that the definition of polarization given 
in Sec. 1 requires us to take as wave functions I(::-valued func
tions on G(m) satisfying the conditions 

X ~.t/!(q,p,~,t) = 0, 

X ~.t/!(q,p,~,t) = 0, 

and l6 

g't/! = it/!. 

(3.4a) 

(3.4b) 

(3.5) 

Thus,Xq andX, generate the polarizations (Xq andX, deter
mine a maximal-and abelian-invariant subgroup in G. 17

) 

In fact, X, gives in (3.4a) the Schrodinger equation in mo
mentum space i(a/at)t/! = (o2/2m)t/! once (3.4b) and (3.5) 
have been taken into account. (12 = h /21T has been put equal 
to unity throughout.) 

The polarization defined by Xq we may now call the 
natural polarization by observing that the part of G(m)' 

which corresponds to the evolution operator 

g{ (~ t ~m ),(0,0),0} (3.6) 

leaves the subspace (0, q) invariant; this is a way of rephras
ing the definition of Sec. 1. The fact that the triangular ma
trix (3.6) is not diagonizable indicates that this is the only 
polarization which may be defined for the free particle in a 
natural way. Of course, we may now give the Schrodinger 
equation in configuration space. To do this, it is necessary to 
apply a transformation [an automorphism external to G(m) 

but internal to Sp(2,R)] capable of interchanging the roles of 
p and q. Such a transformation is (up to a phase e -'1T14) the 
Fourier transform given by 

(3.7) 

which determines the well-known integral kernel l/.j21i 
exp( - ipq) in (2.5c). 

4. THE FREE FALL 

We now tum to the quantization of the particle in free 
fall. The dynamical group for this case is the subgroup of 
WSp(2,R) given by 

exp( - itHjf)exp[i(oQ + qP + (1)], 

where 

Hjf = p2/2m + FQ. 

(4.1) 

(4.2) 

Using (2.3) for each factor and (2.4) for the product ofthe two 
exponentials, we obtain 

iT{ (~ t ~m). (p _ Ft,q - 2: t 2). 

1 Ft 2 F2t 3} 
O+-qFt-p-+-- . 

2 4m 12m 
(4.3) 

This group gives for the evolution variables the same compo
sition law as for the free particle, except for the U( 1) part for 
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whose exponent () we now obtain 

() H = ()' + () + ~ [(pq' _ p'q) + P!' t] 

-F(q't+ 2~P'tz). (4.4) 

The left invariant vector fields are given by 

x ~ = !... + L ~ - (Fq)E, 
at m aq 

XL_~_~ =' 
q - aq 2 p-, 

X
L a m_ 
v =m-+-q:::., 

ap 2 

Xt=i;~ E, a; 

[X;,x;] = mxt, 
(4.5) 

[X~ ,x;] = Fxt, 

[all others] = o. 

It is clear that, when F--.o, (4.5) reproduces (3.3). The fact 
that two parameters (m and F) label the extension (G(m.F) ) of 
the Galilei group G is due to its one-dimensional character; 
this group has a two-dimensional space of extensions (the 
space of the extensions of the ordinary 10-dimensional G is 
labeled by the mass only). The fact that G is the common 
starting point for the free particle and the free fall case mere
ly reflects that the invariance group of the one-dimensional 
equation F = m d Zqldt Z is the same for F = 0 and for 
F= const#O. 

To define polarization, we now observe that 
[ X ~ ,x;] # 0 contrarily to what happened in the free case. 
We now take the invariant subalgebra generated by X; and 

X~ =X:-+ F X;=!...+L~+F~- F qE; 
m at maq ap 2 

(4.6) 

note that the basic commutator [Xq,xv] = mE is not al
tered by the above redefinition, but that now 

[X~,x;] = 0 (4.7) 

as in the free particle case. 
To obtain the Schrodinger equation, we now require 

that the functions on G satisfy the polarization conditions 

X~."'(q,p,t,;)=O, X;.",=O (4.8) 

and the equivariance condition E.", = i",·. This condition 
and X ~.", = 0 give for'" the form 

'" = ;(j? (p,t )eiqP/2 (4.9) 

and then Xc'" = 0 yields 

(. a p2 D' a ) (P) 0 l---+rl- (j? ,t = , 
at 2m ap 

(4.10) 

i.e., the Schrodinger equation for the linear potential in the 
momentum representation. Again configuration space ex
pressions are gained through the Fourier transform (3.7). 

To fully characterize the process leading to the deter
mination of the natural polarization, it is now important to 
ascertain the meaning of X~, the polarization which deter
mines the temporal evolution of the system and, according
ly, the quantum wave equation once all the other conditions 
have been taken into account. To do this, it is necessary to 
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evaluate again the canonical I-form on G and, more specifi
cally, its "vertical" component e L

• The result is 

e L = ~(p dq - q dp) - (pz/2m - Fq)dt + d; Ii;. (4.11) 

Let us now derive the equations of the characteristic module 
generated by the vector fields such that 

ixe=O, ixde=O, (4. 12a) 

where X is the vector field of generic components 

X=X'!...+xq~+xv~+X(;i;~. (4. 12b) 
at aq ap a; 

Equation (4. 12a) gives 

X'=I, Xq=plm, XV=F, X(;= -Vq, (4.13) 

i.e., the characteristic vector field is X~, the part of the po
larization (Sec. 1) which generates the quantum equations of 
motion. This was to be expected; the integral curves of X ~ 
give also the classical equations of motion, 

p = Ft + Po' q = 1(F Im)t 2 + (polm)t + qo, (4. 14a) 

plus 

; = z exp{ - !iF [i(F Im)t 3 + (pol2m)tZ + qot]). 
(4. 14b) 

(4. 14a) shows that one could have started from the quantum 
group Glm,F) without physically identifying its parameters 
since the equations of motion provide directly the adequate 
correspondence with the evolution space variables. 

It is interesting to remark at this stage that one can 
establish the connection with the usual quantization formal
ism by defining a contact I-form on the manifold of solutions 
of the classical problem as parametrized by the constants of 
the motion (initial position qo and momentum Po). Indeed 
one may check that on such manifold (G ICff @' where Cff @ is 
the characteristic manifold), e is written 

e = !(Po dqo - qo dpo) + dzliz. (4.15) 

We have not pursued this latter path so as to emphasize how 
the procedure outlined in Sec. 11 allows us to perform the 
quantization directly on G. 

To conclude this section, we mention that the basic 
quantum operators may be obtained from the right invariant 
vector fields: from 

and 

XR=~+(L-Ft)E 
q aq 2 

(4. 16a) 

X R a a (m p F z)v =t-+m-+ --q+-t+-t :::. 
aq ap 2 m 2 

(4. 16b) 

it may be easily derived that, on (j?(p,t ), P and q are represent
ed by p and ialap through imposing that the eigenvalues of 
p = - iX: andK =:(i/m)X ~bethecorrespondingconstants 
of motion. 

5. THE HARMONIC OSCILLATOR 

For the case of the harmonic oscillator, the quantum 
dynamical group is the subgroup ofWSp(2,R) obtained from 
exp( - iHhJ ).exp[i(pQ + qP + e:o:)]. Since the quantum 
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Hamiltonian is given by 

H = p 2/2m + Imw2Q2 
hI) 2' (5.1) 

the result of evaluating exp( - iHho t )exp[i(pQ + qP + OlI)] is 

~ {( cos wt 
G{m.w) =g 

- mw sin wt 

1 .) } - sm wt 
mw ,(p,q), 0 

cos wt 

(5.2) 

[seeEqs.(2.3)witha = - t 12m,y = - mw2t 12,s = ± wtl 
2], which characterizes the group we take as our starting 
point. 

The composition law (2.4) induces the following one for 
the evolution space variables and 0: 

t" = t' + t, 
p" = p + p' cos wt - mwq' sin wt, 

q" = q + (I1mw)p' sin wt + q' cos wt, 

o " = 0' + 0' + H (pq' - qp')cos wt 

+ (pp'lmw - mwqq')sin wt], 

(5.3) 

which in the free limit w-G gives (3.2) as it should. Clearly, 
we could continue and define left invariant vector fields on 
alm•

W
)' Nevertheless, it is already evident that the basis (5.3) 

of the evolution space is not the adequate one; the matrix 
which determines the evolution operator in (5.2) leaves 
neither the p nor the q subspaces invariant, indicating that a 
polarization is not immediately obtained. The matrix of the 
time evolution subgroup, however, is diagonalizable in this 
case, and the diagonalizing matrix is 

B=_1 ( Jm6J 
v'2 - iJm6J 

- iIJm6J). 
I1Jm6J 

(5.4) 

Again, this is an automorphism external to alm•w) but inter
nal to HSp(2,q. Once B has been applied to (5.2), the ele
ments of the transformed alm.w) are written 

g{(e
o
iwt 0) } e- iwt ' ~mlw(iC +,C), 0 = BgB- I

, (5.5) 

where C = (I1mv'2)(mwq + ip) and the composition law is 
given by 

C"+ = C'+eiwt + C+, 

C" = C'e- iw, + C, 

0" = 0' + 0 + ~[iC'C +e- iwt - iC'+Ceiw'], 

t" = t' + t. 

(5.6) 

It is now clear that X ~ and X ~ are appropriate to define 
the polarization, and since 

X L a . Ca. C+ a 
=--lW -+lW --

'at ac ac+ ' 

XL -~-~C+':' 
C - ac 2 -, 

the conditions X ~.¢ = 0 and X ~.¢ = 0 give 

¢ =;ep (C +,t )e- C+C12 

and 
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(5.7) 

(5.8a) 

aep = _ iwC + aep , 
at at 

(5.8b) 

respectively. Again, X ~ generates the characteristic module 
for this case; this may be seen by evaluating e from (5.7) 
[plusX~. andXt, cf. (4.5) and (4.11)], which turns out to be 

e = !i(C + dC - CdC +) - wCC + dt + d; Ii;. (5.9) 

The inner product for the ¢'s now induces for the func
tions ep the following one: 

( ! Y12

i,d Re C + dIm C + ep T(C +,t )epl(C +,t)e- IC1 ' 

(5.10) 

as obtained from (2.7) with v = 0, v = 1. This is the Barg
mann scalar product,14 as one should expect. The natural 
polarization leads thus to the BFS picture, and it may be 
checked that the evolution operator preserves the polariza
tion X~, i.e., 

[X~,x~] =iwX~. (5.11) 

It should be noted that Eg. (5.8b) is not quite the Schro
dinger equation for the harmonic oscillator. It corresponds 
to the Bohr-Wilson-Sommerfeld quantization, and the ad
ditive constant! corresponding to the ground state energy is 
missing. In the usual approach to geometric quantization, 
this is remedied by looking to the transformation properties 
of the "half-forms" under the time evolution generator.4 The 
result is that Eq. (5.8b) is corrected to 

aep = _ iW(C + ~ + ~)ep (5.12) 
at ac 2 ' 

where the functions ep(C + ,t) belong to the Bargmann-Segal 
space f!jJ B' with B given by (5.4). The solutions to (5.12) 
which separate into the product of C + times a function of t 
are, up to a multiplicative constant av , 

(5.13) 

for VEe. The condition that the solutions of (5.12) belong to 
f!jJ B (entire analytic functions with mild decrease condi
tions l4) restricts the range of v to the nonnegative integers, 
VE [ 0,1,2, ... J. The normalization factor in (5.13) is found to 
be an = (21T)-1/4.(n!)-1I2.IS The set of eigenstates of the sys
tem is thus 

un(C + ,t) = (21T)-1/4(n!)-1/2(C +)ne - i(n + 112)', 

n = 0,1,2, .. ·. (5.14) 
in BSF space. The eigenstates in the configuration space may 
be recovered through an inverse Bargmann transform [cf. 
(2.5)] on (5.14) yielding the familiar harmonic oscillator wave 
functions 

¢n(q,t) = fd2,uB(C+,C)Un(C+,t)CB(c+,q)* (5.15a) 

= 2 - nI21T-I/4(n!)-1/2exp( - !mwq2) 

XHn (Jm6Jq)e - i(n + 112)'. (5.15b) 

In essence, the Bargmann transform (for m = w = 1) is 
a group automorphism which "rotates" the usual harmonic 
oscillator Hamiltonian-the algebra generator i(P2 + Q2)_ 
which appears in (5.1) onto the change of scale generator 
! [P,Q J +. As already mentioned, these two algebra elements 
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belong to different orbits in sp(2,JR) under the adjoint action 
ofSp(2,JR), but may be brought into similarity throughgB' a 
transformation in HSp(2,C), obtained from (2.5) with B given 
by (5.4). This transformation corresponds to a rotation by 
i1r14 around the A(pz - QZ) axis (see Ref. 10, Sec. 9.2). The 
eigenfunctions of the change-of-scale generator are the 
(complex) power functions, i.e., essentially (5.13). 

6. THE REPULSIVE "OSCILLATOR" 

We complete our study of the one-dimensional poten
tials by considering the somewhat unphysical potential 
- !mwzQz, the repulsive "oscillator." For it we find 

and 

Xexp[i(pQ + qlP' + (1)] 

{( 
cosh wt 

=g 
mw sinh wt 

t" = t' + t, 

sinh UJt I mw) } 
cosh wt ,(p,q), 0 

q" = q + q' cosh wt + L sinh wt, 
mw 

p" = p + p' cosh wt + mwq' sinh wt, 

o " = 0' + 0 + H (pq' - p' q) cosh wt 

+ (pp'lmw - qq'mw) sinh wt] 

for the group law. 

(6.1) 

(6.2) 

To define the polarization adequate for this problem, 
we may follow the same pattern as for the harmonic oscilla
tor. The time evolution operator exp( - iH,o t ) is not diag
onal, but diagonalizable by the Sp(2,JR) transformation 

R- 1 ( foiW 
vL-foiW 

lIfoiW) 
lIfoiW ' 

which defines the new group variables 

1 mwq + p 
a=-- , 

foiW vL 
1 mwq - p v=-- , 

foiW vL 

(6.3a) 

(6.3b) 

in terms of which the Hamiltonian is written H = - way. 
In terms of these variables (6.1) reads 

(6.4a) 

where the time evolution part has been diagonalized, and 
(6.2) is given by 

t" = t' + t, 

v" = v + v'e- wt
, 

(6.4b) 

() " = 0 + () , + H av' e - w, - a'vew1 ]. 

We now may proceed to evaluate the left-invariant vector 
fields, which are 
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L a a a x, =-+a--v-, 
at aa av 

XL =.i..+~.: 
a aa 2 ' 

(6.5) 
XL =~-!!.-E 

v av 2 ' 

X~=E 

and the vertical component of the canonical I-form, 

e = !(a dv - v da) + wav dt + d; Ii;. (6.6) 

It is now easily seen that the vector fields defining a polariza
tion are given by X ~ and X; and that, as it should, X ~ is the 
characteristic vector field of e. The conditions E.t/! = it/! and 

X;.t/! = ° give 

t/! =;q; (v,t )eiVa/Z (6.7) 

and X ~.t/! = ° finally yields 

aq; aq; --wv-=o. 
at av 

(6.8) 

By a reasoning analogous to that leading to (5.12), the 
true Schrodinger equation is written 

aq; = w(v ~ + 1. )q;. (6.9) 
at av 2 

In fact, the presence of the! term can also be justified by 
unitarity considerations: The transformation R [( 6.3a)] maps 
,2"2(JR) unitarily on ,2"2(JR) in v. The separated solutions of 
(6.9) are, again up to a constant all' 

a yJt elp + 112)1 
Il (6.10) 

for J.l complex. Although these functions do not belong to 
,2"2(JR), they constitute a generalized basis for ,2"2(R) eigen
basis for! ( Q,lP' I +. This is the bilateral Mellin transform ba
sis (Ref. 10, Sec. 8.2), 

(21T)-1IZv ;tI12+i,c, AEJR, (6.11a) 

{
V v>O, {O, v>O, 

v+ = 0, v<O, v_ = _ v, v<O, (6.llb) 

i.e., (6.10) with all = (21T)-1/2 andJ.l = - ~ + iA. The Mellin 
basis is Dirac-orthonormal and complete, and its eigenval
ues under! [ Q,lP' I + cover twice the real line. Hence, 

(7 = ± 1, AEJR, (6.12) 

is the ,2"z-complete Dirac-orthonormal set of solutions of 
(6.9). [The importance of the! additive term in the Schro
dinger equation-which merely shifts the whole spectrum 
for the case of the harmonic oscillator-is seen in this exam
ple since, otherwise, the time part in (6.10) would adopt the 
unsuitable form e( - 112 + i,c), instead of eM'.] 

In order to recover the wave functions in configuration 
space, we apply the inverse of the transform R of (6.3a) (for 
m = w = 1). This is a rotation by 1T/4 around the A(pz + Q2) 
axis-in fact, the square root of the Fourier transform
which through its action on the algebra, brings the repulsive 
oscillator !(lP'2 - Q2) onto the change of scale operator 

Aldaya, de Azclirraga, and Wolf 511 



                                                                                                                                    

H Q,Pj + appearing on the right-hand side of (6.9). 
The configuration space eigenfunctions are thus the re

pulsive oscillator wavefunctions 

YU,A (q,t) = roo 00 dv wu.,dv,t )CM (v,q)· 

= exp[i1T(~ - iA )]2- 3
/
4
1T-

lr(! - iA) 

XD . (- 02 I 12e3i1T14q)eiAt 
- 1/2 + IA , (6.13) 

where Dr (x) is the parabolic cylinder function (see Ref. 19; 
Chap. 19 and Ref. 10, Secs. 7.5 and 8.2). 

7. CONCLUSIONS 

The above study of all inequivalent one-dimensional 
quantum systems with up-to-quandratic potentials, which 
admit a finite-dimensional group,20 has shown how a general 
definition for a quantum manifold (in the sense of the geo
metric quantization) can be given based on the group. It has 
also been shown that for each case there exists in our formal
ism a natural polarization and that the role of the Blattner
Konstant polarization changing transformation (see, e.g., 
Ref. 4) is played by integral transforms of the group 
WSp(2,R) or of the semigroup HS(2,C), which include the 
four one-dimensional systems considered in this paper. 
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The logic approach to axiomatic quantum mechanics via orthocomplemented partial ordered sets 
of yes-no measurements, which constitute the observing part of a concretely realizable 
experiment on microworld, has been criticized from the empirical point of view by Mielnik, which 
on the contrary privileges the convex scheme linked to the preparing part. In this work we do 
assume that a description of quantum phenomenology must take into account both these two 
parts in which every elementary experiment can be decomposed. According to this predecision, 
we develop an axiomatic approach based on indistinguishability principles of a quantum 
information system. The very general concept of yes-no measurement or "question" is accepted, 
and then the set of all questions is classified according to the behavior with respect to a 
phenomenological orthogonality relation. In particular, we single out the set F offuzzy events or 
effects and the set E ~ F of exact events. The Mielnik critique is then refused since it regards the 
order structure of E using counterexamples which pertain to FIE. The notions of physical 
property and noperty are then introduced and an axiomatic foundation of quantum mechanics 
based on a pre-Hilbert space is discussed. 

P ACS numbers: 03.65.Bz 

1. INTRODUCTION TO AND CRITIQUE OF THE 
AXIOMATIC APPROACH 

In this section we introduce the axiomatic approach to 
quantum mechanics taking into account the Mielnik cri
tique. I It is well known that the scheme of states and obser
vables with the Hilbert space at the bottom is the final result 
of a long historical development and "provides a good struc
tural description of the existing theories. However, it seems 
to exclude the possibility of generalizations .... Moreover, 
(this scheme) is so compact that it is difficult to see in which 
point it could be relaxed without denying something very fun
damental. This is sometimes taken as an argument against 
the possibility of further generalizations of the present day 
quantum scheme. However, the conclusion from (these re
sults) might be just the opposite. 

After all, the most of the essential progress in physics has 
been achieved by denying something apparently ob-
vious .... There is no reason to think that this process is end
ed." I 

In the quoted work, Mielnik makes a critique to the 
traditional axiomatic approach to quantum mechanics ob
serving, "According to a general accepted philosophy the 
'quantum logic' is the set of all questions which may be put to 
micro-object .... It is a specific status of quantum axiomatics 
that it should reflect phenomenology. In order to verify the 
phenomenological background of quantum logical axioms a 
careful identification must be made in order to specify the 
elements of physical reality which correspond to the abstract 
'questions.' At this point the axiomatic theory is elusively 
elegant: 
Definition 1: A question is an arbitrary macroscopic ar

rangement which, when interacting with a 
micro-object, mayor may not produce a cer
tain definite macroscopic (alternative) effect; 
the presence of the effect is conventionally 

taken as the answer 'yes' whereas its absence 
is 'no.' " I 

An analysis of the methodologies the physical world is 
investigated with leads to the conclusion that the concretely 
realizable experiments may be considered as decomposed of 
two parts, each consisting of macroscopic apparatuses: the 
preparing part and the obseroing part. 

According to Ludwig, "we have ... to return to experi
mental situations which everybody, physicist or layman, 
might examine in a laboratory as objectively given events. 

Now, what kind of experimental situation should be 
selected as a starting point? .. We find a preparing part which, 
via a microscopic channel, can act on a signal part (obseroing 
part ), a part, that is, where the effects are produced. In the 
course of an experiment, the signal part will either respond 
or not. The preparing part, for example, might be an accel
erator with the target placed in the beam; and the signal part 
might be a counter .... 

The preparing part shall be an apparatus, objectively 
given and technically describable and the same is required of 
the signal part together with its response or lack of response. 

The term microscopical channel is only to indicate the 
action of the preparing part on the signal part, possibly pro
ducing a response signal." 2 

The simpler interpretative scheme of these experiments 
is the one in which ensembles of physical objects are pre
pared by a preparation macroscopic apparatus and then are 
tested by an observation macroscopic arrangement which 
produces a certain macroscopic alternative direct confirm
able effect. 

The measurement "shall be understood as the action of 
a single object upon a measuring-device, so that a direct, 
objectively traceable effect occurs or does not occur (e.g., 
counter signal, a cloud-chamber-track, blackening of a pho
tographic plate, etc.)." 2 
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"Since different tests correspond in general to different 
experimental setups, it will in general be impossible to per
form more than one test at once on the (object). And because, 
in general, the performance of a test changes the (object) and 
even sometimes destroys it, it will in general not be fruitful 
and sometimes impossible to perform more than one test on 
one (object)." 3 

Quoting Mielnik, "though the question may be put to 
any single micro-object, the answer becomes conclusive only 
if obtained for a great number of its independent replications. 
This leads to an abstract scheme where questions idealize the 
macroscopic devices used to test statistical ensembles of mi
crosystems." 1 

For making more precise the Mielnik critique we now 
introduce some physical considerations which will lead to 
the fundamental state-question structure. From now on, for 
elementary experiment we mean any experiment consisting 
of a preparing part and a signal or observing part, and it will 
be denoted by the couple (q, x), where x represents the en
semble of micro-objects prepared according to a well-de
fined preparing procedure while q is the alternative effect or 
question x is investigated with, according to a well-defined 
observing procedure. 

Experiments of this type present statistical regularities 
such that the quantitative analysis of the obtained results 
leads to a probability P(q, x) E [0,1] that the question q oc
curs once preparing the system according to x. To be precise, 
if x is a concrete method of preparation, q a concrete appara
tus, let N objects be produced by x. During the action of 
those objects on q, a certain effect, denoted by q too, may 
occur one time or may not another time. If N + is the number 
of objects yielding the effect, the ratio N + IN shall be called 
frequency. 

"The frequency N +1 N proves, for large N, to be almost 
independent of N provided we consider experiments which 
are really reproducible. Hence it is reasonable to introduce a 
function P(q, x) with O';;'P(q, x).;;, 1, which, when comparing 
with experiment, is to be taken as P (q, x) ~ N +1 N in 'phys
ical approximation.' " 2 

Therefore, the analysis of a certain phenomenological 
world is made up of a set of elementary experiments and any 
scientific theory which describes the corresponding phe
nomena must involve a triple (Q,S,P), called question-state 
structure, where: 

(1) S is a nonempty set whose elements are said to be 
preparation procedures of ensembles, or ensembles for short. 
Sometimes, with a certain misuse, we shall also say that the 
ensemble is prepared in the state XES. 

(2) Q is a nonempty set whose elements are the observa
tion procedures of effects, or questions for short. 

(3) P: Q X S ---+ [0,1] is a function, called the probability 
function. The value P (q, x) represents the probability of oc
currence of the question q relative to the ensemble x, or to the 
ensemble prepared according to x. 

Once a question q E Q is fixed we can introduce the following 
subsets of S: 

(a) The certainly yes domain of q: 

Sl(q): = Ix E S: P(q, x) = 1). 
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(b) The certainly no domain of q: 

So(q): = Ix E S: P(q, x) = 0). 

If x E SM) (resp. x E So(q)), then the question q is said to oc
cur (resp. nonoccur) with certainty. In other words "when 
the physical system has been prepared in such a way (i.e., 
XES) that the physicist may affirm that in the event of a 
measurement (of the question q) the result 'yes' is certain 
(i.e., x E SI(q)), we shall say that the question is 'true.' If the 
outcome for the question q is not certain (i.e., x E S/SI(q)), 
the statement 'q is true' is false, but we do not say 'q is 
false.' " 4 

To be precise, we shall say that the question q is "false" 
iff the physical system has been prepared in such a way that 
once q is measured the result "no" is certain (i.e., x E So(q)). 

Quoting Pool, "the phenomenological interpretation of 
the mathematical system, question-state structure, may be 
specified by selecting a collection of rules for the interpreta
tion of the primitive entities: questions, states and probabil
ity functions. 

The following collection is a possible (but obviously not 
the only) choice of these rules. 

A question-state structure (Q,S,P) is associated with 
the class of physical systems of a specific kind. 

(i) A state may be identified with a 'state-preparation 
procedure,' that is, instruction for an apparatus which 
produces sample physical systems of the specific kind. 
(ii) A question may be identified with the 'occurrence or 
nonoccurrence' of a particular phenomenon pertaining 
to physical systems of the specified kind. 

More specifically, a question may be identified with an 'ob
servation procedure,' that is, instructions for an apparatus 
which interacts with a sample physical system and indicates 
either yes or no corresponding to the occurrence or non
occurrence of the phenomenon. 

(iii) The interpretation of P (q, x) for XES and q E Q 
would then be the following: 

(1) Prepare an ensemble of sample physical sys
tems utilizing a state preparation procedure corre
sponding to x. 
(2) Determine the occurrence or nonoccurrence of 
the question q utilizing an observation procedure 
for q with each sample of this ensemble. 
(3) If the ensemble is sufficiently large, then the 
frequence of occurrence of q should be closed to 
P(q, x)." 5 

Of course, in studying a specific kind of physical system 
some additional principles and axioms must be introduced in 
order to describe the particular situation under examination. 
In the quantum logic case, Mielnik says that "now it is ar
gued, the validity of the basic axioms of the quantum logic 
(apart from weak modularity) is almost a matter of tautol
ogy. For instance: 
Axiom M.1: The identity axiom. 

Two 'yes-no measurements' (or 'questions') 
with the identical 'certainly yes' domain are 
obv(ously testing for the same feature, and so 
the difference between them is not essential: 
this motivates the identity law: 
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(id) SI(P) = SI(q) implies p = q. 

Axiom M.2: The uniqueness of the orthocomplementation. 
The existence of an unique orthocomplement 
q' for an arbitrary 'yes-no' arrangement q is 
beyond discussion: q' is simply that same 
measuring arrangement with the role of 'yes' 
and 'no' interchanged." I 

However, after an analysis of some concrete experimen
tal situations, Mielnik reaches the following conclusions: 

Conclusion 1: In spite of its elegant generality, the idea 
of a "question" as a quite arbitrary macroscopic arrange
ment which produces a certain macroscopic alternative ef
fect is wrong. 

Conclusion 2: Something would be broken in the as
sumed structure of Q: 

(iia) either the identity axiom 
(iib) or the uniqueness of the orthocomplement. 

In this work we do accept the very general notion of 
"question" as a macroscopic arrangement which behaves 
according to Definition 1. On the contrary, once some em
pirically well-founded assumptions about the structure 
(Q,S,P) are introduced, we partially agree with Conclusion 
2. 

In particular, as regards (iia) we shall substitute in Sec. 2 
the identity axiom with an indistinguishability principle, ac
cording to Ludwig's approach to axiomatic quantum me
chanics. 2 

Relative to (iib), it is possible to single out a particular 
subset F of questions for which the orthocomplement uni
queness holds; however, the corresponding orthocomple
mentation is quite different from the usually considered one. 
To be precise, the collection of all these questions has a struc
ture (F,O, 1, <:) of a degenerate orthocomplemented partial
ly ordered set (poset, for short), and using Ludwig terminol
ogy its elements are called effects. A particular subclass E of 
effects, whose elements are the events, is introduced in Sec. 
7, and it is shown that this is the peculiar class of questions in 
which the identity axiom holds and the orthocomplementa
tion is not degenerate. 

The quantum phenomenology is then reflected by the 
general effects from F, which are the elements of physical 
reality that correspond to the abstract "questions," whereas 
the elements of the usual quantum logic axiomatic are the 
elements from E. These two "levels" of description of quan
tum phenomenology must not be confused. 

In this context, Axioms M.1 and M.2, introduced by 
Mielnik in his critical reexamination of quantum logic, per
tain to the events structure and not to the more general one 
involving effects. Therefore, from our point of view, it is not 
right to verify the phenomenological background of quan
tum logic axioms, related to events, using the phenomeno
logy pertaining to general effects. In particular, the counter
examples presented by Mielnik against the logic approach 
are not acceptable for they are examples of general effects 
which are not events. For example, not all the identities 
which would "collapse" the quantum logic are right since 
they refer to effects for which the degeneration of orthocom
plementation does not imply that q 1\ q' = 0 and 
q V q' = 1 (see Sec. 3). 
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Moreover, let us remark that the degeneration of the 
orthocomplementation of F implies that the corresponding 
orthogonality relation q 1 p iff q<p' (or, equivalentIy,p<q') is 
degenerate too, and so there could exist elements q E F such 
that q 1 q. The semitransparent mirror considered by Miel
nik is an example of such a degenerate effect. Hence, this 
orthogonality is symmetric, but is not irreflexive (i.e., p 1 q 
does not imply p#q) and so the Foulis-Randall approach to 
orthogonality, 6-1 I where the irreflexivity is an essential con
dition for the development of the theory, cannot be applied. 

In conclusion, the philosophical idea which underlies 
our work is to consider as a starting point a question-state 
structure with two indistinguishability principles. No other 
axiom is required (e.g., Ludwig's sensitivity increase of two 
effects,2 sensitivity increase of one effect, 12 Piron's axiom A, 
axiom C, axiom P on the set of yes-no experiments, 13-16 

Mielnik's convexity condition on the set of states, I and so 
on); rather we naturally single out some suitable substruc
tures from the poset of all questions characterized by well
defined properties with respect to the original degenerate 
orthogonality. 

To be precise, the posets of all: 
(a) generalized effects Fg : = I q E Q: 3 q' = max I q] \ 

3 q" = maxlq']l], 
(b) effects or fuzzy events F: = I fE Fg , 

3/, E Q 3 P(f, x) + P(f', x) = 1,V x E SJ, 
(c) exact events E: = I a E F:(SI(f) = SI(a) => a<f) 

and (SI(g) = So(a)=>a'<g)]. 
Ludwig's approach refers to (a) [or, perhaps, to (b)], 

with the crucial assumption of sensibility increase of two 
effects; the usual quantum logic approach refers to (c) with 
some additional assumption in order to recover, also if in 
some weaker formulation, the mathematical Hilbert-space 
structure of which the quantum theory makes technical use 
for describing the microworld. 

2. ORDERING, PHENOMENOLOGICAL IMPLICATION 
AND ORTHOGONALITY IN THE STATE-QUESTION 
STRUCTURE 

, 

In spite of the fact that all the information we can obtain 
about the physical system is contained in the triple (Q,S,P), 
the following two principles are physically well founded: 

Axiom 2.1: Indistinguishability principle of preparation 
procedures: 

If P(q, XI) = P(q, x 2 ) for all q E Q, then XI = x 2 • 

That is, if the previous condition holds the two preparation 
procedures x I and X 2 are called equivalent. They produce the 
same ensemble in the following sense: Both ensembles yield 
equal probabilities, i.e., information, for all available ques
tions q E Q and so we cannot obtain, in any way, any infor
mation about the system that allows us to distinguish 
between them. Consequently, equivalent x will not be distin
guished from now on and two distinct preparation proce
dures XI and X2 must assign different probability distribu
tions at least to a question. 

Axiom 2: Indistinguishability principle of observation 
procedures: 

If P(ql' x) = P(q2' x) for all XES, then ql = q2' 
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In the same way ql is called equivalent to q2' To detennine 
frequencies on the ensembles by use of one apparatus yield
ing q I or another one yielding q2 makes no difference then. In 
the following we shall not discriminate ql and q2 and so the 
set of states is separating. In this way, we do agree with the 
observation that "it seem reasonable to stipulate that a ... 
condition for logical equivalence of questions is that they 
have the same probability in every state (i.e., preparation 
procedure). Indeed, it seems monstrous to claim two ques
tions are logically equivalent when they take different proba
bilities in every state." 17 

In conclusion, two preparation (respectively, observa
tion) procedures are indistinguishable if they give the same 
experimental information once all possible elementary ex
periments are perfonned inside the question-state structure 
under examination. 

Axiom 3: The existence of the certain and the impossible 
questions: 
The set Q of all questions contains an element I, called the 
certain question, such that 

P(I, x) = I for every XES, 

i.e., the answer is always "yes" (this question consists of the 
observing procedure which verifies that the system exists) 
and contains an element 0, called the absurd or impossible 
question, such that 

PIG, x) = ° for every XES, 

i.e., the answer "no" is always given. 
Let us notice that in the particular cases of these trivial 

questions we have 

SI(G) = 0 and SolO) = s, 

SI(l) = Sand SolI) = 0. 

(2.la) 

(2.lb) 

According to Ludwig, "now a remark is important for 
the following: we have avoided using the word 'measure
ment' quite intentionally hitherto. The concept of measure
ment could produce the idea that using an apparatus (for 
observing a question) q, something is measured or deter
mined on the object, the question q revealing some property 
of the object such that if q occurs the object has this property. 
We shall argue neither for nor against this kind of description. 

Primarily, we find effects (questions) q on certain de
vices constructed technically ... , these effects (questions) say
ing nothing immediate about qualities of an 'object.' Hence 
the problem of 'object-properties' and their measurement 
shall be left aside and only be discussed later." 18 

From Axiom 2 it follows that the set of states is order
determining; in the sense that the binary relation defined on 
Qby 

(or) p<.q iff PIp, x)<.P(q,x) for all XES 

is a partial order relation, that is, it satisfies the properties 

p<p, (reflexive) 

p<.q and q<.p imply p = q, (antisymmetric) 

p<.q and q<.r imply p<.r. (transitive) 

Relative to this partial order, (Q,O,I,<.) is a poset bounded 
by the least element 10 and the greatest element 1. 
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The phenomenological interpretation of the order rela
tion may be briefly summarized: p<.q means that the prob
ability of occurrence of the questionp is equal or less than the 
probability of occurrence of the question q, whatever is the 
ensemble x in which the system is prepared. Of course, the 
following property holds: 

p<.q implies Sdp)!: SI(q) and So(q)!: So(p). (2.2) 

In particular p<.q implies that if p occurs with certainty (i.e., 
is "true"), then q also occurs with certainty (i.e., is "true"). 

If we have the situation that whenever a question p is 
"true," then the question q is also "true," we shall denote 
this as p C;;; q, and we shall say "p is stronger than q" or that 
"q is less than p," i.e., 

(pi) P!: q iff SI(P)!: SM)· 

In general this relation has the following properties: 

p C;;; p, (reflexive) 

p C;;; q and q C;;; r, then p C;;; r, (transitive) 

where p, q, r are questions of the system. So the binary rela
tion !: is apreorder (in general, not antisymmetric) relation 
on the set of questions called the phenomenological relation 
of implication.s 

People working on axiomatic quantum mechanics have 
been accustomed to think that at least two meaningful bina
ry relations can be given in the set Q of all questions testable 
for a given physical system, viz., the one used by Mackey, 19 

which is just (or), and the one used by Jauchzo and Piron21 

expressed here in the equivalent form (pi).22 In the frame
work of a question-state structure these two relations do not 
coincide in Q: we can only state that 

p<.q implies p C;;; q. (2.3) 

From our point of view, it is physically meaningless to ask 
whether or to assume that these binary relations coincide on 
Q: more correctly, the problem is to single out a physically 
well-defined subset of Q in which the order relation (or) and 
the phenomenological implication (pi) coincide. 

Notice that from the ordering properties of (or) we also 
deduce that: 

If pVq exists, then Sj(p)uSI(q)!:SI(pVq) 

and So(pV q) C;;; So(p)nSo(q), (2.4a) 

If pl\q exists, then SJ!pl\q)C;;;Sj(p)nSI(q) 

and So(p) u Sol q) C;;; So(p 1\ q). (2.4b) 

The idea of a pair of mutually exclusive or mutually 
disjoint questions p and q, written piq, is formalized by the 
definition 

(og) piq iff P(p,x)+P(q,x)<.l, for every XES. 

It is easy to prove that in the poset Q this binary relation is a 
weak degenerate orthogonality,23,24 i.e., it satisfies the condi
tions: 

(ogl) piq implies ql.p, 

(og2) Oiq for all q E Q, 

(symmetry) 

(O-orthogonality) 

(og3) Po<'P and piq imply Poiq. (absorption) 

Let us remark that the degeneration property, i.e., the fact 
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that there could be some elements q E Q such that qlq, im
plies that this orthogonality relation is not irreftexive (i.e., 
such that q1p implies q=/=p) and so it is not an orthogonality 
relation in the sense of the Foulis-Randall approach to oper
ational statistics.6-11 The set 

Ker(l): = I q E Q: qiq J 

:= IqEQ: P(q,x)<!, for every XESJ 

is called the kernel of the orthogonality; the orthogonality is 
said to be nondegenerate iff Ker(l) = 10 J .23.24 

From the properties of the orthogonality relation it fol
lows that 

plq implies SI(P) ~ Sol q) and SI( q) ~ So(p)· (2.5) 

That is, plq implies that if q occurs with certainty (i.e., is 
"true"), then q nonoccurs with certainty (i.e., is "false"), and, 
if q occurs with certainty (i.e., is "true"), then p nonoccurs 
with certainty (i.e., is "false"). 

Notice that if I ql' q2J is a pair of orthogonal questions 
then 0< };~~ I P(qj, x)< 1. On the other hand, if 
I ql,q2,··.,qn J is a set of pairwise orthogonal questions, then, 
in general, we cannot state that 0< };7 ~ I P (q;. x)< 1. 

Example: Let S = [r, y,v J be a set of three ensembles 
and let I ql,q2,q3J be the set of questions schematically pre
sented in 

r 1 

y 

o 0 
1 
2 

V 2 ! § 
Then the questions qj are pairwise orthogonal but 
};; ~ I P (qo y) = ~ and};; ~ I P (q;. v) = ~. Moreover, we have 
that q21q2' 

Definition 2.1: A countable set of questions {q I>q2"" J is 
said to be globally orthogonal, written I q l,q2'" J 1, 
iffO<}; P (q;. x)< 1. 

Of course, I q l,q2'" J 1 implies that every pair I qj, qj J 1, 
with qj =/=qj' but the converse, as the previous example 
shows, is not true. 

3. GENERALIZED EFFECTS AND WEAK DEGENERATE 
ORTHOCOMPLEMENTATION 

After these remarks about the poset with weak degener
ate orthogonality (Q,O,I,<,l), we shall proceed to a classifi
cation of the elements from Q as to their orthogonality be
havior. 

Definition 3.1: In the poset with orthogonality Q, for 
any fixed element q E Q, the set {q J 1 defined as 

{qJl: = I p E Q: plqJ 

: = [p E Q: PIp, x) + P(q, x)< 1, for every x E SJ 

is called the orthogonal or exclusive domain of q. 
Let q E Q; then we shall denote by q', if it exists, the 

element of Q such that q' = max {q J \ i.e., such that the fol
lowing two conditions are satisfied: 

(i) q'lq; 
(ii) let piq; then p<q'. 

Obviously, the element q', ifit exists is also unique. 
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The element q E Q is said to have orthogonal comple
ment iff the following conditions are satisfied: 

(ogco 1 ) there exists q' = max I q J 1 , 

(ogc02) there exists q" = maxlq'Jl. 

The collection of all questions q which possess orthogonal 
complement is denoted by F g' An element q from F g is called 
a generalized effect or generalizedJuzzy event. Obviously, the 
trivial questions ° and 1 are generalized effects since 0' = 1 
and}' = 0. 

Proposition 3.1: Let q E F g then there exists 
q"'=maxlq"J 1 andq'=q"'. 

Proof From (ogc02) it follows that q' lq", that is 
q' E {q" J 1. Let now p E Q be such that p E {q" J 1 ; we shall 
prove thatp<q'. Since qlq' follows by (ogc02), we have that 
q<q", from which [q" J 1 ~ I q J 1 follows from the absorp
tion property of orthogonality. We obtain that p E {q" J 1 im
plies that p E {q J 1, and so it must be p<q', since 
q' = max[qJl. 

Corollary: Let q E F g; then also q' E F g' 
Proof Obviously, q" = (q')' and q' = (q")' = (q')". 
Remark: To be precise, q E Fg iff there exist two ques-

tions q',q" E Q (and then, from previous results q' and 
q" E Fg too) such that 

P(q,x)+P(q',x)<1 for every XES, (3.1') 

P(q, x) + PIp, x)<1 implies PIp, x)<P(q', x), 

P(q", x) + P(q', x)<1 for every XES, 

(3.1 ") 

(3.2') 

P(q', x) + P(q, x)<1 implies P(q, x)<P(q", x). (3.2") 

Proposition 3.2: The mapping F g - F g' q _ q' is a weak 
degenerate orthocomplementation, i.e., it satisfies the condi
tions: 

(ocI) q<q" for every qEFg, 

(oc2) q<p implies p'<q'. 
The kernel of the orthocomplementation Ker'(Fg) is then 

Ker'(Fg)= {qEFg: q<q'J = {qEFg: qlqJ 

= {q E Fg: P(q, x)<!, for every x E SJ. 
Proof Condition (3.2"), in the particular case of (3.1 '), 

implies that P (q, x)<P (q", x) for every XES, i.e., q<q". Let 
now qqJ then { p J 1 ~ (q J 1 is a consequence of the absorp
tion property of the orthogonality and so p' <q'. 

Remark: Equipped with the order relation induced 
from (or) the structure (Fg,O,I,<,') of all generalized effects 
is therefore a weak degenerate orthocomplemented poset. 

In Ref. 23, Proposition 1.6, it is shown that for such a 
poset the following properties are equivalent between them: 

(og3a) Ker'(Fg) = [OJ, 
(og3b) q 1\ q' = ° for every q E Fg. 

If this is the case, the orthocomplementation is said to be 
nondegenerate. 

From a phenomenological point of view, and compar
ing our approach with Mielnik's conclusions, we may say 
that: 

(a) The generalized effects agree with the general defini
tion of "questions" as proposed in Mielnik's Definition 1, 
quoted in Sec. 1. 

(bi) The identity axiom (Axiom M.l) is substituted by 
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the "stronger" indistinguishability principle (Axiom 2.2), 
which implies the identity axiom. 

(bii) The orthocomplemented question q' of any element 
q E Fg is unique, but the orthocomplementation is weak and 
degenerate. 

The semitransparent mirror ST proposed by Mielnik as a 
counterexample is obviously an element of Fg belonging to 
the kernel since ST = ST I, and in this case as previously re
marked, we cannot conclude that either ST /\ ST' = 0 or 
ST V ST' = 1; on the contrary, for this particular question 
we rather have that ST = ST /\ ST I = ST V ST I = ST I. 

Therefore, the Mielnik conclusion that the whole struc
ture of F g would collapse is not correct since not all the 
following identities are right: 

o = ST /\ ST I = ST /\ ST = ST = ST V ST 

=ST V ST' = 1. 

On the other hand, starting from the previous analysis on the 
semitransparent mirror, Mielnik reports, as a possible an
swer to the inexact collapse result, the following as a general 
conclusion: 

"One might reply, that the axioms of quantum logic are 
exact, but they must be properly understood. [More exactly] 
(g) One feels that in order to be a quantum mechanical mea

suring device, the macroscopic arrangement should do 
something more specific than merely produce the 'yes' 
and 'no' effects in an arbitrary way. [Concluding that] 
not every arrangement producing a macroscopic alterna
tive effect is a question." I 

In the particular case of the semitransparent mirror: 
"(g 1) It is not a good example of a 'question' since it is not at 

all a measuring device: it does not verify any physical 
property of the transmitted photons. 

(g2) In some axiomatic approaches the conclusion (g) is as
sured by requiring that the 'yes-no measurement' 
should have the nontrivial certainty domains: there 
should be some microsystems for which the answer 
'yes' is certain (i.e., SI(q)#0) and some other for which 
the answer 'no' is certain (i.e., So(q) #0)." I 

He concludes that "this requirement eliminates the semi
transparent window as an element of Q." I 

From our point of view, on the contrary, it is true that 
the semitransparent mirror is a question, i.e., an arrange
ment producing a macroscopic alternative effect. It pos
sesses a unique orthocomplemented question, the semitrans
parent mirror itself; but the involved orthocomplementation 
is weak and degenerate. 

More generally, we feel against (g) "that every arrange
ment producing a macroscopic alternative effect is a ques
tion" and this "means that the whole approach of 'quantum 
logic' starts from an information which is (in agreement with) 
the usually given." I 

Moreover, as we shall show later, the semitransparent 
mirror, against (gl), also verifies a certain physical property 
of the transmitted photons, but in a manner which is deeply 
fuzzy. To be precise, it can be regarded as a fuzzy representa
tion of the exact property associated to the impossible ques
tion 0 and this, against (g2), as a consequence of the fact that 
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its certainly yes domain is empty, i.e., identical to the cer
tainly yes domain of the impossible question O. 

4. THE DEGENERATE LOGIC OF EFFECTS 

In this section we select from the set Q of the structure 
(Q,S,P) a special collection of questions, called effects or 
fuzzy events, whose orthocomplemented ordered properties 
are studied. 

Definition 4.1: An effect or fuzzy event of the structure 
(Q,S,P) is any question/ E Q such that there exists a question 
/' E Q which satisfies the condition 

P(/,X)+P(f',X)= I for every XES. (4.1) 

The set of all effects from (Q,S,P) is denoted by F. Obviously, 
every effect is also a generalized effect, i.e., 

F ~ Fg 

and the trivial questions 0 and 1 are elements of F. 
In spite of the fact that if/ "is an arbitrary macroscopic 

arrangement producing certain macroscopic alternative ef
fects of which one is called 'yes' and the other is 'no', the/' is 
interpreted as essentially the same arrangement with an op
posite convention determining what is 'yes' and what is 
'no.' " I In fact the question/' is measured with exactly the 
same apparatus as/, the only difference being that the results 
are inverted: If/produces the answer "yes," then/' produces 
the answer "no" and vice versa. 

Notice that 

(4.2) 

hence/, is true iff when we should decide to perform the test 
corresponding to/, we obtain with certainty the answer 
"no," i.e.,/is false and vice versa. 

Therefore, in conclusion, we have obtained a state-e/
/ect-probability structure (F,S,P) which satisfies the follow
ing axioms introduced by Gunson25 and which we quote in 
our notation and in a different order (we also quote in square 
brackets the corresponding Gunson numeration): 

Axiom G.l[Axiom A.I}: P(fl> x) = P(f2' x) for 
all XES iff/I = /2; /1'/2 E F. 

Axiom G.2[AxiomA3]: P(/,xtl =P(/,x2) for all / 
EFiffxl =x2; X I ,X2 ES. 

Axiom G.3 [Axiom A]: There exists 0 E F such that 
P(O, x) = 0 for all x E S. 

Axiom G.4 [Axiom A5}: For every /E F there is an 
element/' E F such that 

P(/,x)+P(f',x)= 1 for all XES. 

An order relation < can be induced on F from the ca
nonical order relation: 

(or) /1</2 iff P(fl' X)<P(f2' x) for all XES. 

Let us remark that Axiom A.4 of the Gunson paper is just 
the definition of the order relation < we have now intro
duced. 

Of course, if IE F, then also/, E F and the mapping 
F -+ F,/ -+ /' is a degenerate orthocomplementation on F, 
that is, it satisfies the conditions: 

(ocl) /=/" for every /E F, 
(oc2) /1 </2 implies I; </; . 
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The orthocomplementation kernel is the set 

Ker'(F) = (/ E F: /<J' J 

= (/E F: P(/, x)<! for every x E SJ, 

and in this case the following propositions are equivalent: 
(oc3a) Ker'(F) = (OJ, 
(oc3b) / V/'= 0 for every /E F, 
(oc3c) /1\ /' = I for every /E F. 

In this way (F,O,I,<,') is a degenerate orthocomplemented 
poset in which the generalized de Morgan laws hold: 

(DMl) If/ V g exists, then/' 1\ g' exists and it is 
/' 1\ g' = (/V g),. 

(DM2) If/ 1\ g exists, then/' V g' exists and it is 
/' V g' = (/ 1\ g),. 

Example 4.1a: The semitransparent mirror discussed 
by Mielnik is an effect belonging to the orthocomplementa
tion kernel and for this effect we cannot state neither 
ST V ST' = 1 nor ST 1\ ST' = O. This result is inconsis
tent with Theorem 2.1 quoted by Gunson,25 in which it is 
asserted that the axioms from G.1 to G.4 assure that the 
complementation/ -+ /' is nondegenerate. This incongru
ence has already been recognized by Kupczynski,26 which 
presents the following counterexample: 

S consists of only two pure ensembles XI' x 2, and F of 
two detectors d and I, their corresponding complements, and 
o and 1; the probability of occurrence is given by the follow
ing values: 

did' I' 

XI ! A ~ ~ 
X 2 j ~ i ~ 

The structure (F,S,P) obviously satisfies the Gunson axioms, 
and we have in particular that I<d according to the (or) order 
relation. The result thatd<d' (or 1<1') only tell us thatd and 
IE Ker'(F) and thus that the involved orthocomplementa
tion is degenerate, but has nothing to do with the considera
tion that the "implication < is physically completely unjusti
fied." 26 

Example 4: 1: The two hypothetical macroscopic de
vices A and B acting on mixtures of reds, yellow, and violet 
light proposed by Mielnik I can be considered as nondegener
ate effects of a suitable structure (F,S,P). In fact, "the device 
A transmits the red photons and absorbs the yellow and vio
let ones: however, it reemits an average 1/2 of the absorbed 
yellow photons in the form of red photons. The device B is 
also transparent for the red photons and absorbs the yellow 
and violet ones: now, however, 1/2 of the violet photons are 
reemitted in the form of red photons. 

Schematically: 

S A 
I 

red/red 

yel 
1/2 

viol -+ 0 

S 
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B 

Both devices A and B have the common 'certainly yes' do
main: they are completely transparent only to the red pho
tons .... However, A and B have different domains of 'cer
tainly no,' and so, they are not physically equivalent." I 

This last consideration does agree with our assumption 
of substituting the identity axiom with the indistinguishabi
lity principle: therefore A and B are two different questions, 
i.e., are arrangements producing two different macroscopic 
alternative effects, and cannot be considered as two different 
physical realizations of the same abstract question. Rather, 
as we shall see later, they are merely two different fuzzy 
realizations of the same property: "the light is red." 

The corresponding orthocomplemented questions are 
the hypothetical macroscopic devices A ' andB' schematical
ly shown in the next figures: 

S A' S B' 

red -+ 0 
1/2 

yel -+ red 

ViOI/ 

red -+ 0 
I 

yel -+ red 

ViO/~ 
These last are two essentially different prescriptions for pro
ducing the negative of the questions A and B, respectively. If 
S is the set of all possible mixtures of red, yellow, and violet 
light, and Q is the set of all detectors of red lights, then 
considering the structure (F,S, P) we have that: 

(a) A, B, E F, i.e., are effects with A =/=B. 
(b) Both the questions A and B have an unique ortho

complemented question, A' and B', respectively. 
(c) A and B are not elements of Ker'(F). 
As usual, from the degenerate orthocomplementation 

on F we can induce a degenerate orthogonality relation 1 of 
mutually exclusivity defined by one of the equivalent condi
tions: 

/11/2 iff /1 <I; 

iff /2 <I; 

iff P(/I' x) + P(/2' x) < 1, for all XES. 
Once an effect/ E F is fixed, we shall denote by (/ J 1 the set 
of all effects/ 1 E F which exclude/, i.e., such that (/1) 1/ 
Since /' = max ( / J 1 we have that 

SI(/l) ~ SI(/') = So(/), 

SI(/) = So(/') ~ SO(/l). 
Therefore, there exist as many possible effects which exclude 
the effect/, at least as many as are the elements of ( / J 1. The 
unique orthocomplemented effect/, of/ has the property 
that it excludes/, it is the lub of all other effects which ex
clude/and so its certainly no (resp. yes) domain is the mini
mum (resp. maximum) as to all effects which are opposite to 
/ In the case of Example 1, an effect which is exclusive toA is 
the effect Al presented in the following scheme: 

S Al 

red -+ 0 
1/2 

yel -+ red 

ViO/~ 
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In conclusion, to sum up the discussion up to now we 
have seen that from every question-state structure (Q,S,P) it 
is possible to single out the degenerate orthocomplemented 
poset (F,O,I,,,;;,') of all effects. The counterexamples present

ed by Mielnik are effects, and, using the conventional lan
guage of the axiomatic approach to quantum theory, we can 
say that F is the "logic" oj all effects inside the question-state 
structure. 

Orthogonality axioms 

A state-effect structure satisfies the strong orthogona
lity axiom iff the following condition holds for the set of 
effects: 

Axiom OG.S: For any finite set of pairwise orthogonal 
elements ofF, l.t:: i = 1,2, ... ,n], then 

" (1) 0,,;; L P(/;, x) ,,;; 1 for all XES, 
i= 1 

(2) there is an elementJ E F (called the sum of the/;l 

" such thatP(J, x) = L P(/;, x) for all XES. 
i= t 

Let us remark that this strong orthogonality axiom is just 
Axiom A.6 of the Gunson paper and as Finch has shown in 
Ref. 27 if Axiom OG.S holds then the poset of all effects of a 
state-effect structure is an orthomodular orthoposet. 

A state-effect structure satisfies the weak orthogonality 
axiom iff the set of effects is such that the following condition 
holds: 

Axiom OG: For every finite sequence { JI'/2""'/" J of 
globally orthogonal effects, there exists an effectJ E F (called 
the sum of the /;) such that 

" P(J, x) = L P(/;, x) for all XES. 
i= 1 

Of course, the strong orthogonality axiom implies the weak 
orthogonality axiom. 

5. YES-NO EXPERIMENTS AND JP AXIOMS 

In their axiomatic approach to quantum mechanics, 
Jauch and Piron are mainly interested in the behavior of the 
certainly yes domains of questions rather than in their prob
ability occurrence with respect to all preparation proce
dures. 

"A certain class of measurements plays a particularly 
important role in the establishment of the physical proper
ties of a system. It is the experiment (a) with only two possi
ble results which may be denoted by 1 or 0 (yes or no). We ... 
shall refer to (such experiments) as yes-no experiments." 13 

We agree with the remark that "a formalization in the 
framework of mathematics ... of the intuitive sentence 'a is 
true' is only possible if one also has as a basic set the set S of 
states." 2 Indeed, in one of his works Jauch also explicitly 
asserts: "we shall say a yes-no measurement is 'true' in a 
particular state if its measurement will give the result yes 
with certainty (probability one)." 15 

We now try to translate Jauch-Piron theory in the con
text of state-effect structure, quoting at the beginning of any 
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definition the original numeration presented in Refs. 28 and 
29. 

In our structure a possible interpretation of a yes-no 
experiment a(J) associated with the effectJcould be a suit
able pair of subsets of ensembles according to the following 
definition: 

D2 (yes-no experiment): a(f): = (SI(f), So(f))· 
D5 (trivial yes-no experiments): The yes-no experi

ments associated with the trivial effects are: 

a(O) = (0,S) and all) = (S,0). 

In this way, the set of all yes-no experiments which can be 
performed on the system described by the state-effect struc
ture (F,S,P) is the collection of pairs of subsets ofS defined as 

Y: = ((AI,Ao): 3JE F 3 AI = SI(f),Ao = So(f)], 

which satisfies the conditions 
(i) (A I' Ao) E Y implies (Ao, Ad E Y, 
(ii) AI nAo = 0. 

An effectJE F is an experimental equipment which mea
sures or realizes the yes-no experiment a E Y iff a = a(f). In 
general, there could exist several different effects which mea
sure the same yes-no experiment. Hence, from D2 we can 
introduce a mapping a: F - Y which, in general, is not one
to-one, contrary to the assumption that "it is possible to 
identify F with y''' 2 Following Ref. 29 "a bridge between 
(our model of) Piron's language and the ordinary predicate 
calculus (can be sketched) by a set of 'connecting definitions' 
CD." 

CD I : For any yes-no experiment a and any ensemble x 
and for any realizationJ of a [i.e., a = a(f)], we denote by 
Pa (x,/) the following proposition in the sense of the predi
cate calculus: The result of the realizationJ of the yes-no 
experiment a on the system prepared according to x is "yes" 
with certainty: 

Pa(x,/) iff a = a(f) and P(J, x) = 1. 
CD2 : The proposition from the predicate calculus 

~ P a (x,/), called the negation in the sense of the ordinary 
logic, is the one obtained as CD I, where the last word "yes" 
is changed to "no": 

~Pa(x,/) iff a = a(f) and P(J, x) = O. 

CD3 : [a is "true" for the ensemble xo] iff 
[(V J) Pa (xo'/)]· 

The yes-no experiment a is "true" for the particular 
ensemble Xo iff its measurement by any realizationJ of a will 
give the result yes with certainty (i.e., probability 1).15 

D6: (certain or true yes-no experiment): "When the 
physical system has been prepared in such a way (i.e., Xo E S) 
that the physicist can affirm that in the event of an experi
ment (i.e.,/E F) corresponding to a yes-no experiment a 
[i.e., a = a(fll the result will be "yes" [i.e., P (J, xo) = 1], the 
yes-no experiment a is certain or the yes-no experiment a is 
true." 28 

The set of all yes-no experiments can be considered as a 
structure (Y,a(O), all), ~ ,V), once the following definitions 
are introduced: 

D7 (preorder relation): ~ is the partial preorder relation 
defined in the following way: Let a = (A I' Ao) and 
(J = (E I , Eo); then a ~ (J iff AI ~ E I· 
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We shall say the yes-no measurement {3 is "stronger" 
than the yes-no measurement a iff whenever a is true then {3 
is also true. 

CD4 :[a (:{3] iff (Vx)[(V/)Pa(x,[) (;;;; (V g)pp(x, g)]. 

"A natural partial (pre)-ordering is defined on the set of all 
yes-no experiments. For example, if the system is prepared 
in such a way (i.e. x EAt) that whenever the yes-no experi
ment a = (A I' Ao) is true, then there may be another 
{3 = (BI' Bo) which is also true with certainty (i.e., x E B I)." 14 

D3 (opposite or negation): Let a = (A I' Ao); then 
a V 

= (Ao,AI)' 
If a is a yes-no experiment, a v is the yes-no experiment 

obtained by exchanging the terms yes and no of the alterna
tive. Of course, if a = a(f), then a V = at!'), and so, if the 
effect/realizes the yes-no experiment a, then the effect!' 
realizes the yes-no experiment a V

• 

"If a is a yes-no measurement then there exists another 
one, denoted by a V

, obtained from a by inverting the results 
yes and no. Thus if the result of a is 'yes' that of a V is 'no' and 
vice-versa. It is clear that a V can be measured with the same 
physical equipment as that used for the measurement of 
a." 13 

ties: 
So we have a mapping Y _ Y, a _ a V with the proper-

(i) (a V
) v = a, 

(ii) let{3 = (BI' Bo) and {3 (;;;; I a, a V J; 
then Bt = a(G). 

In the Jauch-Prion approach a fundamental role is 
played by the axioms which we now get to introduce. Quot
ing Ref. 3, "in general the results of a test of one question are 
profoundly influenced by the testing of another question. In 
most cases it makes even no sense to perform two tests on the 
same (system). 

There is indeed a way to construct a question that 
makes it possible to test several questions at once. 

Let us analyze this first on an example: 
We take ... a piece of wood as (system). We consider the 

following two questions: 
(q) "set the wood on fire and give the answer 'yes' if it 

burns," 
(p) "make the wood float on water and give the answer 'yes' 

if it floats." 
If we perform first the test p, and make the piece of 

wood float on water, we have brought the wood in the state 
of wet wood and as a result the wood will not burn anymore. 
On the other hand, if we perform the test q and burn the 
wood, it will not float anymore on water. 

We shall make the following definition: 
Given two questions q and p we define a new question, 

denoted by p . q, that consists 

(1) of choosing one of the two questions at random, 
(2) performing the test corresponding to this chosen 

question, 
(3) attributing the answer obtained in this way to the 

question p . q. 

We will call this question the product of p and q. 
The product questionp . q is well defined since the mea

suring apparata and the manuals that we need are just the 
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measuring apparata and the manuals that we have for p and 
for q." 

A possible realization of the product of two effectS/I 
and/2 is an effect/tl2 such that 

P(ftl2' x) =! [P(fl' x) + P(fz, x)] for all XES. 

Indeed, this effect can be concretely executed preparing an 
ensemble onN sample objects according to the procedure x. 
In correspondence to each of these sample objects we choose 
at random one of the two equipments/I orJ; and record the 
outcome of its measurement on the single object as the out
come of/I/z. Of course, the test of/I' on average, has been 
performed on N of the original sample objects and the test of 
/2 on the other N sample objects. Let N'+ and N'~ be the 
numbers of sample objects yielding the effectS/I and/2, re
spectively. ThenN'+ + N'~ is assumed to be the number of 
the original2N sample objects which yield the effect/I /2 and 
so, in physical approximation, we have that 

P (ftl2' x) - (N'+ + N'~ )/2N. 

Let us remark that according to this definition we have that 

P(ftl2' x) = 0 iff P(fl' x) = P(f2' x) = 0, 

P(ftl2' x) = 1 iff P(fl' x) = P(f2' x) = 1. 

Hence, a state-effect structure satisfies the axiom JP iff the 
following statement on the set of effects holds: 

Axiom JP: For any pair of effects 1/1'/2 J there exists at 
least an effect denoted by /1/2 such that 

(1) SI(ftl2) = Sdftl n SI(n, 

(2) SO(ftl2) = So(ftl n So(f2)' 

Remark: If 1/1,[2,[3 J are effects then there exist the 
effects (ftlz)J;,n/tl2),[I(fzf3)' and so on. A priori, these 
effects do not necessarily coincide, but anyone of them is 
characterized by the same certainly yes domain 
n I SI(/;): i = 1,2,3 J and the same certainly no domain 
n I So(/;): i = 1,2,3 J. 

In general, if we have any family of effects/;, the effect 
IIi/;' called the product of the/;, is the following: 

We choose at random one of the/; and measure it. The 
answer obtained by performing the test of this chosen effect 
is then attributed to IIi/;' 

A state-effect structure satisfies the axiom c-JP iff the 
set of all effects is such that the following statement holds: 

Axiom c-JP: For every set I fj: j E J J of effects there 
exists at least one effect II fj such that 

(1) SI(IIfj) = n SI(fj), 

(2) So(IIfj) = n So(fj). 

Let one of the JP axioms be true; then if I aj J is a set of yes
no experiments, a j = a(fj) = (SI(fj), So(fj)), the yes-no ex
periment associated with II(fj) will be denoted by IIa

j
, i.e., 

D4 (product o/yes-no experiments): 

IIaj : = a(IIfj) = (n SI(fj), n So(fj)). 

"If I a j I is a family of yes-no experiments, IIaj is the 
yes-no experiment defined in the following manner: One 
measures an arbitrary one of the a j (i.e., measures any fj E F 
such that a j = a(fj)) and then attributes to IIaj the answer 
thus obtained (i.e., IIaj = a(IIfj))." Z8 
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Of course, once I aj : j E J j is fixed there could exist sev
eral different effects which satisfy Axiom JP, but the corre
sponding yes-no experiment ITaj is unique. At any rate, by 
starting from the definitions one can verify the following 
rule: 

Rule RI (opposite of product yes-no experiments): 

(ITaj ) v = ITa;. 

Indeed, let aj = a(.fj); then (ITaj ) v = (n So(.fj), n SI(.fj)). On 
the other hand, a; = (So(.fj), SI(.fj)) = aU)) and so ITa;' 
= a(ITf)) = (n So(.fj), n SI(.fj)). 

Remarks: (a) In our model ofJauch-Piron theory, if the 
state-effect structure satisfies Axiom c-JP, then the yes-no 
experiments a v and ITaj exist, contrary to Ludwig's model 
in which "the operations ... a V and ITaj in the theory of 
Jauch and Piron do not occur." 2 

(b) The model briefly reproduced above is built on two 
interconnected levels: the level of effects (or questions) and 
the level of yes-no measurements. Each yes-no measure
ment can be tested by a wide class of effects which represent 
it. These two levels give rise to two quite different structures. 

The pre-Hilbert space model of quantum theory 

Generalizing the Hilbert space approach to quantum 
mechanics we construct in this example a state-effect struc
ture based on a pre-Hilbert space k. To be precise, let k be a 
complex separable infinite-dimensional pre-Hilbert space, 
we do consider the triplet (F(k),S(k),P), where 

(a) S(k) is the set of all one-dimensional subspaces x ofk. 
(b) F(k) is the set of all self-adjoint linear operators F 

defined on k such that the following condition holds: 

O«Ft/JIt/J) <11t/J112 for every t/JEk. 

(c) Pis the mapping from F(k)XS(k) into [0,1] defined as 

P(Fx)= (Ft/Jxlt/Jx) for any t/JxExlfQj. 
, Iit/Jx 112 I 

Any element x of S(k) represents an ensemble of physical 
systems and any element F of F(k) is a question which can be 
measured on the system. The couple (F, x) represents then an 
elementary experiment and the number P (F, x) is the prob
ability of occurrence of the question F when the system is 
prepared according to x. 

Once fixed FE F(k), we introduce 
(1) The certainly yes domain of F: 

SI(F):= IXES:P(F,x)= 1), 

which can be identified with I t/J E k:(Ft/JIt/J) = 11t/J112). 
(2) The certainly no domain of F: 

So(F): = Ix E S: P(F, x) = OJ, 

which can be identified with - I ({! E k: (F({! I({! ) = 0) . 
The canonical order relation introduced on F(k) can be 

expressed in the following way: 

FI<F2 iff (Flt/Jlt/J) < (F2t/J1t/J) for every t/JEk. 

Taking into account this order relation, the condition (b) can 
be rewritten as: 

(bi) FEF iff F=F* and O<F<I. 
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Of course, for every FE F(k) the element F': = 1 - F be
longs to F(k) too and is such that 

P(F, x) + P(F', x) = 1 for every XES. 

In spite of this and following the terminology introduced in 
Sec. 4, we have that any element ofF(k) is just an effect rather 
than a question. Therefore, according to our general results, 

(I) (F(k),O,I,<:) is a degenerate orthocomplemented 
poset whose kernel is nonempty since the effect ! FE Ker' (F) 
for every FE F. 

We shall also remark that the setIl (k) of all orthogonal 
projections is contained in F(k), i.e., any orthogonal projec
tion is an effect too. For instance, in a pre-Hilbert description 
the semitransparent mirror could be described by an element 
of Ker'(F), precisely by ST: = !I. In this case we have that 
ST = ST' =!l from which it follows that: 

P(ST, x) = P(ST', x) = ~ for every x E S(k). 

Notice that (ST) 1 (ST) and so even in the pre-Hilbert model 
of state-effect structure the orthogonality is not irreflexive. 

(II) The state-effect structure based on a pre-Hilbert 
space satisfies the strong orthogonality condition: 
(OG) If I FI, F2 , ... ,Fn ) 1 is a global orthogonal set of effects, 
then there exists the effect F = ~7~ I F; such that 

n 

P(F,x) = I P(Fi> x). 
i= 1 

Notice that in a state-effect based on a pre-Hilbert space the 
strong orthogonality condition (OG.S) does not hold. For 
instance, the set I FI, F2, F3 ), where each F; = ! 1 is a set of 
pairwise orthogonal effects for which ~f ~ I P (Fi> x) = ~. 
Since for every FE F(k) we have that 
(Ft/Jlt/J) = ° iff Ft/J = Q, we can make the following 
further identifications: 

(la) So(F) ~ Ker(F), 

(2a) S(F) = Ker(I-F) = {t/JEk:Ft/J= t/J). 

The yes-no experiment a(F) associated with the effect F is 
then identifiable with the pair of subspaces of k: 

a(F) = (Ker(l - F), Ker(F)). 

Lemma: If A,B are positive operators defined on k, then 

(a) Ker(A + B ) = Ker(A ) n Ker(B ), 

(b) Ker (aA ) = Ker(A ). 

Proof If x E Ker(A ) n Ker(B ), then obviously 
x E Ker(A + B). On the contrary, if x E Ker(A + B), then 
(Axlx) = - (Bxlx), and, so from the positivity of the two 
operators, wegetthat (Axlx) = (Bxlx) = 0, i.e.,x E Ker(A ) 
n Ker(B). 

(III) The state-effect structure (F(k),S(k),P) based on a 
pre-Hilbert space k satisfies the Axiom JP. 

Indeed, for any pair effects FI, F2 E F(K) the operator 

FI,F2 : = (F] + F2 )12 

is an effect too. This effect is the "product" of the two effects 
F I , F2 since 

Ker [1 - (FI + F2 )12] = Ked! [(1 - FI) + (1 - F2)]} 

= Ker(I - Fd n Ker(l - F2 ), (5,1) 
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(5.2) 

Let us remark that this "product" operation on effects is not 
associative. Indeed, 

(FI F2) F3 = (FI + F2 + 2F3)/4, 

F I(F2 F 3 ) = (2FI + F2 + F3)/4. 

Hence, (FI F2) F3 = F I(F2 F 3 ) iff FI = F 3 • 

Differently from Ref. 28, where the yes-no experiments 
"are represented by closed subspaces of a Hilbert space, 
[and] a product of yes-no experiments is represented by a 
sum [of sets of subspaces]," in our pre-Hilbertian model the 
yes-no experiments are represented by suitable pairs of 
closed subspaces of a pre-Hilbert space and a finite product 
of yes-no experiments by the pair of closed subs paces ob
tained intersecting the original ones; for instance, 

a(FI F2) = (Ker(l - F I ) n Ker(l - F2), Ker(Fd n Ker(F2))' 

Each yes-no experiment is realized by at least one effect and 
the product of two yes-no experiments, realized by the ef
fects FI and F2, is realized by the effect (FI + F2)/2. In this 
way no "drastic distortion" is introduced in the representa
tion of the finite product of yes-no experiments concluding 
that there are no "difficulties in also mimicking the semantic 
structure associated with the quantum mechanical formal
ism." 28 

All the definitions D2 , D3, D4 , Ds, D6 , D7 , the rule R I , 

and the connecting definitions CD I , CD2 , CD3, CD4 can be 
applied to this pre-Hilbertian model. In particular, contrary 
to Ref. 28, "the definition D4 for a (finite) product of yes-no 
experiments, with the definition D3 of the opposite yes-no 
experiment and with the consequent rule R I for the opposite 
of a product of yes-no experiments" do not raise any "grave 
formal problem," 28 and so there is no "source of a semantic 
barrier in the way of the interpretability of the (yes-no ex
periments structure) as a physical theory." 28 

(III-H) The state-effect structure (F(H),S(H), P) based 
on a Hilbert space H satisfies the axiom c-JP. 

Indeed, let! Fj: j E J J be any family of effects and let 
MI = n Ker(l - Fj) and M2 = n Ker(Fj). MI and M2 are 
two subspaces of the Hilbert space H which are mutually 
orthogonal since Ker(l - Fj) 1 Ker(Fj) to eachj E J. There
fore, once the two orthogonal projections EI and E 2, which 
project onto MI and M 2 , respectively, are introduced, we 
have that EI 1 E 2• The product EIE2 = (EI + E 2 )/2 is an ef
fect which generates the yes-no experiment a(EIE2) 
= (n Ker( 1 - Fj), n Ker(Fj )). 

6. PROPERTIES AND PROPOSITIONS 

It is now quite natural to face the following question: 
Can the "properties" testable on a physical system be de
rived inside the general question-state structure which de
scribes the physical system under examination? In this sec
tion an affirmative answer to this question is given. To this 
end we introduce on the structure (F,C,l,';;:) the equiv
alence relation ~ defined as: 

(6.1) 

IffE F, we shall denote by [f](I) the equivalence class gener
ated by J, i.e., 
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[!JII): ! gE F: SI(g) = SI(/)j. 

In the particular cases of the trivial effects we have 

[1](1)=!1j, 

[Ol(l) =! gEF:P(g,x)#I, for all XESJ. 

This last is the collection of all effects that are never true. 
Definition 5.1: Once the quotient set n = (F 1 ~ ) is con

sidered, we define a proposition as an equivalence class of 
effects. 

With each proposition a En we associate the certainly 
yes domain SI(a) defined as SI(/) for any arbitrary fE a. 
Hence, we can say that the proposition is "true" if and only if 
any and therefore all of its effects are "true." 

Definition 5.2: A property testable on the system is a pair 
(a,SI(a)) consisting of 

(1) a proposition a, i.e., the set of all macroscopic appar
atuses (effects)fE a the property can be measured by, 
(2) the certainly yes domain S.(a), i.e., the subset of all 
ensembles x E SI(a) for which the answer "yes" to the 
proposition a is certain. In this case we shall say that the 
property is "true" for the ensemble x. 

Therefore, iffl ~ f2' then the effectsfl andf2 test the same 
property and generate the same proposition. 

For sake of simplicity we shall identify the properties 
which can be tested on the system with the corresponding 
propositions owing to the one-to-one correspondence 
a-SI(a). 

At this stage of the discussion the notion of property 
"cannot meaningfully be attributed to an individual system; 
it is a statistical concept, applicable only to a suitable chosen 
assembly of systems." 13 Therefore, linked to the question 
proposed at the beginning of the present section is the "con
troversial problem, whether the formalism of quantum the
ory can be used to describe the properties of a single micro
object as it is, in all its complexity. 

The single act of measurement in quantum mechanics is 
not conclusive, and therefore, the direct interpretation of 
quantum mechanical formalism is that of a statistical 
scheme. 

The notion of property of a single system can, however, be 
introduced as a next abstraction stage of the theory." I 

If we now identify a property with its certainly yes do
main, we also agree with Mielnik philosophy that: "if now 
the ensembles are represented by points of the ... set S, the 
properties are just [suitable] subsets of S. It is still an open 
question, whether a subset ofS should fulfill some regularity 
requirements ... in order to represent a physically verifiable 
property." I 

But from our point of view the subsets ofS which repre
sent properties must be just the element of 
SI: = !SI(a): a En J, i.e., subsets of ensembles for which a 
collection of effects exists which allow one to measure the 
involving property giving the answer "yes" with certainty 
for each ensembles of the subset. Along this direction, prop
erties are introduced departing "from the properties of sta
tistical ensemble. Statistical ensembles are, in a way, macro
scopic entities: though it might be impossible to predict the 
behavior of a single micro-individual in a given physical situa-
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tion, one can predict the behavior of the ensemble as a whole. 

Therefore, there is no difficulty in defining the physical 
properties of the ensembles. 

By saying that a certain ensemble (i.e., x) has a certain 
property (i.e., a) we simply have in mind that the ensemble 
behaves in a specified way in some definite physical circum
stances (i.e., P (f, x) = 1 for every f E a). 

... The main difficulty with the single individual in a 
statistical theory lies in the fact that there is no immediate 
correspondence between the properties of the ensembles and 
the properties of the individuals. In fact not every property is 
of such nature that it may be attributed to each single ensem
ble individual." I 

From this discussion it is reasonable to introduce the 
following: 

Definition 5.3: A property a of a statistical ensemble is a 
proper starting point for a definition of a certain property of 
the single micro-object of the ensemble x iff P (f, x) = 1 for 
allfE o.. 

For example, "one can have a beam of photons of which 
the average fraction 1/2 penetrates through a certain Nicol 
prism. However, it may be that the ability of penetrating 
through the prism with the probability 1/2 cannot be attri
buted to each single beam photon, for the beam is just a 
mixture of two types of photons one of which is certainly 
absorbed by the prism." Ian the contrary, if the beam of 
photons penetrates the Nicol prism with average fraction 1, 
then the property of being transmitted can be attributed to 
each single photon of the beam. 

In conclusion, "a propositionf of a physical system is 
said to be 'true' (for the ensemble x) and the corresponding 
property is said to be 'actual' iff when we should decide to 
perform the test proposed by f (once preparing the system 
according to the preparation procedure x) the expected an
swer 'yes' would come with certainty (i.e., P (f, x) = I). 

To exhibit an individual with a 'true' property we pro
ceed for example as follows: 

(I) We first prepare a collection of identical systems in a 
well-defined way (described by x), 

(2) we make the test (described by f) on each element of 
the collection. 
If we see by statistic that the probability of obtaining the 
answer 'yes' is I (i.e. P (f, x) = I) then we claim that the one 
new system prepared in the same way has this property." 3 

On the set n of all propositions of the system we can 
introduce the following binary relation: 

a C h iff SI(o.) ~ SI(h), 
which is an order relation since it is easy to check that 

a C a (reflexive) 

a Chand b ~ a implies a = b (antisymmetric) 

a Chand h ~ c implies a C c. (transitive) 

This order relation is just the order relation defined as fol
lows: 

a C b iff there exist f E a and g E h such that f C g. 

Therefore (n, 0, I, C) is a partial-ordered set bounded by 
the absurd proposition 0 = [0](1) and the certain proposi
tion I = [l] (1)" 
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Notice that there is no "natural" procedure to intro
duce an orthocomplementation on n starting from the orth
ocomplementation of F in spite of the fact that 

fl - f2 does not imply f; - f;. (6.2) 

In fact, the decomposition ofF into equivalence classes from 
n agree with the affirmation that "it is not a logical impossi
bility to imagine a hypothetical physical world where to ev
ery 'domain afmicro-objects with a certain special property' 
there would be many possible complementing domains cor
responding to many possible ways of being opposite to that 
property." 1 

Quoting Mielnik, "a hypothetical sequence of such de
vices is represented below: 

The devicesfIJ2"" schematically presented in Fig. I 
choose the same domain of micro-objects on which the an
swer should be 'certainly yes' but [they have] various 'cer
tainly no' domains SO(/I)' SoLiz), .... For each of these de
vices the verbal negation (yes ~ no) could be easily 
performed leading to a sequence of devicesf; J; , ... with 
different 'certainly yes' domains So(/d, SO(/2)"" ." I 

Example 5.1: The devices A and B of Example 4.1 test 
the same property "the light is red," but the corresponding 
certainly no domains are different. 

Example 5.2: In the pre-Hilbert state-effect structure 
we have that 

Ker(l- 0) = (OJ, Ker(O) = S, 

Ker(I - ~ 1) = !OJ, Ker(! I) = !OJ 

and so SI(O) = SI(~ 1) = ! OJ but SolO) =I So(~ 1). 
Of course, we agree with Mielnik's conclusion that 

"contrary to axiom M.I section I, the devices fl' h, ... would 
be physically different, and even if we tried to neglect the 
difference by insisting that (id) section I defines the right 
physical equivalence, the negativesf; J; , ... could no longer 
be identified on the same principle." I 

However, from our point of view, these difficulties are 
resolved inside the more general logic of the effects of a ques
tion-state structure. No additional axiom is required on the 

~1 (f 1) 

FIG.!. 
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set of states, in particular that it is a convex structure, ac
cording to the consideration that it is not a logical impossibi
lity to imagine a hypothetical physical world where the mix
tures 0/ ensembles 0/ physical systems are not always possible. 

We conclude this section underlining the following in
teresting result: 

Theorem: If the set of all effects satisfies Axiom JP (Axi
om c-JP), then the po set (II,0, I, (;;;) of all propositions is a 
lattice (complete lattice). 

More exactly, for any family (a j : i Ell of propositions, 
whose meet and join are written respectively as n au and u au 
we have that 

n aj = [111;](1)' 
where/; is any representative of the equivalence class OJ. 
Moreover, 

u OJ = n [h E II: OJ (;;; h l. 
In particular, if Axiom JP holds, then S1(0 n h) 
= S1(0) n S1(h), whereas in general we have S1(0 u h) 
(;;; S1(0) U S1(h), since the following theorem due to Piron 
holds: 

Theorem: IfS1(0 U h) = S1(0) U S1(h) for every proposi
tion a, hEll, then the lattice II is distributive. 

Yes-no experiments and JP propositions 

Let (Y, a(O), a(I), (;;; ,V) be the set of all yes-no experi
ments from a state-effect structure, where we have set the 
following: 

(1) Let a = (A l' Ao), /3 = (B1' Bo), then a (;;; /3 iff 
A1 (;;;B 1: 

the yes-no experiment a stands in the relation 
a (;;; /3 with respect to the yes-no experiment /3 iff 
whenever a is "true" then /3 is "true." 

(2) Let a = (A 1> Ao), then a V(Ao, A 1): 
"If a is a yes-no experiment, then there exists an
other one a v, measured with the same physical 
equipment, and such that if the outcome of the 
measurement a is 'yes' then it is 'no' for a v and 
vice-versa .... 

D6 (equivalent yes-no experiments): If two yes-no ex
periments a and /3 satisfy the relations a (;;; /3 and /3 (;;; a, 
then we shall say that they are equivalent and we write for it 
a - /3. This is an equivalence relation .... 

D9 (JP proposition): Let a be any yes-no experiment. 
The set of all yes-no experiments which are equivalent to it 
will be denoted by a = [a 1 and we call it a JP proposition. 
Thus more explicitly in a formula: a = [a j : a j -a 1 = (a l. 

DlO (true proposition): It is easy to verify that if a is 'true' 
(in the sense ofCD3), then any a j -a is also 'true.' Hence we 
can say the JP proposition a is 'true' if and only if any and 
hence all ofits yes-no experiments are 'true.' Ifthe JP propo
sition a is 'true' we shall call it a property of the system." 15 

CD5 : [a-/3] 

iff (Vx) [(V/)Pa(x,J) = (Vg)pp(x,g)] 

iff [('11/3 a = a(f))(Vg 3 /3 = /3( g)),J-g]. 

D14 (trivial propositions): The equivalence class of the 
absurd yes-no experiment a(O) = (0,S) defines the absurd 
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proposition 0 = ((0, A ): A (;;; S 1 and the equivalence class 
of the certain yes-no experiment all) = (S, 0) defines the 
certain proposition I = ((S,0) l. 

D11 (order relation between propositions): If one has that 
for all a E a and /3 E b, a (;;; /3, then the proposition a is 
"stronger" than the proposition b, which is written a (;;; b. 28 

Thus we can state the following: 
Theorem T1: The set of all JP propositions (L,0,l, (;;;) is a 

poset bounded by the least element 0 and the greatest ele
ment I. Moreover, ifF satisfies Axiom JP (Axiom c-JP), then 
L is a lattice (complete lattice). In particular, we have that 

DI2 ("product" or "conjunction" o/propositions): Given 
any family of propositions (b j 1 from L, n bj denotes the 
equivalence class containing the yes-no experiment lI/3j, 
where/3j Ebj. 

D13 ("sum" o/propositions): Given any family (b j 1 of 
propositions from L, U bj denotes the product n xa of all the 
propositions xa E L such that bj (;;; xa" Vi. 28 

Of course, using the set of "connection definitions" 
(CD), the remark that the operation of taking the orthocom
plemented element/' of an effect/ does not conserve the 
equivalence relation - between effects [see Eq. (6.2)] is noth
ing else than the following: 

Theorem T2: The transposition CD2-inside the predi
cate calculus-of Piron's operation of taking the inverse a v 

of a yes-no experiment a does not conserve the transposition 
CD5-inside the predicate calculus-ofPiron's equivalence 
relation between yes-no experiments. 29 

From D5 it obviously follows that 

II --+ L 

[11(1) --+ (a(f)} 

is a one-to-one and onto mapping for which the following 
statements hold: 

[0](1) 

[1](1) 

[11(1) (;;; [g](1) 

--+ (a(O)} , 

--+ (a(l)}, 

iff (a(f)} (;;; (a( g)} . 

Hence, the partial-order structures of all propositions and of 
all JP propositions are identifiable: 

(II,0, I, (;;;) (L,0, I, (;;;). 

7. EVENTS 

Once the notion of property is introduced, concretely 
measured by a set of different effects, we can single out the 
events of the usual approach to axiomatic quantum mechan
ics according to the following: 

Definition 7.1: An element 0 E II is said to be a real 
property iff there exists an effect a E F such that: 

(i) S1(a) = Sl(a), 
(ii) a<J for every /E a, 
(iii) a'<,g for every gE [a'](1)' 

If this is the case, the effect a is called the (exact) event asso
ciated with the property a. The elements of II which are not 
properties are then the very fuzzy properties. The set of all 
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events in the following will be denoted by E. Condition (iii), 
Definition 7.1, assures us that the following statements are 
equivalent: 

( I) a is an event corresponding to the property [a] (I) 
with certainly yes domain SI(a); 

(2) a' is an event corresponding to the property [a'](I) 
with certainly yes domain Sola). 

From the previous definition we get that an event is a 
particular effect a E F for which the following two condi
tions hold: 

(el) If there exists an effect/ E F such that SI(a) = SI(/)' 
then a<f, 

(e2) if there exists an effect g E F such that So(a) = S I ( g), 
thena'<g. 

Of course, (el) and (e2) are the required conditions 
which allow one to distinguish the subclass of those macro
scopic devices which more precisely correspond to events 
rather than to abstract "effects" and, moreover, give us some 
precise rules to select among all effects from F those which 
are accepted to represent propositions. 

The distinction of the set of all events allows one also to 
single out the collection of all properties which can be tested 
starting from the structure (F,S, P). Indeed to any event a is 
associated the property 0 with corresponding "certainly 
yes" SI(a) = SI(O). The other elements ofo can be considered 
as/uzzy representations of the unique exact event a. In a 
certain sense, by considering the event a as the effect which 
represents (or as the device which measures) the property 0 
we eliminate from 0 the arrangements that present noise and 
imprecision. 

Hence, "each event a determines a certain specific 
property of micro-objects (i.e., 0): the objects having the 
property are those for which the answer 'yes' is certain (i.e., 
SI(a)). Now, for each domain of micro-objects which possess 
a certain property there is a unique complementing domain 
of micro-objects with an opposite property (i.e., Sola)): so that, 
once it is known for which objects the answer of the 'yes-no 
measurement' is 'certainly yes' it is also uniquely determined 
for which ones it should be 'certainly no.' " I 

Moreover, if a is an event, we have then 

(7.1) 

so that "the macroscopic yes-no measurement device (event) 
apart from possessing a nontrivial certainty domain must 
also have the property of minimizing the randomness of the 
'yes' and 'no' answers. 

A generalized version of this idea [is] that 
(a) for a given 'certainly yes' domain, the 'yes-no mea

surement' ('event') should have a maximal possible 'certainly 
no' domain." I 

Example 7.1: Taking into account the structure oflight 
filters discussed in Example 4.1, we have that the macro
scopic devices A and B have the same "certainly yes" do
main, consisting of photon ensembles of red light, and are 
mutually opposed since they have different "certainly no" 
domains. They individuate the property: "the light is red" 
and the exact event associated with this property is schema
tically presented in the figure: 
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S R S R' 

red ---+ red red ---+ 0 

yel ---+ 0 yel ---+ red 

viol -+ ° Vial/' 

R is then the exact event: "the light is red" whereas A and B 
can be considered as "fuzzy" representations of this event. 
Indeed, R is characterized by the same "certainly yes" do
main of A and B, but it has the maximal possible "certainly 
no" domain. The orthocomplement R ' of the event R is the 
event: "the light is either yellow or violet" according to its 
"certainly yes" domain. 

In this context, the semitransparent mirror has the be
havior 

S ST 
1/2 

red ---+ red 

1/2 

yel ---+ yel 

1/2 

viol ---+ viol 

and then SI(ST) = SI(O) = 0, e.g., the semitransparent mir
ror is a deeply "fuzzy" representation of the exact "impossi
ble" event O. 

The previous considerations do not exclude that there 
could be some potential properties characterized by a well
defined certainly yes domain and in this case "there could 
exist many random minimalizing 'yes no measurements' 
with a common domain of 'certainly yes' and different 'cer
tainly no' domains." I 

An element/E F is such a random minimalizing effect 
iff 

/EO and (gEo with g<f im
plies g =/). (7.2) 

In this case, setting (/),,: = (h E o:/<h j we have obviously 

u (So(h ): h E (/)" j = So(/). 

(7.3) 

(7.4) 

Let us stress that the interactions between the preparing 
part and the observing part of an elementary experiment give 
us the only information about the system which can enable 
us to make physics. "Of course, the information about the 
(ensembles) depends essentially on the devices used, and 
vice versa the information about the devices depends essen
tially on the (ensembles) we have at our disposal. So every
thing we know is to a large extent relative" 26 to the triple 
state-effects. 

For instance, ifin the example of red, yel, viol photons, 
which constitute the set S, we consider the set of effects 
F = [O,l,A,A', B, B', RF, RF', G, G'j, whereRFand G 
are schematically shown in the figures 
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S RF S G 
1/2 

red - red 
./ red ;7-/ red 

1/4 

yel / 

viol I viol - 0 

and no other effect is considered, then the property "the light 
is red" is a potential property since RF satisfies conditions (i) 
and (ii) but not (iii). Indeed, owing to the behavior of the 
effect 

S RF' 

red - 0 
3/4 

yel - red 

ViOl/' 

we have that G E [RF'l(11 but P(RF',red )<P(G,red) and 
P(G,yel)«RF',yel) and so RF'i,.G. 

On the contrary, if we consider the set of all effects 
FI = 10,1, A, A', B, B ',R, R', RF, RF', G, G'], then in the 
triple (F I'S, P) the property "the light is red" can be tested by 
the effect R which is the event corresponding to this proper
ty. 

S. THE LOGIC OF EVENTS 

The set E of all events which can be detected in a state
effect structure (F,S,P) is the natural framework of the usual 
logic approach to axiomatic quantum mechanics since we 
have that E satisfies: 

(a) The identity condition: If a, bEE and SI(a) 
= SI(b ), then a = b. 

Indeed from (i) Definition 7.1 we have that a<b and 
b<a from which a = b follows: 

(b) TheuniquenessoJnondegenerateorthocomplementa
tion. 

Indeed, if a E E with a<a', then P (a, x)<! for every 
XES that is a E [0 1 (II so that a = 0, concluding that 
Ker'(E) = 10 J. From this last result it follows that 
(E,O,I,<,') is an orthocomplemented poset, since the ortho
complementation' E - E, a _ a' satisfies the properties: 

(ocI) a" = a for every a E E, 
(oc2) a<b implies b' <a', 
(oc3) a 1\ a' = ° and a V a' = 1, for every a E E. 

In conclusion, starting from the empirically well-
founded state-question structure (Q,S, P) we have singled 
out the logic (F,O,I,<,') of all effects, for which the indistin
guishability principle holds and the orthocomplementation is 
degenerate, and the logic (E,O,I,<,') of all events, for which 
the identity axiom holds and the orthocomplementation is 
nondegenerate. 

The usual logic approach to quantum mechanics refers 
to the poset E and the counterexamples presented by Miel
nik do not scratch this approach for they pertain to the "de
generate" logic F rather than to the logic E. This according 
to the interpretative rule for which the elements from FIE 
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are regarded as "fuzzy" representations either of an exact 
property from E or of a fuzzy property. 

The orthogonality relation induced from this ortho
complementation, i.e., alb iff a<b' iff b<a', is then nonde
generate, i.e., it satisfies the following conditions: 

(ogI) alb implies bla, (symmetric) 

(og2) Ola for every a E E, (O-orthogonality) 

(og3) ala implies a = 0, (nondegenerate) 

(og4) ao<a and alb imply aolb, (absorption) 

(og5) a' = maxlaJl. (complete) 

Hence, this orthogonality relation is not irreftexive and so is 
not a Foulis-Randall orthogonality relation. At any rate, if 
we consider the restriction of 1 to the subset of events 
Eo: = Ell ° J, then it turns out to be a Foulis-Randall ortho
gonality. 

A. Pool's approach and Axiom C 

Let us remark that while the triple (F,S, P) satisfies the 
Gunson conditions in order to have a structure which de
scribes states and effects of quantum mechanics (see Sec. 4), 
the triple (E,S, P) satisfies the most relevant axioms intro
duced by Pool to define an event-state structure. 

To be precise, we have that: 
(i) E is a set called the logic of the event-state structure 

and an element uf E is called an event. 
(ii) E is a set and an element of S is called a state. 
(iii) P is a function P: EX S - [0,1] called the probabil

ity Junction and if a E E and XES, then P (a, x) is called the 
probability of occurrence of the event a in the state x. 

(iv) If a E E, then subsets SI(a) and Sola} are defined by 

SI(a) = Ix E S: Pta, x) = 1 J, 
Sola) = Ix E S: Pta, x) = OJ. 

( ... ) 
(v) And the following conditions are satisfied (in the 

square brackets we quote the corresponding Pool numera
tion): 

Axiom Pl [Axiom Il}: If a, bEE and SI(a) = SI(b), 
then a = b. 

Axiom P.2 [Axiom I6}: Ifx l , X 2 E Sand Pta, XI) 

= Pta, x 2 ) for all a E E, then XI = X 2• 

Axiom P.3 [Axiom I2}: There exists an event 1 E E 
such that SI(I) = S. 

Axiom P.4 [Axiom I4}: If a E E, then there exists an 
event a' E E such that 

SI(a') = Sola) and Sola'} = SI(a). 

In spite of P.I, the relation of implication 

(pi) a, bEE, a k b iff SI(a) k SI(b) 

is an order relation on E which corresponds to the pheno
menological concept of implication more closely than the 
relation (or) on E." 5 

Of course, it is always true that the (or) relation a<b 
implies the (pi) relation a k b, but in general there is no 
reason to suppose that condition a k b implies a < b. 
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Conditions P.I and P.3 assert the existence of an unique 
event, the certain event, 1 E E, which is the greatest element 
of E with respect to ~ since 

a ~ 1 for all a E E. 

From Conditions P.l, P.3, and P.4 we deduce the existence 
of the impossible event, 0 E E, where 0 = I', which is the 
least element of E with respect to ~ since 

o ~ a for all a E E. 

Notice that SI(O) = 0 and So(O) = S. 
If we denote by a n b and a u b, if they exist, the glb and 

the lub of I a, b J with respect to ~, respectively, Axiom P.4 
associates with any event a E E the unique event a' E E, the 
negation of a, with the properties: 

a = a /I for all a E E , 

a n a' = 0 for all a E E. 

(S.l) 

(S.2a) 

Hence, the mapping a ----+ a' is not an orthocomplementation 
since a ~ b does not imply b' ~ a' and in general a u a' = 1 
does not hold. 

No other result can be derived from a state--effect struc
ture in a natural way. At any rate, if a state--event structure 
satisfies the following, 

Axiom P.5: For any pair of events a, bEE, the condi
tion SI(a) u So(a) ~ Sdb) implies So(b) = o (and sob = lor 
equivalently SI(b ) = S), 

then we have that 

a u a' = 1 for all a E E. (S.2b) 

The event c is said to be a complementary event for a given 
event b iff b u c = 1 and b n c = O. If this is the case, the 
events band c are said to be complements of one another. So 
from (S.2a) and (S.2b) it follows that the event a' is a comple
ment of a, which in general is not unique. 

However, let us also remark that if Axiom P.5 holds, 
then a ----+ a' is not an orthocomplementation. In the Pool 
approach this result is assured by the further introduction of 
an ad hoc axiom which is a stronger version of Axiom P.5: to 
be precise 

Axiom P. 5. S[Axiom 13j: Ifa, bE EandSda) ~ SI(b), 
then So(b) ~ So(a). 

In conclusion, beside the orthocomplemented poset of 
all events (E,O,l,';;;,'), where,;;; is the Mackey (or) order rela
tion, if a state--event structure satisfies Axiom P.5 (resp. 
P.5.S.) we can consider the complemented (resp. orthocom
plementedl poset (E,O,l, ~ ,') where ~ is the (pi) order rela
tion also considered by Pool. At any rate, also in case Axiom 
P.5.S holds, the two order relations in general do not coin
cide. 

Proposition: Once associated with any event a E E, the 
yes-no experiment 'a(a) = (SI(a),So(a)) and the property 
a = la(a)] - [aliI)' if Axiom P.5 holds we have that: 

(1) a(a) E a, 
(2) (3 = (B I, Bo), (3 ~ a(a) implies Bo ~ So(a), 
(3) r = (CI' Co), r ~ a(at implies Co ~ SI(a), 
(4) let 8 = (DI' Do) be such that ifSI(a) u So(a) ~ DI 
then Do =0. 

Let us introduce the set of all: 
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exact yes-no experiments k(E): 
= I a E Y: 3 a E E :3 a = a(a) J, 

exact JP propositions L(E): 
= I a E L: 3 a E Y(E) :3 a E a J . 

The structure (L(E),0, I, ~ ,') is a bounded poset for which 
the following axiom introduced by Piron holds: 

Axiom C: For any exact JP proposition a E L(E) there 
exists at least one compatible complement a' E L(E), i.e., an 
exact JP proposition a' such that: 

(1) a u a' = I and a n a' = 0, 
(2) there exists an (exact) yes-no experiment a(a) E a 
such that a(a) v E a', 

The main difference between our approach and the Jauch 
and Piron one is that it is not true that any proposition is an 
exact proposition too, i.e., it is not true that L(E) = L, which 
is the very formulation of Pi ron's Axiom C. 

Definition 8.1: A state--effect structure is said to be com-
plete iff 

(I) Axiom c-JP holds, 
(2) the underlying state--event structure satisfies the 
further conditions: 

(2i) Axiom P.5.S is true, 
(2ii) L = L(E). 

As a consequence of this definition, in the case of a complete 
state--effect structure the logicomathematical system of all 
JP propositions L is an orthocomplemented complete lat
tice, where 

(pi) a ~ b iff 3 a, bEE :3 a E a, b E b, and a ~ b, 
(C) for any JP proposition a, realized by the event a, 
there corresponds the JP proposition a', the negation of 
a, which is realized by the event a'. 

Therefore, in the case of a complete state--effect struc
ture the very "existence" of a compatible complement a' for 
any a E L is not at all questionable. Of course, the assump
tion that the compatible complement a' of a JP proposition a 
consists of the class of I a v J of all negations a v of the yes-no 
experiments a E a is false. 

To be more precise, it is false to assume that "if a E a is a 
yes-no experiment in the class a, then a' contains the yes-no 
experiment a l' (the strong negation of a) which is the same 
experiment of a but with its alternatives interchanged" 14 or 
that "every proposition has at least one compatible comple
ment. This can be seen as follows: If a E L, let a E a and let b 
be the equivalence class containing a V. then b is a compatible 
complement of a." 30 

On the contrary, if a is represented by the exact yes-no 
experiment a = a(a), where a is an exact event, then no other 
a v, where a ~ a(a), except the only yes-no experiment 
a(a) l' belongs to a' and so a' is represented by the exact yes
no experiment a l' = a(a'). 

"Thus contrary to a widely held opinion, the compati
ble complement a' --quite generally--cannot be formed as 
the class of the negations of the yes-no experiments. This, 
however, does not yet lead to doubts about the existence of 
a'. Indeed, so far there is still the possibility that for each 
given a E L some method for constructing a nonvoid a' is 
specifiable, even if a' does not contain all the negations a vof 
a Ea." 28 
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B. The pre-Hilbert space model 

In the state-effect structure (F(k),S(k), P) based on a 
pre·Hilbert space k, for any effect FE F(k) the "certainly 
yes" domain and the "certainly no" domain are identifiable 
with the subsets of k: 

S](F)- ItPEk:F",=",J. 

So(F) = (lj7 E k: Flj7 = Q) . 

The orthogonal projections from n (k) are particular effects, 
and for any E En (k) we have that 

SI(E) = Ran(E), 

So(E) Ker(E). 

So that the "certainly yes" domain and the "certainly no" 
domain of E are mutually orthogonal orthosubspaces of k, 
i.e., 

Ran(E) = Ker(E)l and Ker(E) = Ran(E)l, 

S = Ran(E) (B Ker(E). 

Let E E n (k) be an orthogonal projection and E be the prop
erty associated with E with "certainly yes" domain SI(E) 
= Ran(E). If El is another orthogonal projection belonging 
to E, then El = E, i.e., 

(1) In any property there exists at most one orthogonal 
projection. Moreover, 

(2)Any orthogonal projection E is an event corresponding 
to the property E with certainly yes domain S 1 (E) = Ran(E). 

Proof LetFE F(k) be such that SI(F) = SI(E) 
= Ran(E); then for any tP E K we can set tP = tPl + JfJ., , 

where "'1 E Ker(I - F) = Ran(E) and JfJ., E Ker(E) so that 

("'11 JfJ.,) = 0; thus 

O«(F-E) "'I"') = (Ft/rilt/ri), 

concluding that E<F for every FE [EJ(1). 
In the same manner the orthogonal projection 

E' = 1 - E, whosecertainlyyesdomainisS](E ') = Ker(E), 
is such that E' <G for every G E [EJ(I)' 

Therefore we have stated that every orthogonal projec
tion is an event. On the other hand, we now prove that 

(3) In the state-effect structure based on a pre-Hilbert 
space each event is an orthogonal projection. 

Indeed, let FE E(k), then we know that 0 < F2<F< 1 
and so SI(F2) k S](F). Moreover, if'" E SI(F), thenF'" = "', 
from which it follows F2'" = F", = "', i.e., '" E SdF 2), con
cluding that F ~ F2. Therefore, F = F2. 

(IV) In a pre-Hilbert state-effect structure an effect is an 
exact event iff it is an orthogonal projection. 

Since it is straightforward to prove that in a pre·Hilbert 
space the sum of a finite set of orthogonal projections is an 
orthogonal projection iff they are pairwise orthogonal, we 
can conclude that: 

(4) The set of all eventsfrom a pre-Hilbert state-effect 
structure satisfies the strong orthogonality axiom OG.S. 
Therefore, if we apply the Finch resulf7 quoted in the sub
section in Sec. 4 we have that 

(V) The structure of all exact events from a pre-Hilbert 
state-effect structure, (E(k),O,l,<:), is an orthocomplement
ed orthomodular atomic orthoposet with covering property. 
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Once an event E E E(k) is singled out, any fuzzy repre-
sentation F of this event is characterized by the property that 

F ~ E iff Ker(I - F) = Ran(E). 

(5) Let F ~ E; then F 'IE if Ker(/) C Ker(E). 
(6) The effects Ffor which II FII~ 1 are allfuzzy represen

tations of the absurd event 0. 

Remembering that 

IIFII =sup{(:~II~) :"'Ekl{Q)}, 

the previous conclusion is a trivial consequence of the as
sumption II F II # 1. 

(7) In the pre-Hilbert state-effect structure, the physical 
order relation (or) and the phenomenological implication (Pi) 
coincide on the set E of all events and so Axiom P.5.S holds. 

Indeed, it is easy to prove the following result: 
Let E l , E2 E E(k); then the following statements are 

equivalent: 
(1) Ran(Ed k Ran(E2); 

(2) (E l "'I"'> < (E2"'1"'> for every'" E k; 
(3) El = El E 2; 
(4) El =E2 E l· 
Lastly we have the following statement: 
(8) A Hilbert state-effect structure is complete. 

9. NOPERTIES AND NOVENTS 
If we take into account the light filters of Example 6.1, 

we have that the certainly no domains of the exact events R 
and R ' are, respectively, 

So(R ) = ( yel,viol ) and So(R ') = (red), 

and then the "no" property can be associated with the filter 
R: "the light is neither yellow nor violet" whereas to the 
filter R ' corresponds the "no" property: "the light is not 
red." 

According to this last remark, we introduce in a dual 
manner the following equivalence relation: 

(1 ) 

and we denote by [f](o) the corresponding equivalence class 
generated by f, i.e., 

[lJ(O) : = (h E F: So(h) = So(/) ) . 

For the trivial effects we have 

[IJo) = (hEF:P(f,x)#O, for every XES), 

[0](0) = (OJ. 

Definition 9.1,' An element a of the quotient set F / is 
said to be a noperty iff there exists an effect a E F such that 

(i) Sola) = Sola), 
(ii) f<a for every f E a, 
(iii) g<a' for every g E [a'] (a). 

In this case a is called a novent. 
Proposition 9.1: a is an event corresponding to the prop

erty [a](1) with certainly yes domain S](a) iff a is a novent 
corresponding to the noperty [a](O) with certainly no domain 
Sola). 

Proof Let a be an event. IffE [aJ(OI' then 
S](/') = So(/) = bold Sola) = bold S](a'), i.e., f' E [a'](I) 
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and so a' <i' follows from (ii) of Definition 9.1. Thus/..;;a with 
So(/) = Sola) concluding that/..;;a for every IE [a ]10) • On the 
other hand, let g E [a']II); then SI( g') = Sol g) = Sola') 
= SI(a), Le.,g' E [a]ll» and then a..;;g' follows from (i) of De

finition 9.1. Thus g..;;a' with Sol g) = Sola'), i.e., g E [a']IO) for 
every g E [a']IO) . 

The converse can be proved in the same manner. 
From the previous result we have that E is also the 

collection of all novents. 
Example: In the light filters structure, the filter R has 

the "certainly yes" domain I red} and then R is the event 
corresponding to the property "the light is red"; the "cer
tainly no" domain of R is I yel, viol} and then R is the novent 
corresponding to the noperty "the light is neither yellow nor 
violet." 

Analogously, the filter R ' with "certainly yes" domain 
I yel, viol} is the vent corresponding to the property "the 
light is either yellow or violet"; since the R ' "certainly no" 
domain is I red}, then R ' is the novent corresponding to the 
noperty "the light is not red." 

1 O. CONCLUSIONS 

Generalizing the results obtained in the previous sec
tions, particularly the behavior of the pre-Hilbert space 
model, we conclude with the proposal of the following defin
ition to single out the peculiar state--effect structures which 
can be assumed to characterize quantum phenomenology. 

Definition 10.1: A quantum state-effect structure is a 
triple (F,S, P), where 

(1) S is the nonempty set of all preparation procedures 
of ensembles, 
(2) F is the nonempty set of all observation procedures 
of effects, 
(3) P: FXS -+ [0,1] is the probability function, which 
satisfies the following axioms: 
Axiom 0.1: P(/I' x) = P(/2, x), V XES 

implies II = 12' 
Axiom 0.2: P(J, XI) = P(J, x 2), VIE F 

implies XI = x 2• 

Axiom G.3: There exists an effect, denoted by 0 E F, 
such that P (0, x) = 0 for all XES. 

Axiom G.4: For every effect/E F there exists another 
effect!' E F such that P(J, x) + PI!', x) = 1 for all XES. 

Axiom OG: For every finite sequence I 11,/2, ... ,/n } of 
effects from F which satisfies the condition 
0..;; ~7= I P(];, x)..;; 1 Vx E S there exists an effect/E Fsuch 
that P(J, x) = I.7= I prJ:, x) Vx E S. 

Ax/om JP: For every pair of effectsll and,/; there exists 
an effect, denoted by 1112 and called the "product," such that 

P(fI'/2' x) =! [P(fl' x) + P(f2' x)] Vx E S. 

Axiom E. Oo.S: Once the state--event structure (E,S, P) 
induced from the state--effect structure (F ,S, P) is singled out 
according to the procedure introduced in Secs. 7 and 8, to 
any finite sequence of pairwise orthogonal events 
I ai' a2 ,· .. , an J there corresponds an event a E E such that 
Pta, x) = I.7= I P(a j , x), Vx E S. 

The quantum phenomenology is then reflected by two 
"logical" structures: 
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(a) The logic of all effects: (F,O,I,..;;,') which is a 
(i) bounded poset, 
(ii) with degenerate orthocomplementation, 
(iii) which satisfies the weak orthogonality axiom. 

(b) The logic of all events (E,S, P) which is a 
(i) bounded poset, 
(ii) with a real orthocomplementation, 
(iii) which satisfies the strong orthogonality axiom. 

Therefore, the logic of all events turns out to be an ortho
complemented orthomodular orthoposet. 

Summarizing the results obtained we can state the fol
lowing: 

The counterexamples discussed by Mielnik are effects 
which are not events and so they regard the quantum logic of 
effects whose orthocomplementation is degenerate. 

The indistinguishability principle holds both for the 
logic of all effects and for the one of all events; this principle 
is the Mackey Axiom II or the Cooke-Hilgevoord Axiom 1. 
Moreover, in the logic of all events the identity axiom is true. 

The logic of all effects satisfies the weak orthogonality 
axiom and not the strong one, which, on the contrary, holds 
in the logic of all events. This last is the Mackey Axiom V (or 
Cooke-Hilgevoord Axiom 2) and is peculiar to the logic of 
all events only. From our point of view, quantum logic must 
be practiced in such a way as to also take into account the 
logic of all effects with the corresponding order structure. 

Of course, the sentence (zo E 11,3}) considered in Ref. 
17 is an effect, to be precise the effect ~ 1, which is not an 
event and so it is not at all surprising that the triple of effects 
I ~ 1, ~ 1, ~ I} does not satisfy Axiom E.OG.S (see subsec
tion of Sec. 5). 

Therefore, if we want to include the proposition 
(zo E 11,3 J) in a quantum logical scheme we must consider 
the logical structure of all effects. In this way, quantum logic 
completely reflects the full structure of quantum language 
since it contains those sentences and reproduces their evi
dent logical relations. 
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The fundamental inequality of quantum ergodic theory, which bounds the ensemble-averaged 
dispersion of a time-averaged occupation probability, is due to von Neumann and to Bocchieri 
and Loinger. Here this inequality is strengthened by combining the ensemble averaging of von 
Neumann and Bocchieri and Loinger. In this sharper form, the inequality says that the time 
average of an occupation probability is liable to be much closer to the statistical expectation than 
is its instantaneous value, the more so the less degenerate is the spectrum of the Hamiltonian. 

PACS numbers: 03.65.Bz, 05.30.Ch, 02.50. + s 

I. INTRODUCTION 

When is a quantum system ergodic? The answer that 
comes first to mind is, when the spectrum of the Hamilton
ian is nondegenerate, for then energy is the only constant of 
the motion, in the sense that any operator that commutes 
with the Hamiltonian can be expressed as a function of the 
Hamiltonian. Von Neumann I thought he had found a dyna
mical justification for this definition of quantum ergodicity 
in the following calculation: Let S be the N-dimensional "en
ergy shell" spanned by N consecutive eigenvectors of H; let P 
be the projector onto an M-dimensional subspace of S; calcu
late the mean square deviation of the occupation probability 
P(t) = (tP(t ),PtP(t ))fromthestatisticalexpectationf = MIN, 
where the mean is a time average, 

lim r- I (T dt(P(t) _ f)2 = (P _ f)2. (1.1) 
T_ 00 Jo 

The result of course depends on the projector P. There being 
no reason to prefer one M-dimensional projector to another, 
von Neumann averaged over all P 's, an operation we denote 
by ( ) p. He proved that if the energy eigenvalues in S are all 
different and if, in addition, the pairwise differences of these 
eigenvalues are all different, then the average relative disper
sion «(P - ff) plf2 is small if M is large. Specifically, von 
Neumann showed that 

(1.2) 

The interpretation is that a typical "macro-observer," i.e., a 
typical projector P of large dimension M, will rarely find 
substantial deviation from the statistical expectationfin a 
system evolving under von Neumann's two spectral condi
tions. 

The von Neumann result has not aged well. First Fierz2 

and ter Haar3 showed that the assumption on pairwise dif
ferences of energy eigenvalues is unnecessary to establish the 
inequality (1.2); then Farquhar and Landsberg4 showed that 
the assumption of eigenvalue nondegeneracy is likewise un
necessary; finally Bocchieri and Loinger showed that time 
averaging--or, indeed, any dynamics whatsoever-is also 
inessential. The Hamiltonian may be identically equal to 
zero in the energy shell S and inequality (1.2) will still hold: 
von Neumann's result is entirely a consequence of the aver
aging over "macro-observers" and has nothing to do with 
quantum dynamics. 

It is ironic that in the course of demolishing inequality 
(1.2) as a physical statement Bocchieri and Loinger strength
ened it mathematically: They showed that for any normal
izedtPES 

«(1/;, PI/;)2)p =M(M + 1)/N(N + 1), (1.3) 

a result that we shall use below and which implies inequality 
(1.2) in the sharper form 

( 1.4) 

Subsequently Bocchieri and Loinger,6 who objected to 
von Neumann's averaging over "macro-observers," suggest
ed that one should instead average over all initial states be
longing to S, an operation we denote by ( ).p. As they point
ed out, there is little difference mathematically between 
averaging over P for fixed I/; and averaging over I/; for fixed P; 
it is a question of interpretation. For example, Eq. (1.3) still 
holds in the form 

«(1/;, PI/;)2).p = M(M + I)1N(N + 1), ( 1.5) 

but the interpretation now is that, given P with M> 1, for 
most I/; the probability (1/;, PI/;) does not differ much from the 
statistical expectationf = M IN. Inequality (1.4) still holds 
when the average over P for fixed initial I/; is replaced by the 
average over tP for fixed P, and it is just as devoid of physical 
content. 

It may seem doubly futile to combine the averaging pro
cedures of von Neumann and of Bocchieri and Loinger, 
which is what is done in this paper, but we shall use these 
procedures for a slightly different calculation. By analogy 
with classical ergodic theory, the time average of real inter
est is not that of Eq. (1.1) but rather the time-averaged occu
pation probability 

}i:uoo r- I iT dtP(t)=P.p, (1.6) 

which of course depends on both the projector P and the 

initial state 1/;. Since P~';;; PIt )2, the dispersion «(P.p - ff) p 

or «(P.p - If).p is subject to the same inequality (1.4), as 
Bocchieri and Loinger pointed out5

•
6: 

«P", - 1)2) piP < (1 - f)lM, 

«(P.p -ff)",IP«l-/)IM. 

(1.7a) 

(1.7b) 

We get a sharper result by calculating ( < (P.p - f)2) .p) p. We 
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find that this doubly averaged dispersion in the time-aver
aged occupation probability is smallest when the energy 
spectrum in S is nondegenerate and largest when the spec
trum is completely degenerate. The interpretation is that a 
"typical" state subjected to a "typical" observation behaves 
"more ergodically" the less degenerate is the spectrum of its 
Hamiltonian. 

Section II explains the calculation of various averages 
needed in Sec. III for the evaluation of ( (1'", - /f) '" ) p. Sec
tion IV briefly discusses the significance-or lack thereof
of the result. 

II. AVERAGES 

Let {¢>j J,j = 1, ... ,N, bea basis inS; then ¢ = ~ aj¢>j and 
the average over ¢, ( )"', is an average over the uniform 
distribution of the 2N real variables Re a I' 1m a I' ... on the 
sphere 

(2.1) 

Thus if g is a function of a I, ... ,a N, we have 

( ) 
_ SdRealdlmal···g8(~lajI2 - 1) 

g '" - 2 • SdRealdlmaJ' .. 8(~lajl -1) 
(2.2) 

The averages we need below are 

(lajI2)", = liN, (2.3) 

which is obvious, and 

2 2 {lIN(N + 1) if j=/=k , 
(Iajllakl )",= 2IN(N+l) ifj=k, (2.4) 

which follow from an easy calculation. 
The average over M-dimensional projectors P can be 

regarded as an average over all possible sets of M orthonor
mal vectors in S; we will have an integral over the expansion 
coefficients of M vectors with delta functions to enforce each 
normalization and orthogonality condition. Fortunately the 
averages that we need below can be evaluated without re
course to this formal definition. For example, since tr P = M 
we have 

(Pjj)p = (tr P)lN = MIN. (2.5) 

To evaluate (P];) p, we notice that in averaging (¢, P¢)2 it 
clearly does not matter whether we average over all P for 
fixed ¢ or over all ¢ for fixed P, so we can replace (P];) p by 
«(¢, p¢)2) "', where P is any M-dimensional projector. Tak
ing P to be the projector onto the subspace spanned by 
{ 1,6 I""'¢> M J, we therefore find 

«(¢, p¢)2)", = (C~I lak 12)) '" 

=M(N(N
2
+ 1) +M(M-l)~(;+ 1) 

= M(M + 1) = (P 2.) 

N(N + 1) 11 p, 
(2.6) 

which is the result of Bocchieri and Loinger quoted above 
[Eq. (1.3)]. Finally, ifj=/=k we have 
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N M(M+ 1) 

N(N-l) N(N-l) N(N+ 1) 

_ M(NM-l) 
- N(N 2 -1) . 

III. DISPERSION CALCULATIONS 

(2.7) 

Let ( ¢>j J,j = 1 , ... ,N, be a basis of eigenvectors of H in S, 
and assume first that the spectrum of His nondegenerate. 
Then if ¢ = 2 ak ¢>k is the initial state, we have 

and 

P(t) _ '" iIEj-Ekltlr.p ... 
- ~ e jk aj ak> 

j. k 

P",= lim r- I (dtP(t) = IPjj laj l2, 
T~ 00 Jo j 

«P",)",)p = (P",)", = (P",) p =M IN, 

«P~)",) p 

=N(P];) p(lajI4)", 

+N(N-l)(Pjj Pkk ) p(lajI2IakI2)", 

=NM(M+ 1) 2 
N (N + 1) N (N + 1) 

N(N 1) M(NM - 1) 1 
+ - N (N 2 - 1) N (N + 1) 

M2(N + 2) + M M 2 [ (N - M) ] 
= N (N + W = N 2 1 + M (N + 1)2 . 

Therefore, 

(3.1a) 

(3.1b) 

(3.1c) 

(3.2a) 

(3.2b) 

«(P", - /)2)",) p =/(1 - /)I(N + W, (3.3) 

which should be compared with the dispersion in the instan
taneous value of P (t ), 

«(P(t) - /)2)",) p = «(¢, P¢)2 _ P)",) p 

=M(M+l) M2 =/(1-/).(3.4) 
N (N + 1) N 2 (N + 1) 

The dispersion in P (t ) is 0 ( 1 IN); the dispersion in the time 
average is 0 (lIN 2). 

Notice that Eq. (3.3) implies that inequality 

«(P", - /)2)",) pl/2 «1 - /)lNM, (3.5) 

which for large N is a considerable sharpening of inequality 
(1.7). 

Let us now repeat the calculation for an arbitrarily de
generate spectrum. Let Ea, Ep, ... be the distinct eigenvalues 
of H in Sand na , np, ... the dimensions ofthe corresponding 
eigenspacesSa,Sp, .... If the initial state is ¢ = ~p ¢p, where 
¢p is the component of ¢ in Sp, we have 
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tP(t) = Ie - iEpl/fi tP(3' (3.6a) (3 

P(t) = I ei
(E

u
-E{3l

t
/
fi(tPa' PtP(3)' (3.6b) 

a.(3 

a 

where ¢a = tPa/(tPa' tPa )1/2 is the unit vector along tPa. 
«(¢a' P¢a) P = MIN, so 

- M M-
(P",) P = N l}tPa, tPa) = N = «P",)v') P (3.7) 

and 

«P~)",) P = I «(tPa' tPaHtP(3' tP(3)'" 
a, (3 
x «(¢a' P¢aH¢(3' P¢(3) p. (3.8) 

As above, «(¢a, P¢a)2) p = M(M + I)1N(N + 1), 
while if a =l=P ¢a and ¢(3 are orthogonal and 
«(¢a, P¢a)(¢(3' P¢(3) p = M(NM - 1)/N(N 2 

- 1). To 
evaluate the averages over tP, expand tPa in a basis for Sa' tPa 
= ~~a= I aak¢ak; then 

«(tPa' tPaf)", = (k.~ I laak 1

2
1
aall

zt 
2 na(na - 1) 

= na N (N + 1) + N (N + 1) 

n,,(na + 1) 

N(N+ 1) 

(3.9) 

while if a =l=P 

«(tPa' tPa)(tP(3' tP(3)'" = Ctll~l laak 1

2
I
a(31lz) '" 

N(N+ 1) 

Therefore, 

«p 2 » =M(M+l)I na (n,,+I) 
t/' '" P N (N + 1) a N (N + 1) 

M(NM - 1) na n(3 

+ N (N 2 
- 1) h N (N + 1) 

a¥(3 

= M(M + 1) I na(na + 1) 

N (N + 1) a N (N + 1) 

(3.10) 

+ 
M(NM - 1) " na(N - na) 

~ (3.11) 
N (N 2 - 1) a N (N + 1) 

and, finally, 

«(p", -1)2)",) P 

= (N ~(:)~~ If (~n~ - 1). (3.12) 
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Notice that Eq. (3.12) reduces to Eq. (3.3) when the 
spectrum is nondegenerate (all na = 1) and to Eq. (3.4) in the 
opposite extreme of complete degeneracy (na = N), when 
every state is stationary and P I/o = (tP, PtP). Notice also that 
the dispersion is smaller the less degenerate the energy spec
trum. 

Finally, from Eq. (3.12) we get this sharpened form of 
the fundamental inequality of quantum ergodic theory, 

«(P", -1)2)1/,) pI12«1_1) (~n; )/N 2M. (3.13) 

IV. DISCUSSION 

The message of this calculation is that if one selects a 
state "at random" from an energy shell and determines, as a 
function of time, the probability that it lies in a "typical" 
subspace of the shell, the time average of this probability is 
liable to be much closer to the statistical expectation than is 
its instantaneous value, the more so the less degenerate the 
spectrum of the Hamiltonian. 

One hesitates to call this hazy statement the solution to 
the problem of quantum ergodicity. Current opinion 7 has it 
that "ergodicity" or "chaos" in quantum mechanics must be 
associated with a characteristic pattern of energy level spac
ings-with a characteristic level spacing distribution-not 
just with the question of how many of these spacings happen 
to be zero. In classical mechanics time averaging over an 
infinite interval is essential to distinguish between ergodic 
and non ergodic motion; in quantum mechanics time averag
ing over an infinite interval destroys all dynamical distinc
tions except those associated with eigenvalue degeneracy. It 
is the behavior of quantum systems over finite intervals that 
is of most interest, not the infinite-time averages that von 
Neumann studied; still, it is comforting that the von Neu
mann approach to quantum ergodic theory, as embodied in 
Eq. (3.13), does provide some dynamical justification for our 
prejudice that nondegeneracy of the energy spectrum is the 
minimal requirement for ergodicity. 
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Geometrical properties of space are described by relations between quantum observables, 
functions of generalized coordinate and momentum operators of a physical system. Space 
comprises the set of eigenvalues of the coordinate observables, which may be a discrete set of 
points instead of the continuum of classical geometry. Differentiation on coordinates and 
momenta is defined by commutation operations. Well-known formulas from classical geometry 
for gradient and divergence operators, connections, covariant differentiation, tangent vectors, 
geodesics, and the Riemann curvature tensor are derived as relations between quantum operators. 
The quantum formulation retains the symmetry between coordinate and momentum 
representations required by the principle of complementarity. 

PACS numbers: 03.65.Ca, 02.40. + m 

1. INTRODUCTION 

In accordance with quantum mechanical principles, the 
observable properties of a physical system are described by 
self-adjoint Hermitian operators. The eigenvalues of these 
observables are the measurable quantities which can be real
ized by the system. In particular, the position of a system is 
specified by a set of observables, three generalized coordi
nates in the case of a system with three degrees of freedom. 
These coordinates constitute a complete commuting set of 
operators, with nondegenerate spectrum. The system can be 
measured to be at only one of the points in the spectrum of 
these operators (with probability specified by the statistical 
operator which characterizes the state of the system). For 
generalized coordinates and momenta the spectra may be 
discrete1

•
2

; a point in the continuum of real numbers which is 
not a spectral point of the coordinate observables has no 
physical reality as a possible location for a quantum mechan
ical system. In quantum mechanics, geometrical space com
prises the set of eigenvalues of the coordinate observables, in 
contrast to classical geometry where a coordinate variable 
assumes all values on an interval of the continuum of real 
numbers. The geometrical properties of space should be de
scribed accordingly by functions which are realized only on 
the spectral values of the set of coordinate observables. 
These are the functions of the coordinate observables. In a 
geometry which is consistent with quantum mechanical 
principles, the real numbers of the classical description must 
be replaced by the self-adjoint Hermitian operators of which 
they are the eigenvalues; operations (functions) on the real 
numbers must be reformulated as operators on these self
adjoint operators. 

In this paper we formulate such a quantized geometry 
for a system in three dimensions. Many of the equations of 
classical geometry reappear as relations between operators. 
Classical geometry is the classical limit of one representation 
(the coordinate representation) of an abstract quantum ge
ometry. Our formulation retains the symmetry required by 
the principle of complementarity, and implicit in the funda
mental commutation relations of coordinates and momenta, 
between the coordinate and momentum representations of 
the abstract geometry. 

Considerable simplification of mathematical structure 
is achieved by expressing geometrical relations as equations 
between operators. Such equations hold regardless of the 
nature of the spectrum of the operators involved, whether 
continuous or discrete. This is particularly significant for 
differentiation. The derivative of a function F (q) of a coordi
nate operator q will be defined as the commutator 

(1.1) 

where K is the momentum operator conjugate to q. This de
finition extends the differential-calculus definition of the 
derivative of the functionF (q) at a pointq in the spectrum ofq 
to the general case where the spectrum of q need not be con
tinuous. As shown in the Appendix the value of F'(q) is sim
ply the eigenvalue of the commutator F'(q) in (1.1) at the 
spectral point q. 

2. GEOMETRICAL OBSERVABLES 

In three dimensions let! q J = ! qn; n = 1,2,3 J be a com
plete commuting set of generalized coordinate operators 
with the simultaneous eigenvector I ! q J) belonging to the 
nondegenerate set of eigenvalues ! q J ' and similarly let 
{KJ = !Kn; n = 1,2,3 J be the complete commuting set of 
conjugate generalized momenta (in units of 21rli), where (we 
employ the usual summation convention) 

<!qJI!Kj) =exp(21TiqnKn )· (2.1) 

The fundamental commutation rules state that 

21Ti[ Kn ,qm 1 = 8;:'i, [qn,qm] = 0 = [Kn ,Km ]. (2.2) 

The spectral representations of the coordinates and mo-
menta are 

qn= fd3 !qJI[qJ)qn<!qJI, Kn = fd3 [KJI[KJ)Kn<!KJI. 

(2.3) 

Also,}et the vector position operator i and momentum oper
ator k be designated as 

i = f d 3xlx)x(xl, k = f d 3klk)k(kl, (2.4) 

where 
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(xlk) = exp(21Tixok). (2.5) 

The integration symbols in (2.3) and (2.4) indicate Stieltjes' 
integrations on the eigenvalues of the operators (spectral 
summations); the spectra need not be continuous. 1.2 Since we 
shall not be discussing spectral summations (unless specifi
cally noted) we shall not use the caret to distinguish an oper
ator from its eigenvalues in the following. 

Define the partial derivative of an operator 0 with re
spect to coordinates and momenta as the commutation oper
ations, 

ano= ao = 21Ti[Kn,O], 
aqn 

ano = ao = _ 21Ti[qn,o], n = 1,2,3. (2.6) 
aKn 

Accordingly, the rules of differentiation of operators are the 
rules of commutator algebra. In accordance with previous 
work in coordinate representation, 1.3 the vector momentum 
k is given by the Hermitian operator, 

k = !(enKn + Knen) 

=enKn + (41Tl'j-Ianen=Knen-(41Ti)-lanen, (2.7) 

where en = en( I q J ) is a vector-valued function of the coordi
nate operators. By the principle of complementarity, the po
sition vector x is given by 

x = !(Enqn + qnEn ) 

= Enqn - (41Ti)-lanEn = qnEn + (41Ti)-lanEn, (2.8) 

where En = En (I K J). The basis vectors I en; n = 1,2,3 J of co
ordinate space commute with the coordinates I q J ; the basis 
vectors I En; n = 1,2,3 J of momentum space commute with 
IKJ. Accordingly, from (2.6), (2.7), (2.8), and (2.2), 

en(!qJ) = - 21Ti[qn,k] = ank, (2.9) 

(2.10) 

and 

anamx = 0, anamk = 0, n,m = 1,2,3. (2.11) 

Gradient operators V x and V k are defined as the com
mutation operators 

(2.12) 

IfF (I q J ) and G (I K J ) are scalar functions, then from (2.7) and 
(2.8) 

VxF(lqJ) = 21Ti[k,F(!qJ)], 
(2.13) 

VkG(!Kj) = - 21Ti[x,G(lKJ)], 

so that the gradient of a scalar function in either coordinate 
or momentum space is a self-adjoint Hermitian operator (ob
servable). Equations (2.9) and (2.10) can also be written as 

(2.14) 

According to (2.12) and (2.6), V xKn and V kqn both vanish; 
however, [k,Kn] and [x,qn] do not. For example, 

(2.15) 

The momentum vector operator does not commute with its 
generalized momentum components,4 nor the position vec-
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tor operator with its coordinate components. 
In classical vector analysis the unit tensor is given by 

Vxx and Vkk. However, from (2.9), (2.10), and (2.12), 

Vxx = enEn, Vkk = Enen, (2.16) 

which cannot represent the unit tensor, since en
( l q! ) and 

En (I K J) do not commute. Neither can 21TlTk,x] be the unit 
tensor, since 

(2.17) 

To express the unit tensor, introduce the vectors ~ = ~ (! q J ) 
and 1'J = 1'J (I K j), and define 

en(!qj) = an~' En(lKJ) = an1'J, (2.18) 

where the unit tensor I is given by 

Vx~=enen =1, Vk1'J=EnEn=l. (2.19) 
Now the symmetric metric tensors can be defined as the 
operators 

gnm (I q j) = en 0 em' gnm(! q j) = en 0 em, 

rm(!Kj) = En 0 Em, fnm{lK}) = En 0 Em' 

It follows accordingly that also 

and 

(2.20) 

(2.21) 

(2.22) 

emoen =8;;'=enem, Em °En=8:' =EnoEm. (2.23) 

The connection operators r ~m ( { q J ) and r ~m( I K J ) are de
fined by 

amek 
= - en r~m' amen = ekr~m' 

amEk = - Enrzm, amEn = Ek r~m. 

Since, according to (2.18), 

(2.24) 

(2.25) 

amen = aman~ = anem, amEn = aman1'J = anEm,(2.26) 

SO that the sets! en land! En J are coordinate bases,5 there
fore, the connections have the symmetries 

(2.27) 

From (2.24) and (2.12) 

Vxen = - emek rzm, Vxen = emekr~m' (2.28) 

Because of the symmetry of r~m in (2.25), Vxen is a self
adjoint Hermitian operator; Vxen is not. Similarly, from 
(2.25) and (2.12) 

(2.29) 

where V k En is self-adjoint, but V k En is not. 
From (2.7) and (2.24), and from (2.8) and (2.25), 

k = en(Kn - (41Ti)-lr;;'m) = (Kn + (41Ti)-lr;;'m len, 
(2.30) 

x = En(qn + (41Ti)-lr:,m) = (qn - (41Ti)-lr:,m)En.(2.31) 

Also, from (2.30) and (2.28) 

Kn =!(en ok+koen) 

= k 0 en - (41Ti)-lr;;'m = en 0 k + (41Ti)-lr;;'m' 
(2.32) 
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r':m = 21Ti(k 0 en - en 0 k) = Vx 0 en' 

and from (2.31) and (2.29) 

(2.33) 

qn = ~(En 0 X + X 0 En) 

= X 0 En + (41Ti)-lr;:,m = En 0 X - (41Tij- Ir;:,m, (2.34) 

r;:,m = 21Ti(x 0 En - En 0 X) = V k 0 En. (2.35) 

It is a well-known consequence6 of the properties of the 
determinant g of the metric tensor (g nm ) in (2.20), valid also 
when the elements of (gnm) are commuting operators, that 

r':,n = J-IaJ, J({q}) =gI/2, (2.36) 

where J is a Jacobian operator. Therefore, from (2.27) and 
(2.33) 

V x 0 en = r ':,n = J -lanJ, an (Jen) = O. (2.37) 

Accordingly, from (2.30) 

k = en(Kn - (21Ti)-IJ -1IZaJI/Z) 

= en(Kn + J lIZ [Kn,J -lIZ]) 

= enJI/ZKnJ-I/Z =J-1IZKnJ1IZen, (2.38) 

an equation expressing the vector momentum operator k in 
terms of its components {K}. To see that this operator equa
tion agrees with the results in the coordinate representation 
obtained previously, write the spectral summation (the caret 
again denotes an operator) using (2.4) and (2.5), 

21Tlk = J d 3xlx)(a/ax)(xl, (2.39) 

and using (2.1) and (2.3), 

21TiKn = J d 3{q}1 {qj)(a/qn)({q} I. (2.40) 

Since d 3X = Jd 3 {q}, where J is the Jacobian in coordinate 
space and Ix) = J - 1121 {q j), (2.40) becomes 

21TiK =Jd3Xlx)J-1/2~JI/2(xl (2.41) 
n aqn' 

in agreement with Eq. (13) of Ref. 1. From (2.38), (2.39), and 
(2.41) 

Jd3Xlx)~(xl = Jd3xlx)en~(xl 
ax aqn 

so that the coordinate representative of the vector momen
tum 21rlik is 

Ii a nli a 
--=e --, (2.42) 
i ax i aqn 

in agreement with Eq. (1) of Ref. 1. From (2.36) it follows that 

(2.43) 

Similarly, as in (2.36), 

r':,n = /-Ian /' /({K}) =/1/2, (2.44) 

where/is the determinant of the tensor (rm ) in (2.21); / is 
the Jacobian operator. Therefore, from (2.27) and (2.35) 

Vk 0 En = r':,n = /-Ian /' ant / En) = O. (2.45) 

From (2.31) 

x = En(qn + (21Ti)-1 /-1I2an/I12) 
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= En(qn + /1/2[qn, /-1/2]) 

= En/ 1/2qn/-1/2 = /-1/2qn/1/2En , (2.46) 

which expresses vector position operator x in terms of its 
components {q}. This equation for x is the complement of 
(2.38) for k. From (2.4) and (2.5) 

-21Tii= Jd3klk) ! (kl, 

and from (2.1) and (2.3) 

- 21Tiqn = fd3{K}I{KJ)~({K}1 
aKn 

(2.47) 

= Jd3klk)/-1/2~/1/2(kl, (2.48) 
aKn 

since d 3k = / d 3 {K}, where / is the Jacobian in momen
tum space and Ik) = /- 1/2

1 {K}). Therefore, from (2.46) 

- 21Tii = Jd3klk)~(kl = Jd3klk)En~(k I, 
ak aKn 

so that the momentum (wave number) representative of x is 

i a i a 
--=En---' 
217' ak 217' aKn 

3. TANGENT VECTORS IN THE SPACE OF 
COORDINATE OPERATORS 

(2.49) 

Since the basis operators {en, en' n = 1,2,3} commute 
with functions of the coordinates {q J they can be used to 
construct a vector space, the space of coordinate operators, 
analogous to the coordinate space of classical geometry. The 
measurable values of functions of these operators are real
ized on the set of spectral points which are the eigenvalues of 
{qJ. 

Consider the vector operator 

v = en un, un = un({q}). 

From (2.12) and (2.24) 

an v = emu:;:, Vx v = enemu:;:, 

where the con variant derivative of un is 

u:;: = anum + US r::.. 

Alternatively, 

so that 

where 

It is of interest that 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

[k,v] = [emem ok,v] =em[Km'V] + [em,en]unem ok, 
(3.7) 

so that from (2.38) 

21Ti[k,v] = Vx v + 21Ti[em,en] unJ I/ZKmJ -lIz. (3.8) 

Accordingly, V x v differs from the self-adjoint Hermitian op
erator 21Ti[k,v] only because [em,en] does not vanish; the 
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noncommutivity of em and en for m =/=n is not a quantum 
effect, but simply expresses the fact that the dyadic ernen is 
not symmetric. This result may be contrasted with (2.13) for 
the case of the gradient of a scalar function F ({ q }). The aver
age of 21Ti[k,v] in (3.8) with its Hermitian adjoint gives 

21Ti[k,v] = !(eme" + e"em)vn;m 

+ 1Ti( [em,en] VnKm + Km Vn [em,en]). (3.9) 

In contraction of 21Ti[k,v] in (3.8) the term in [em,en] vanish
es so that the divergence ofv in (3.2) is 

V" • v = 21Ti(k· v - V' k) = v~n =J-'an(Jvn). (3.10) 

Special cases, where v = en or en' appear in (2.24) and (2.28). 
In the case that v is the vector ~ in (2.18) and (2.19), 

V,,~ = enem 5; = I, 

so that 

(3.11) 

5;=D';, Vx·~=3. (3.12) 

The Riemann curvature tensor in the space of coordi
nate operators is readily obtained from the defining condi-
tion, 

(3.13) 

where v in (3.1) is any vector of the space. In particular, for 
Vi=Di, 

J 

(aman - anam)ej = esR ]nm, (3.14) 

so that from (2.24), the components of the Riemann tensor 
are 

R :nm = amr:n - anr:m + r7n r tm - r7m r tn' 
(3.15) 

the usual expression found in classical geometry. However, 
the connections, defined in (2.24) and (2.25), are quantum 
operators which are functions of the coordinate operators 
{q J. Accordingly, R :nm is also a quantum operator, a func
tion of { q I, whose measurable values are realized only on the 
spectral points which are the eigenvalues of { q J . 

Using the components vn ofv, define the corresponding 
linear derivation in the direction of v as the commutation 
operation, 

_d_=vna =v·V . 
dA (v) n " 

(3.16) 

In particular, 

d n 
_q_ = vma qn = vn, 
dAly) m 

(3.17) 

so that v can be written as the tangent vector operator, 

(3.18) 

with the corresponding derivation in the direction ofv, 

d dqn 
--=~. 
dA (v) dA (v) n 

(3.19) 

Also, from (3.11), 

v=v'V ~=~ 
x dA (v) 

(3.20) 

and 
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~=~=v'Vv. 
dA 2(V) dA (v) " 

On a geodesic in the space of coordinate operators, 
v • V" v = 0, so that 

(3.21) 

dum 
V· V V· em = vnv~ = --+ vnvsrm = O. (3.22) 

x .n dA (v) sn 

Thus from (3.17), the differential equation for a geodes
ic is obtained as a relation on the coordinate operators, 

d 2qn [ dqm ] [ dq' ] --+ -- -- rn -0 
dA 2(V) dA (v) dA (v) sm - . 

(3.23) 

We may require that v be a unit tangent vector, so that from 
(3.18) 

(3.24) 

in which casedA (v) appears as the differential arc-length tan
gent to v. This result holds for all directions of the unit vector 
v [as does the geodesic equation (3.23)], so that, in place of 
dA (v), we write the Riemannian metric dA in the space of 
coordinate operators, 

(3.25) 

according to (3.20). In (3.25), 1 is the unit quantum operator; 
the metric dA is not a q-number. 

Angular momentum7 is defined L = 21rli~xk. 

4. TANGENT VECTORS IN THE SPACE OF MOMENTUM 
OPERATORS 

The results obtained in the previous section for the 
space of coordinate operators can readily be duplicated, mu
tatis mutandis, for the complementary momentum space, 
where the operators! £n ,£n} commute with functions of ! K J. 
Let 

w=£nWn , wn =wn({Kll· 

Then 

Or 

anw = £mwm;n, Vkw = £n£mwm;n, 

wm;n = anwm _ w'rr;". 

Also, 

V k • W = - 21Ti(x • w - w • x) = w~. 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

A curvature tensor in the space of momentum opera
tors is defined by the condition 

(ama" - a"am)w = £s:?hI:mnwi = €s:?hl:mnwi, 

with w given in (4.1). In particular, 

(aman _ anam)£i = £s:?hl!nm, 

so that from (2.25) 

(4.8) 

(4.9) 

:?hI~"m = amr~n _ anr~m + rrr:m - r~mr:n. (4.10) 

:?hI~nm is a quantum operator whose measurable values are 
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realized only on the points which are eigenvalues ofthe mo
mentum operators ! K J . 

The linear derivation in the direction ofw is defined as 

d 
--= wna" = w· Vk • 

dJl(w) 
Since 

dKn 
--=W 
dJl(w) n' 

therefore, w is the tangent vector operator 

dKn W{!Kj) = en __ , 

and 

dJl(w) 

_d_=~. 
dJl(w) aJl(w) 

From (2.19) 

and 

W=W.Vkl1=.....!!!1...
dJl(w) 

d 211 dw 
---=--=w·Vkw. 
dJl2(W) dJl(w) 

On a geodesic in the space of momentum operators, 
w • V k W = 0, so that 

dWm F sn 0 --+wnws m = 
dJl(w) 

or 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

the geodesic equation in the space of momentum operators. 
The Riemannian metric in this space is dJl, the differential 
arc length in an arbitrary direction where, if w • W = 1, 

(4.19) 

5. DISCUSSION 

Complete symmetry exists between the complementary 
spaces of coordinate operators and momentum operators. It 
is only necessary to replace functions of one set of operators 
! q J or ! K J by the corresponding functions of the other set, 
interchanging covariant and contravariant indices. This re
sult is in agreement with the principle of complementarity 
between coordinate (particlelike) and momentum (wavelike) 
aspects of the physical system. The uncertainty principle of 
quantum mechanics will operate with respect to these com
plementary geometrical spaces. If the state of the system is 
specified by a statistical operator (state vector) which is clo
sely approximated by an eigenstate of the coordinates ! q J ' 
then all spatial geometric properties are well determined (as 
in classical geometry), but the complementary momentum 
geometric properties have a high degree of uncertainty. If, 
however, the state vector is closely approximated by an ei
genstate of the momentum components {K J, then the mo
mentum geometric properties are well determined and the 
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high degree of uncertainty attaches to the spatial geometry. 
In the Schrodinger picture the state vector changes in time 
under the influence of a Hamiltonian H (! q J , ! K J ), or as a 
result of measurement. The degree of uncertainty in the spa
tial geometric properties, those associated with the particle
like aspect of the system, accordingly is variable and changes 
with the state of the system; similarly, for the momentum 
geometric properties. 

In the context of the quantum geometrical formalism, 
the following identifications can be made with current ter
minology in differential geometry.8,9 The set of eigenvalues 
of each tangent vector operator v( {q j ) (the caret denotes op
erator) specified a vector field, assigning a value of a tangent 
vector v ({ q J ) to each point ! q J in the three-dimensional 
space of the system, i.e., the set of points in the spectrum of 
the coordinate operators! q J . The set of all tangent vectors at 
a point {q J is the collection of eigenvalues at { q J of all opera
tors v(! q J); this is the tangent space at ! q J. The union of all 
tangent spaces for all spectral points! q J is the tangent bun
dle (whose projection onto the specific point! q J is the tan
gent space at {q J); the tangent bundle is, therefore, the col
lection of eigenvalues of all operators v(! q J ) of the space of 
coordinate operators of the system. A section of the bundle is 
the set of eigenvalues of a particular v( ! q J), the aforesaid 
vector field. The cotangent bundle is the collection of eigen
values of all operators w( !; J ) in the space of momentum 
operators of the system. A section of the cotangent bundle is 
the set of eigenvalues of a particular operator w( !; J ), a field 
w(! K J ) in the space of momentum eigenvalues. However, be
cause of the noncommutivity of !; J and ! q J, one cannot 
specify the cotangent space at a point {q J (or the tangent 
space at a point ! K J ). 

APPENDIX: DIFFERENTIATION ON THE EIGENVALUE q 
OF A COORDINATE OPERATOR q 

Let F (q) be a self-adjoint Hermitian function of coordi
nate operator q (a complete commuting set), and let 

F(q)lq) = F(q)lq)· (AI) 

Then 10 

[F(q) - F(q')] (qlq') = 0 (A2) 

and 

F(q) = f dq'(qlq')F(q'), (A3) 

so thatF(q) is in the class of test functionals of the Schwartz 
distribution (qlq'). The integration is a Stieltjes integral 
(spectral summation) on the set of (generalized) eigenvaluesq 
of q; the spectrum need not be continuous. If; is the momen
tum operator conjugate to q, then 

[[;,F(q)),q] = - [[F(q),q),;] - [[q,;),F(q)] = 0, 
(A4) 

so that the derivative of F(q) [see (2.6)], namely, 

F'(q) = 21Ti[;,F(q)), (AS) 

commutes with q and is also a self-adjoint function of q. 
Accordingly, 

(qIIF'(q)lq2) = F'(q2)(qllq2) 
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But, from (2.2), 

21Ti(q; I [~,q] Iq2) = (qllq2) = (q2 - qd21Ti(qll~lq2)' 
(A7) 

and therefore, substitution into (A6) gives 

F'(q2)(qllq2) = {[F(q2) - F(qd)/(q2 - qdl (qllq2)' 
(AS) 

Since F'(q) is also in the class of test functionals of (qlq') in 
(A3), spectral summation on q2 gives 

F'(ql) = f dq2{ [F(q2) - F(ql))/(q2 - qdl (qllq2)' (A9) 

F'(ql)' the eigenvalue of the commutator F'(q) in (AS), is the 
derivative on q, the eigenvalue of coordinate operator q, of 
F(q), the eigenvalue of F(q), whether the spectrum of q is 
continuous or discrete. For example, if 

(AID) 

a power series, for all points ql' qo in the spectrum of q, then 
t/J (q) is given by the power series 

t/J(q} = i: t/fn)(qo)(q - qoi)n (All) 
n=O n! 

at each spectral point qo. From (AS) in this case, 

t/J'(q} = i: t/fn)(qo)(q - qoi)" - I (AI2) 
n= I (n - I)! 

and from (A9) and (AID) 
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t/J'(qd = f dqo{ [t/J(ql) - t/J(qo) )/(ql - qo) I (qllqo) 

= f dqo t/J(1)(qo)(qI!qo) = t/J(1)(qd, (A13) 

since for integral n>O, 

fdqo(ql -qo)"(qllqo) =8n,o' (AI4) 

Conversely, if t/J(q) is given by a power series of the form 
(A 11), the coefficient t/fn)(qo) is the nth derivative of t/J(q) at the 
spectral point qo, according to definition of the derivative, 
(A9). 

Obviously analogous results follow for differentiation 
on the eigenvalue K of a momentum operator~, The results 
apply to vector-valued functions as well as to the scalar func
tions F (q) considered above. 

lB. Leaf, Found. Phys. 10, 581 (1980). 
2B. Leaf, Found. Phys. 12, 583 (1982). 
3B. Leaf, Am. J. Phys. 47, 811 (1979). 
'Reference I, Eq. (4), in coordinate representation. 
5C. W. Misner, K. S. Thome, andJ. A. Wheeler, Gravitation (Freeman, San 
Francisco, 1973), p. 210. 

6H. Lass, Elements of Pure and Applied Mathematics (McGraw-Hill, New 
York, 1957), p. 98. 
7~ replaces x in the definition used in Ref. 3, Secs. III and IV. 
8M. Spivak, A Comprehensive Introduction to Differential Geometry (Pub
lish or Perish, Inc., Boston, 1970). 
~. Drechsler and M. E. Mayer, Fiber Bundle Techniques in Gauge Theor
ies, Lecture Notes in Physics (Springer-Verlag, Berlin, 1977), Vol. 67. 

IOReference 2, Eq. (24). 
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General properties of the effective potential are discussed for quantum mechanical systems with a 
single degree offreedom. These properties are illustrated using specific one-dimensional potential 
models. In particular, it is stressed that the ground state for a system can exist even when the 
effective potential decreases monotonically towards a unique finite minimum at infinite (x). 

PACS numbers: 03.65.Db, lUO.Cd 

I. INTRODUCTION 

The effective potential V is a device widely used in 
quantum field theory to analyze global properties of the 
ground state (vacuum).l In general, V(¢ ) is defined as the 
minimum expectation value of the system's Hamiltonian, 
V(¢ ) = min(¢ IH I¢ ), given the constraintthatthefield ex
pectation value is held constant, ¢ = (¢ 14> (xll¢ ). This con
straint is invariably implemented in field theory through the 
Lagrange multiplier technique of introducing a linear cou
pling to a local external source. 

The effective potential is not widely used to study non
relativistic quantum mechanical models with a finite num
ber of degrees of freedom. This is rightly so because the effec
tive potential for a quantum mechanical system reveals very 
little of the system's complete dynamical content (as we shall 
see below). Several more refined methods usually exist which 
provide much more detailed information for systems with a 
finite number of degrees of freedom (e.g., direct numerical 
calculation of single-particle wave functions). 

Nonetheless, by studying V for simple quantum me
chanical systems, perhaps some intuition may be gained 
which can be used to clarify situations in field theory. Thus, 
in this paper we shall discuss some features of the effective 
potential for nonrelativistic systems with a single degree of 
freedom, x, whose dynamics are governed by the Schro
dinger equation with an actual potential U (x). 

The paper is organized as follows. In Sec. II, we first 
define Vand dispense with some trivial cases involving sys
tems whose actual potentials are either localized or at least 
asymptotically sublinear. Then we consider less trivial cases 
where the actual potential is either asymptotically linear, or 
supralinear in at least one direction, or where U involves 
completely impenetrable regions. We prove some general 
theorems concerning the concavity and monotonicity of V, 
especially examining the effects of any impenetrable poten
tial regions or bound states for U. In an appendix, we discuss 
other terms in the effective action which are needed to un
derstand the physics of impenetrable potentials. Next, in 
Sec. III we discuss at length the asymptotic (x) behavior of 
V for various possible asymptotic x behaviors of the actual 
potential U. We relate such behavior to the scattering phase 
shifts at low momentum, paying particular attention to the 
effects of zero-energy solutions of the Schrodinger equation. 

.) Work su pported in part by the U.S. Department of Energy under Contract 
No. DE-AS-05-81-ER40008. 

In Sec. IV we discuss in detail some specific examples in 
order to illustrate some of the general properties of V. Those 
examples include actual potentials given by a simple har
monic oscillator, a linear potential, and a delta function lo
cated near an impenetrable wall. We also briefly consider 
"supersymmetric" potential models, which assign particular 
importance to states with zero energy. Finally, we close by 
commenting on the possible significance of our results for 
the two-dimensional Liouville quantum field theory. 

II. DEFINITIONS AND GENERAL FEATURES 

We shall consider nonrelativistic one-dimensional 
quantum mechanics for a single particle (with m = !) moving 
in an actual potential U (x). Proceeding as in field theory, we 
define the effective potential V in the general case as 

V(x») = min(¢IH I¢) 
IIfJI 

= minJdx[ 1 dtf(x) 12 + U(x)I¢(xW ], (1) 
It/-ixll dx 

where we minimize over all wave functions ¢(x) such that 

(x) = J dx xl¢(xW, 1 = J dxl¢(xW· (2) 

The minimization procedure can always be carried out in 
principle by a thorough selection of trial wave functions. We 
shall sometimes employ this method of minimization in the 
following. 

The minimization of (H ) with (x) fixed can sometimes 
also be carried out as it is in field theory by using a Lagrange 
multiplier. We add to U (x) the linear term Jx and solve the 
eigenvalue problem 

( - :X22 + U(x) + Jx )¢(X) = E(J)tf(x). (3) 

We then choose E (J) to be the lowest eigenvalue for this 
equation. As is well known, this procedure gives 

d 
(x) = -E(J) 

dJ ' 

which implicitly specifies J as a function of (x), and 

V(x») = E(J) - J (x), 

which yields the complement of (4), 
d 

J = - d (x) V(x»). 

(4) 

(5) 

(6) 

Obviously, this Lagrange multi pier method can be employed 
to calculate Vonly if the actual potential is either "linear" or 
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"supralinear" for asymptotic x, i.e., only if 

lim U(x)/lxl > O. 
Ixl--oo 

(7) 

Otherwise, there is no ground state solution to (3). Actual 
potentials failing to satisfy (7) will be called "asymptotically 
sub linear. " Such potentials require the use of the general 
prescription in (1) to compute V. 

Let us first dispense with those trivial cases where the 
actual potential is asymptotically sublinear, i.e., 

lim U(x)/Ixl = O. (8) 
Ixl~oo 

We do so by judiciously choosing a trial wave function 

tP(x) = cos e tPl(X) + i sin e tPz(x), (9) 

where tPl and tPz are both real wave packets and e is a real 
parameter. For such a trial function, the hermiticity of H 
and x gives 

(H) = EI cosze + Ez sinze = EI + (Ez - EI)sinZe, (10) 

(x) = XI cosze + X2 sin2e = XI + (X2 - xdsin2e, (11) 

where Ij = 1,2) 

Xj = Jdxx1tPj(XW, Ej = JdXtPjHtPF (12) 

Solving Eq. (11) for sin2e, we may write 

(H) =EI + (E2 -Ed(x) -xd/(X2 -XI)' (13) 

Now for any E>O we may choose tPl such thatEI <Eo + E, 

where Eo is the greatest lower bound on the spectrum of H, 
and such that X I is finite. If we then take the limit xzI 
(x) - xl)-oo with (x) #XI fixed, but arbitrary, Eq. (13) 
gives 

(H) ---+ EI<Eo+E. 
x,/(x) - x.l~'" 

The term involving E2 becomes negligible in this limit due to 
the assumed localized character of the packet tP2 and the 
sublinearityofU (X):E2Ix2::::: [1!(..::lx2f + U (x2)]lx2-D. Here 
..::lX2 is the width of the packet tP2' Thus we have shown that 
we can fix (x) arbitrarily and obtain (H) <Eo + E. From 
the general definition of V (x» in Eq. (1), we thus deduce the 
exact result 

V( (x») = Eo, for all(x), (14) 

when the actual potential is asymptotically sublinear. This 
simple result shows quite clearly that the exact effective po
tential may sometimes reveal practically nothing about the 
dynamical content of a model. Subsequently, we shall con
sider situations which are not so trivial as in (14). 

We shall now establish the general result that V is con
cave upward. We shall use an argument similar to that which 
led to (14). (This result was previously established using a 
functional integration argument.2

) Suppose that x I and X 2 

are any two points where Vis defined, withxl <x2 • From the 
definition of V, we know that for any E > 0 we can choose two 
real wave function packets tPl and tP2 such that 

(15) 

where Xi and Ei are again given by (12). By choosing a linear 
combination of these packets, as in (9), it follows that Eqs. 

542 J. Math. Phys., Vol. 25. No.3, March 1984 

(10), (11), and (13) are again true, with x I < (x) < x2. From 
the general definition of V we then have 

V(x»)<,(H) = (X2 - (x»)EI + (x) -xdEz 
X 2 -X I 

< (X2 - (x»)[ V(x l) + £] + (x) - xd[ V(xz) + €] (16) 
X 2 -XI 

Since this last inequality is true for all E> 0, it follows that V 
is concave upward. 

A simple consequence of the concavity of V is that it 
limits the manner in which curve crossing can occur for dif
ferent "V's" computed by varying J and following different 
stationary solutions of Eq. (3). Such" V( (x) )'s" must cross 
tangentially because the true V ( (x») must always follow the 
lower of the two curves, and nontangential crossing would 
imply a forbidden convex cusp in V. Note further that Eq. (6) 
implies the intersection point of two such tangentially cross
ing .. V" curves would correspond to equal J, as well as Vand 
(x), and hence equal E (J). For a one-dimensional system 
with an actual potential unbounded in one direction, every 
energy level is nondegenerate, assuming U (x) is finite for fin
ite x, so in this case such curve crossing is simply not al
lowed. 

If U (x) is not finite for finite x, degenerate energy levels 
are possible even in one dimension, and V appropriately ex
hibits some interesting behavior. This is the case if there are 
impenetrable, infinite potential regions at finite x. We now 
discuss an illustrative example involving one such impen
etrable barrier. One can apply the Lagrange multiplier tech
nique to each of the independent subsystems separated by 
the impenetrable barrier to obtain two disconnected V ( (x) ) 
curves computed by alternately taking vanishing wave func
tions either to the left or to the right of the barrier. The true 
V( (x») for the combined system, however, must be comput
ed using a superposition of two such wave functions. Let this 
superposition be given again by Eq. (9) with tPl nonzero to the 
left of the barrier and tP2 nonzero to the right of the barrier. 
Then x I and X 2 as given by (12) will lie to the left and right of 
the barrier, respectively, and (x) for the superposition may 
be chosen to lie anywhere between x I andx2, including with
in the impenetrable barrier. 

The expectation of H for the superposition is again giv
en as in Eq. (13) or (16). We may choose tPl and tP2 to mini
mize Eland Ez and obtain VI and V2, the effective potentials 
for the separated subsystems. We may further choose x I and 
X 2 to minimize (H) for a fixed value of (x), with 
XI < (x) <x2• This requires 

O 
__ a (H ) x 2 - (x) 

-"--- [VI(xJ! - V2(X2)] 
aX I (X 2-X I )2 

X 2 - (x) V'( ) + I XI' 
X 2 -XI 

(x) - XI 
--'---'----'::-2 [VI(xJ! - V2(X2 )] 

(X2 - xd 
0= a (H) 

(x) -XI V'( ) + 2 x 2 
x 2 -XI 

and thus specifies V; (XI) = V; (x2) = [V2(X2) - Vt(xt)]1 
(X2 - x t). This fixes X t and X 2 to be those points on the VI and 
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V2 curves which have a common tangent given by the linear 
function of (x) in Eq. ( 13). The minimized (H ) then gives for 
V 

V(x») 

if x 2«x) 
(17) 

The effective potential for the combined system thus has a 
linear segment, extending across the impenetrable barrier. 

At first encounter, this result appears to be paradoxical. 
The actual potential is impenetrable, but the effective poten
tial exhibits absolutely no barrier, consistent with its being 
concave. To understand the physics of this situation, one 
must go beyond the effective potential and consider the non
static contributions to the effective action for the system. 
This is discussed in the Appendix. 

III. ASYMPTOTIC BEHAVIOR 

Henceforth, we always assume the actual potential is 
linear or supralinear for x- - 00, as defined in Eq. (7). The 
most interesting features of the effective potential will then 
be directly dependent on the behavior of U (x) as x_ + 00. 

We shall concentrate on how the asymptotic (x)_ + 00 be
havior of V depends on that of U. 

First consider the case where U is also linear, or supra
linear, as x_ + 00, and suppose U is finite for all finite x. 
Since U will dominate the kinetic energy of a localized pack
et for large (x), we shall apply the WKB approximation for 
(x) sufficiently large. The WKB quantization condition 

dxJE- U(x)-Jx=-I
X.'S. 1T 

XJow 2 
(18) 

then gives a corresponding approximation for (x), 

(x) = dy dy . IXh.Sh Y !IXh .. h 1 

Xlow JE - U(y) - Jy Xlow JE - U(y) - Jy 

(19) 

If we now use the harmonic approximation of U (x) + Jx 
about an assumed minimum x m , we obtain 

E(J)=U(xm)+Jxm+~U"(xm)/2+ ... , (20) 

(x) =Xm + .... (21) 

Consequently, this will be a valid approximation giving neg
ligible quantum corrections to the effective potential if 

More explicitly, if U(x) - xP, this condition becomes 

x- J - P/ 2/(1_p)<1. (22) 

This is always satisfied as X---+ 00 if p> 1. Thus in this case we 
conclude that 

V(x») - U(x»). 
(x)~oo 

(23) 

543 J. Math. Phys., Vol. 25, No.3, March 1984 

Although the above argument fails for p = 1, we shall give 
an exact result later for the case of a linear potential which 
shows that the result in (23) still holds for that case [see Eqs. 
(47) and (48)]. Thus, if the actual potential is linear or supra
linear, it provides the asymptotic form of the effective poten
tial. 

Next suppose that U (x) is sublinear for large x, but still 
grows like a power, xP, with 0 <p < 1. In this case the La
grange multiplier method fails to work for J < 0, and cannot 
be used to force (x) to be larger than xo, the expectation in 
theJ = 0 ground state ofthesytem. Note that since the actu
al potential is unbounded in this case as Ix I becomes large, a 
normalizable ground state with energy Eo and finite Xo cer
tainly exists. The general variation definition in Eq. (1) must 
be used to compute V for (x) > xo. An argument similar to 
that surrounding Eqs. (9)-(12) establishes that 
V ( (x) > xo) = Eo for this case. 

For potentials that remain bounded at large positive x, 
we shall choose our zero of energy so that U (x)~. It 

follows that V (x») also asymptotes to zero. To be quantita
tive, let us consider potentials which behave like 

When 0 <p < 2, the WKB analysis given above may 
then be applied to this class of potentials. If it is possible to 
obtain large values for (x) using the Lagrange multiplier J, 
then we conclude that Eq. (23) still holds. As above, it will 
not be possible to obtain arbitrarily large (x) using J if U 
possesses a bound state with energy Eo<O and finite 
(x) = xo' To move to larger values of (x) would require 
J < 0, causing U (x) + Jx to be unbounded below for large 
positive x. As in the case of the preceding paragraph, how
ever, a variational argument establishes that 
V (x) > xo) = Eo, where Eo is again the lowest bound state 
energy. 

In fact, it should be clear at this point that the effective 
potential always becomes a constant for (x) >Xo when the 
system admits a normalizable ground state with (x) = Xo' 
Since this feature is completely insensitive to the local prop
erties of the actual potential U, it provides another illustra
tion of how V can be insensitive to the detailed dynamics of a 
model. 

It should also be noted that if the actual potential is 
linear or supralinear for x- - 00, but sublinear for 
x_ + 00, then the previous general result on the concave
upward character of the effective potential shows that V (x») 
will decrease monotonically towards its finite asymptotic 
value as (x) increases. 

Continuing our discussion of bounded potentials, we 
next suppose that U goes to zero at least as fast as l/x2

, and 
we write 

U(x) - L (L + 1)/x2, (24) 

allowing the possibility of L = O. If the nonleading asympto
tic behavior of the actual potential satisfies the condition 

[U(x) -L (L + l)1x2Jx2L+3~, (25) 
x~oo 
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then theE = O,J = o solution ofEq. (3) has large-x behavior 
given by 

(26) 
x~oo 

where a l and a2 will depend upon the specific details of the 
short-range part of U. On the other hand, the solution of(3) 
for large x will satisfy 

( 
d2 L (L + 1) ) 

- -2 + 2 +Jx tPas(x) =E(J)tPas(x), (27) 
dx x 

which is simply the Airy differential equation generalized to 
include nonzero orbital angular momentum. In the limit of 
smallJ, and correspondingly smallE (J), the asymptotic solu
tion in (27) should match onto the E = 0, J = ° solution in 
(26) for a range of x: x should be large enough to neglect the 
short-range part of U, but much smaller than J -1/3. 

It facilitates further discussion to define 

J = i\ E (g) = glz(g), and y = gx. 

In terms of these we have 

(x) = (l/3g)[gz'(g) + 2z(g)], 

V(x») = jgl[z(g) -gz'(g)]. 

(28) 

(29) 

(30) 

The large-(x) behavior of Vis then determined by the small
g behavior of zig). We also see that 

tPas(x) = tP (Y), (31) 

were tP (y) satisfies 

(_ :y: + L (~: 1) + y)tP (y) = z(g)tP (y). (32) 

Thus we may write 

(33) 

where the small y behavior for each of the two independent 
(assuming L > -!) solutions of (32) is given by 

tP2(Y) - y - L (1 + 0 (y2)), 
y-..o 

(34) 

and where C1(Z)/c2(Z) is fixed for each z so that tP (y)----+O. 
)'->00 

We now see that the required matching of the E = 0, 
J = 0 solution in (26) with tPas(x), in the limit ofvanishingg, 
determines the ratio of the coefficients in (33) in terms of the 
coefficients in (26). If a l #0, then 

We conclude in this case that zig) approaches a zero of 
c2(z)lc l (z) in the limitg-D. 

(35) 

The situation is more involved when a l = O. To simul
taneously treat all cases, we shall relate the small-g behavior 
of z(g) to the low-energy behavior of the phase shifts for the 
potential U(x),interpretingtheasymptoticL (L + 1)lx2 term 
as the usual centrifugal barrier, but allowing L to take on 
continuous values. We also define the phase shifts in the 
usual way through the large-x behavior of the solution of(3) 
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with J = 0 [we assume 8L (00) = 0]: 

tft(x) - sin[xa- -L1T12+8da-)]· 
J=Q x-co 

(36) 

Our discussion to follow makes use of some well-known re
sults from single-channel scattering theory (e.g., see Ref. 3, 
especially Chaps. 11 and 12). 

First note that the Jx term initially influences tPl and tP2 
at order y3, so if 2L + 1 < 3 (i.e., L < 1) a comparison of the 
scattering wave function to tP (y) in (33) yields 

( ) 22L + 1 r (L + J)r (L + I) 
C2 Z _ 2 1 . (37) 

( ) 
L+ I 

C1Z g~1TZ 2(cot8L (gZI /2)-cot1T(L+!ll 

This result is contingent upon the nonleading asymptotic 
behavior of U satisfying Eq. (25). 

Next, the zero-energy behavior of the phase shifts, 
which is needed to deal with the rhs of (37), is conveniently 
summarized by Levinson's theorem for continuous L. 
[Again this result can be proven if the condition in Eq. (25) 
holds.] 

{

(N + L + !), a l = 0, 

~8L(0) = (N + 1), a l = 0, 

1T N, al#O. 
(38) 

Here N is the number of negative energy bound states. In 
view of the various cases in (38), we now consider the various 
possibilities for the effective potential. 

If U admits any negative energy bound states, the effec
tive potential is constant for (x) greater than the averaged 
position for the lowest bound state: V(x) >xo) = Eo. We 
have previously argued this conclusion using trial wave 
functions. If a 1 # 0, and there are no negative energy bound 
states, then (38) gives 

cot 8 L (g,[Z)--+ 00 
g~ 

and we have 

(39) 

This confirms our previous result, Eq. (35). The possibility 
that c21 C 1 remains finite while z-D is ruled out, given the 

conditions in Eq. (25), because then 8L(g,[Z) = 0 (g,[Z)2L + 1 

asg-D. 
If a 1 = 0 and L <~, Levinson's theorem implies that 

In this case then 

(40) 

We conclude in this case that zIg) approaches a zero of c 1 (z)/ 
c2(z) in the limit g-D. If a 1 = 0 and L > !, Levinson's 
theorem implies once again that 

cot 8 L (g,[Z)--+ 00 . 
g~ 

However, since now a 1 = 0, it follows that (g,[Zf + 1 

X cot 8 L (g,[Z)-D, and hence the rhs of (37) can stay finite if 

z----+O. Thus, we conclude that z(g)----+O. 
g~ g~ 
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In all cases above where z(g = 0) is nonzero, the effec
tive potential exhibits a universal 1/ (x) 2 dependence for its 
asymptotic large positive (x) behavior. Explicitly, 

V(x») _ ~ Z3(0!, (41) 
(x)~"" 27 (x) 

where z(O) is either the lowest zero of C2/C I if a l #0, or the 
lowest zero of CI!c2 if a l = 0 and L <!. 

If a l = 0 and! <L < 1, given the conditions in Eq. (25), 
then 

cot OL (k) _ bk I -- 2L 
k--->O 

and therefore 

z(g) _ dg2L~ I, (42) 
g--->O 

where 

22L+ IF(L + ~ )F(L + ~) CI(O) 
d= -. 

7Tb c2(0) 

The details of the short-range part of U (x) determine the 
constant b (or d). In this case the effective potential behaves 
asymptotically as 

2d(1 -L) (d(2L + 1) )IL+ !)l11 ~LI 
V(x»)(X)-:''''' 3 3(x) 

(a l = 0, ! <L < 1). (43) 

We emphasize that this formula only holds for! < L < 1. For 
L > 1 and a I = 0, the actual potential admits a zero-energy 
solution with (x) = Xo < 00, and so V ( (x) > xo) = 0 in this 
case. 

Finally, we specialize to the case L = O. Then we have 

CI(Z)!c2(z) = Ai'( - z)/ Ai( - z), (44) 

where Ai is the standard Airy function. Consequently, 
V (x») exhibits the behavior (41) with either Ai'( - z(O)) = 0 
if a l = 0, or Ai( - z(O)) = 0 if al #0. Referring to (25), the 
above analysis applies to this case only if U (X)x3 -0 asx_ 00 • 

However, if U has a power-law tail 1/xP, for 2 <p < 3, one 
can treat the tail perturbatively as g-o and again deduce 
that - z(O) is either a zero of Ai or of Ai'. We shall say more 
about the L = 0 case below in the context of an explicit ex
ample. 

IV. SPECIFIC EXAMPLES 

Some specific examples of simple potential models will 
serve to illustrate many of the general properties of the effec
tive potential for quantum mechanical systems with a single 
degree offreedom. The most well-known example is that of 
the simple harmonic oscillator with actual potential 

U(x) =x2/4. (45) 

The corresponding effective potential is easily calculated us
ing the linear Lagrange mUltiplier method, since U (x) domi
nates Jx as x_ + 00 or - 00. The result is 

V(x») =! + (x)2/4 (46) 

and displays the familiar zero-point energy at the minimum, 
(x) = o. 
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A less familiar, but still exactly calculable example is 
that of a linearly rising potential attached to an impenetrable 
"brick wall" barrier. The actual potential is 

r
oo if x<O 

U(x)= .. 'f 0 
JX 1 x> , 

(47) 

where!> O. The corresponding effective potential is again 
calculable by the Lagrange multiplier method, provided that 
J> - f All positive (x) expectation values are still obtaina
ble by varying J. It is then straightforward to find 

r
oo if (x) <0 

V(x») = !(x) + 4z3/27(x)2 if (x) >0, (48) 

where - z = - 2.338 10741··· is the first zero of the Airy 
function, Ai. The form of V ( (x) ) follows straightforwardly 
from the lowest energy solution of the Schr6dinger equation 
(3) in the presence of the linear potential plus external source 
(f + J)x, subject to the conditions that the wave function 
vanish at x = 0 and x = 00. That wave function solution is 

Ai(x(f + J)I/3 - z) 

and has energy 

E = z(f + J)2/3. 

It is remarkable that the result in Eq. (48) is simply the sum of 
the actual linear potential plus the effective potential for the 
impenetrable barrier alone (found by setting! = 0).4 

Another specific choice for U nicely illustrates many 
other general theorems, especially those concerning the ef
fects of zero-energy states on the behavior of V. Consider the 
case where U is a delta-function potential situated near an 
impenetrable barrier. 

{ 

00, x <0, 
U(x)= -so(x-l), x>O. (49) 

The Lagrange multiplier method with J> 0 may be used to 
compute V (x»). Different qualitative behavior for the effec
tive potential is determined by different ranges for the 
strength of the delta function, s, in accord with our general 
discussion. The results for various values of s are shown in 
the figure. For sufficiently small but positive (x), i.e., large 
positive J, the delta function is always insignificant and V 
approaches the general1/(x)2 form given in Eq. (41) [i.e., 
Eq. (48) with! = 0]. For large values of (x), i.e., small posi
tive J, the form of V is dependent on the occurrence of nor
malizable or bounded zero-energy solutions of the Schr6-
dinger equation, (3), with J = O. 

If s > 1, the actual potential is sufficiently attractive for 
the existence of a single normalizable bound state with 
E B < 0 and finite (x) B' The effective potential decreases 
monotonically as (x) increases until (x) B is reached, be
yond which V is a constant, E B' This is illustrated in the 
figure (curve H) for s = 2, for which EB = - 0.634 9095, 
(x) B = 1.342 284. 

If s = 1, there is a bounded, zero-energy solution of the 
J = 0 Schr6dinger equation: tPo(x) = x ifO..;x..; 1, tPo(x) = 1 if 
x;> 1. In this case V decreases monotonically, as (x) in
creases, to the asymptotic form given in Eq. (41) with 
- z(O) = - 1.01879297 ... , the first zero of Ai'. We wish to 

emphasize that the effective potential in this case still has a 
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100 

FIG. I. V(x) vs x for barrier plus 8 function of strengths: (A) s = - 00 

(inside); (B)s = - 00 (outside); (C) - 20; (0) - 2; (E) 0; (F) 0.6; (G) 1; (H) 2. 

unique minimum, albeit at infinite (x). Again this case is 
shown in the figure (curve G). 

If s < 1, neither normalizable nor bounded zero-energy 
solutions exist for the J = 0 Schrodinger equation. For in
creasing (x) the monotonically decreasing effective poten-

I 

tial will once more approach the asymptotic form given in 
Eq. (41) with - z(O) equal to the first zero of Ai. This is 
shown in the figure for the cases s = 0.6, s = 0, s = - 2, and 
s = - 20. Of course, for s = 0, Eq. (41) gives the exact form 
for V [see (48)]. For repulsive delta functions (s < 0), theeffec
tive potential is raised above the s = 0 case in the vicinity of 
the repulsive spike. Note that for an extremely repulsive (but 
finite s) case (e.g., curve C in the figure) the Lagrange multi
plier calculation of Vbegins to approximate the linear seg
ment which would be simultaneously tangent to the discon
nected effective potentials for the two independent 
subsystems "inside" and "outside" of an impenetrable delta 
function (s = (0). Those "inside" and "outside" subsystem 
effective potentials are shown in the figure as curves A and B. 
Recall the linear segment for the impenetrable delta function 
was established above, without detailed calculation, by using 
a simple variational argument. 

The effective potentials shown in the figure were ob
tained using numerical methods supplemented by the fol
lowing analytical results. The ground state wave function in 
the presence of the linear source term has the form 

{ 

Ai(gx - z(g))Bi( - zig)) if O..;;;x..;;; 1 

tP(x) = - Ai( - z(g))Bi(gx - zig)) 

K Ai (gx - zig)) if x> 1, 

(50) 

whereK is a constant, J = g3, E (J) = g2z(g), and Ai and Bi are 
the standard Airy functions. The continuity of tP and the 
required discontinuity of dtP/dx at x = 1 fix the constant K 
and require that zig) be the lowest solution of the following 
equation: 

Ai( - z(g))Bi(g - zig)) - Bi( - z(g))Ai(g - zig)) 

= (ghrs)Ai( - z(g))/ Ai(g - zig)). (51) 

Given that zig) is such a solution, the expectation value (x) is 
determined using Eq. (29) with 

s - 1 + 2g(d /dg)ln[Ai(g - zig))] 
z'(g) = s _ S Ai2(g - z(g))/ Ai2( - zig)) + 2g(d /dg)ln[Ai(g - zig))] 

(52) 

Combining these results, one obtains V ( (x) ) through the use 
ofEq. (30). 

Zero-energy states playa natural role in "supersymme
tric" potential models. As a final illustration of our general 
results on the effective potential, we briefly discuss a super
symmetric example. 

In general, supersymmetric quantum mechanical po
tential models are defined by Hamiltonians of the form 

H= Q2, (53) 

where 

(54) 

and W(x) is an arbitrary function.5 H acts on a two-compo
nent wave function whose upper!1ower components satisfy 
Schrooinger's equation with actual potentials given by 

(55) 

546 J. Math. Phys., Vol. 25, No.3, March 1984 

Since H is the square of an Hermitian operator, it follows 
that the energy spectrum is positive. 

As with their field theoretic counterparts, a fundamen
tal issue for supersymmetric quantum mechanics models is 
whether there is a zero-energy ground state. This can only 
happen if the ground state is supersymmetric, i.e., 

QtPo(x) = o. (56) 

If the ground state energy is nonzero, then Q does not annihi
late the ground state, and supersymmetry is "spontaneously 
broken." 

The formal solution to (56) is 

(57) 

This is a valid solution if tPo(x) remains finite for all x, and in 
that case we say tPo exists. It is now straightforward to classi
fy those functions W(x) for which tPo(x) remains finite5 by 
examining the behavior of the exponential in (57). 
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Let us now consider the effective potential for the sys
tem defined by (53). Our general results hold. In particular, 
consider the simple case 

(58) 

For this case a zero-energy ground state exists. [In view of 
the results in Ref. 5, W(x) has a single zero at infinity.] That 
ground state is 

(59) 

which dies rapidly for X-+ - 00, but asymptotes to (6) as 
x-+ + 00. Thus tfo(x) is not square integrable, but has the 
same boundedness properties as ordinary states in the con
tinuum (cf. plane waves). Correspondingly, the effective po
tential behaves asymptotically as in Eq. (23), as (x)-+ - 00, 

and as in Eq. (41), as (x)-+ + 00, with - z(O) again equal to 
the first zero of Ai'. Hence V decreases monotonically to a 
unique minimum ( = 0) at (x) = + 00. 

V. CONCLUSION 

In conclusion, we wish to discuss a problem in field 
theory which provided the motivation for this analysis of the 
quantum mechanical effective potential. Recently the two
dimensional Liouville field theory defined by 

.5t'(t/> ) = - Mat/> )2 - (2m2/g'l)e281> (60)1 

has received considerable attention in connection with the 
relativistic string. The quantum correlation functions ofthe 
Liouville theory are needed to determine the scattering am
plitudes of the quantum string. An operator analysis of the 
quantum Liouville theory has been given in pursuit of those 
correlation functions (see Ref. 6 and the references cited 
therein). 

One of the results established by that operator analysis 
was that the energy eigenvalue spectrum of the quantum 
Liouville theory is continuous, including all E > O. This spec
trum is a direct consequence of the conformal invariance of 
the Lagrangian in (60). It then became a subtle problem to 
determine whether or not the state IE = 0) also exists, in the 
sense that the configuration space wave functional is bound
ed, as is true of the other members of the continuous spec
trum, and in analogy with the existence of the ground state 
wave functions for the simple quantum mechanical models 
we have discussed above. While the detailed operator analy
sis in Ref. 6 is not quite complete enough to answer this 
question absolutely, there seems to be no reason in Ref. 6 to 
exclude E = O. In fact, since the results in Ref. 6 provide an 
operator map identifying the Liouville and free pseudoscalar 
field Hamiltonians, the identification of the E = 0 state for 
the Liouville quantum field theory with the usual free pseu
doscalar field E = 0 state is very strongly suggested. 

The existence of the E = 0 state was challenged,7 how
ever, partly because of the structure of the exact effective 
potential for the Liouville model. The exact effective poten
tial was computed by J. Goldstone. 8 It was shown to have the 
same exponential form as the actual potential in Eq. (60), 
namely 

V(t/» = const e2g¢/(1 +8"/217"). (61) 
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Thus a translationally invariant ground state for the quan
tum Liouville theory, corresponding to the minimum of this 
effective potential, would have infinite field expectation val
ue. While this appears to be an unusual feature for the 
ground state of a quantum field theory, our results for simple 
quantum mechanical models show that it is not an impossi
ble situation. In order to determine if a state actually exists 
with this property, whose wave functional is bounded as are 
the wave functionals for the other continuum states, it is 
necessary to investigate the dynamics of the theory more 
carefully. A cursory inspection of V is not adequate. We 
believe that further operator analysis, along the lines set out 
in Ref. 6, will eventually answer this question. 

APPENDIX 

Since the effective potential V is a concave function, it 
does not exhibit any barriers separating local minima, even 
though the actual potential U might have such a barrier. 
How then can one understand the phenomena of tunneling? 
What exhibits the inhibitory effect on wave packets that an 
actual potential barrier produces? An understanding of this 
effect requires consideration of the full effective action, not 
just the static effective potential but also nonstatic terms in
volving dx(t )ldt. 

Recall! that the full quantum mechanical evolution of 
x(t), in the presence of a time-dependent source J (t), is gov
erned by the effective action 

r [x] = W [J] + J: 00 dt x(t).l (t), (AI) 

where W may be determined either by using a functional 
average or by taking an operator expectation value. 

eiW[J) = J.,@"x exp!iJdt l!.:e(t) - U(x(t)) - x(t ).I(t)]j 

= (OIT(exp[ - ifdt X(t).l(t)])IO). (A2) 

We have denoted time ordering by T, represented the coordi
nate operator by X, and used 10) to represent the ground 
state of the J = 0 system. For simplicity here we assume 
(010) = 1 and suppose the energy spectrum is discrete. 

In the limit ofa static source, W[J] andr [x] reduce to 
E(J) and V(x), respectively, 

W[J]--+ -E(J)·fdt, 
J(tl~J 

r [x] --+ - V(x»)·fdt, 
x(tl~(x) 

(A3) 

and (AI) reduces to Eq. (5) of the text. 
In standard fashion, one can obtain the expectation val

ue and all the higher correlation functions of X (t ) in the pres
ence of the source J (t ) by taking functional derivatives of 
(A2). Functional derivatives of (A 1) then give the well
known inverses. For example, 
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x(t)= 
8W[J] 

8J(t) 
(01 T(e - iSdt'X(t')J(t'lX (t lllO) 

(A4) 

(OIT(e-iSdt"X(t")J(t"l)IO) , 

_ iD(t"t
2
)= - i 8

2
W[J] = i 8x(t2) 

8J (td8J (t2) 8J(t,) 
(A5) 

_ (01 T(e - iSdtX(t)J(tlX (t,)X (t2)) 10) 
- (01 T(e - iSdt'X(t'lJ(t'l)IO) 

- x(t,)x(t2), 

J (t ) = 8r [x] , 
8x(t) 

(A6) 

(A7) 

Let us now consider a "quasistatic" situation whereJ (t) 
is aconstantJ forlarge I t I and varies very slowly for all t. The 
phase in (A2) then singles out the ground state of the system, 
10) J' in the presence of a constant source, and (A5) gives 

- iD (w)= - J: 00 dt e - iwtD (t,O) 

= J: 00 dtriwt(J(OIT(X(t)X(OllIO)J - J(OIXIO)~) 

= n~J: 00 dtriwt(O(t)exp{i[ Eo(J) - En (J)] t J 

+ 0 ( - t )exp { - i [ Eo(J) - En (J)] t J ) I J (n IX 10) J 12 

= 2iL [~n(J)-Eo(J)]IJ(nIXI0)JI2 . (AS) 
n,..O W - [En(J)-Eo(J)-iE]2 

Here En (J) are the energy levels in the presence of the con
stant source. In the quasistatic case, as w~, we therefore 
have 

(A9) 

Now in the same limit the effective action should have the 
form 

(AlO) 

where we have dropped all terms involving four or more time 
derivatives and (x)=J(OIX 10)J' Using this, (A7) gives 

D -'(w) = V"(x») - !M(x»)w2 + &(w4). (All) 

Comparing (A9) and (All), we obtain 

[V"(x»)] -I = 2 L IJ(nIX 10)J1
2 

(AI2) 
n,..O En(J) - Eo(J) 

M(x») = 4[ V"(x)W L IJ(nIX 10)J1
2 

(A13) 
n,..O [En(J) -Eo(JW 

These are exact results, given the limiting form of the effec
tive action in (AlO). 

The result for V" in (A12) clarifies the linear behavior 
exhibited by the effective potential when the actual potential 
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has an impenetrable region, as displayed in Eq. (17), and the 
result for M clarifies the inhibiting effects on wave packets 
produced by a large barrier in the actual potential. Large 
barriers tend to reduce energy differences, for a particular 
value of J, thus causing V" to become small and M to become 
large. 

Denote the energy splitting between the ground state 
and the first excited state, in the presence of a constant 
source, by 

..jE = EdJ) - Eo(J). 

Then (A12) and (A13) yield the inequalities 

..jE /..jx 2 ,;;;2V" ,;;;..jE /x~o, 

..jE . ..jX4/X~0';;;M -1';;;..jE,xio/ ..jx2, 

where 

x~o=IJ(1IX 10)JI 2
, 

..jx2= L IJ(nIXI0)JI 2 

",..0 
= J (0IX 2 10) J - J (OIX 10)~. 

(A14) 

(AI5) 

(AI6) 

(AI7) 

(AIS) 

In the limit that the ground state becomes degenerate with 
the first excited state, with finite and nonzero ..jx2 and xio' 
the inequalities in (A15) and (AI6) imply that V"~ and 
M_oo. This degenerate situation is achieved, for a particu
lar value of J, if the actual potential consists of two regions 
separated by a repulsive barrier in the limit where that bar
rier becomes impenetrable. 

The motion of a wave packet in the presence of the actu
al potential U can be understood by considering the motion 
of a classical particle moving under the influence of the effec
tive action. A classical particle governed by the action in 
(AlO) has a conserved energy lM(xJ,:e + V(x). For a fixed 
energy E, such a particle will display varying x dependent on 
its position, in the usual way, according to 

lx2 = [E - V (x))/M (x). (AI9) 

Thus the particle will slow down either as E - Vbecomes 
small or as Mbecomes large. The particle has a turning point 
(x = 0) either when E = Vor when M diverges, the latter 
being characteristic of the effective action in quantum me
chanical models as discussed in this paper. 
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Instantons in quantum mechanics: Numerical evidence for a conjecture 
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In previous articles, we have given a proper definition of multi-instanton contributions in 
quantum mechanics and calculated these contributions to leading order. We have also presented a 
conjecture about the form of the expansion of these multi-instanton contributions to all orders in 
powers of the coupling constant. We give here some numerical results which support this 
conjecture. 

PACS numbers: 03.65.Ge 

I. INTRODUCTION 

In a previous article,l we have presented the following 
conjecture2

• Let V(x) be an analytic potential with degener
ate and symmetric minima 

V(x) = ~ 2 + 0 (x 3), 

V(x) = V(xo - x). 

We write the Schrodinger equation as 

- !¢"(x) + (l/g)V(x~)¢(x) = E¢(x). 

(1) 

(2) 

With these conventions, the one-instanton contribution 
to the ground-state energy is, at leading order, 

(3) 

with 

a = lxo~2V(X) dx, (4) 

C=x ~ exp (Xn dX[ 1 _ ~ __ 1_]. (5) 
Jo ~2V(x) x xo-x 

Consider now the two coupled equations for the two 
unknowns E and s: 

1 00 

s=E- - + IRdE)gk, 
2 k= 1 

r ( - s),usAe -- A IE,g) = ± 1. 

(6) 

(7) 

The sign + corresponds to even states and the minus 
sign to odd states. The parameters are defined by 

oc 

A (E,g) = I QdE)g k, 
k=l 

J1 = - 2C/g. 

(8) 

(9) 

The coefficients Qk and Rk are polynomials of degree 
k + 1 in E. From Eq. (7), we see that when g is small A is 
small, and thus s must be close to a pole of the r function: 

s = N + 0 (A )-=?E = N + ! + 0 ( g, A ). (10) 

If we then expand systematically s and E in powers of A and 
then the coefficients of A n in powers of g, we obtain the 
complete perturbative expansion to all orders, taking into 
account all instanton contributions to the Nth states. It has 

n - 1 00 

X I (In( - 2C /g))k I ~n~J.lg I. (11 ) 
k=O 1=0 

The various perturbation series have to be summed for g 
complex first and then continued to g real positive consis
tently with the function In( - 2C /g). The imaginary contri
butions coming both from the Borel sums and the logarithms 
cancel. 

The implication of the conjecture as expressed by Eqs. 
(6) and (7) is that it is sufficient to know the perturbative and 
the one-instanton contributions to all orders and for all 
states, in order to be able to calculate the many-instanton 
contributions to all states and to all orders. 

Equations (6) and (7) have been derived at leading or
derl,3,4 and some numerical evidence for the conjecture can 
already be found in Ref. 3. We shall see that some conse
quences of this conjecture agree with the results of Damburg 
and Propin.5

•
6 It is even possible that their methods can be 

extended to prove it. 
We shall also present a large number of numerical data 

for the double-well potential and the periodic cosine poten
tial, which confirm the conjecture up to order g 2. 

II. THE PERTURBATIVE EXPANSION 

We shall first explain how we can calculate numerically 
the perturbative coefficients in Eq. (6). We shall present the 
method for a general analytic potential and then show how 
the recursion formulas simplify for the double-well and the 
cosine potentials. 

We shall use the standard trick of transforming the 
Schrodinger equation into a Riccati equation 7,8 by setting 

( 
1 rv'K ) ¢(x) = exp - g Jo S (x' ~)dx' , (12) 

which leads to 

S' + (l/g)(2V(x) - S2) = 2E. (13) 

We shall set 

U=~2V(x) =X + O(x 2) (14) 
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and expand S in powers of g: 
00 

S(x) = U(x) - I gkSdx). 
k~1 

At order 1 we get 

SI = U-I(E - !U'), 

and then 
k-I 

k>l, 2USk =Sk_1 + IS,Sk-" 
,~ I 

We expand now U (x) in powers of x; 

= 
U (x) = x + I urx r, 

r=2 

and Sk in powers of x and E, 

Sk = I S~sx-2k+l+rE'. 
r;>O 

(15) 

(16) 

(17) 

(18) 

(19) 

Equation (17) generates then a set of recursion formulas 

r-I 1 
S~s = - p4:oS;,s Ur+ I-p + ?~.s-I(r + 3 - 2k) 

1 k - I 

+ -2 I S~.qS~~~.s_q, 
'~I 
P.q 

which allow us to calculate systematically S (x). 

(20) 

The coefficients of the perturbative expansion (6) are 
obtained by observing that the wave function should be uni
form at x = O. As a consequence, the coefficient of In x in 
In "'(x) should be an integer. This means that the coefficient 
of l/x in S (x) should also be an integer. Setting 

k+1 
RdE)= IR;E s, 

s=o 

we obtain the relation 

R; = S;k:' I. 

For example, the first terms are 

Ro(E)=E-~, 

(21) 

(22) 

RI(E) = 3(Ui - !U3 )E 2 + M2Ui - 3U3 )· (24) 

To obtain usual perturbation theory, one inverts the 
relation 

(25) 

A. An algebraic property 

The polynomials R k (E ) are even or odd for k odd or 
even, respectively. To prove this property, let us decompose 
S in a sum of two terms: 

with 

S+( -g, -E) =S+(g,E), 

S-( -g, -E) = -S-(g,E). 

Equation (13) leads then to two equations 

S'+ - (2/g)S+S_ = 0, 

S'- + (l/g)(2V-S2+ _S2_ )=2E. 
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(26) 

(27) 

(28) 

(29) 

(30) 

The first equation allows us to calculate S +: 

g d 
S+ = --InS 

2 dx 
(31) 

If we now expand S - in powers of g, only the term of order 0 
will have a logarithm: 

In S_ = In x + 0 (x,g). (32) 

Therefore, S + gives a contribution to expansion (25) 
only at order 0 and is responsible for the term -~. 

B. A special family of potentials 

The double-well potential and the cosine potential be
long to a special family of potentials for which the perturba
tive expansion in the form (15) is specially simple. We have 
noted this already before and used this property to make 
high-order calculations of the one-instanton contribution. 7 

Setting as before 

U(x) = ~2V(x), 

we shall assume that U (x) is the solution of the equation 

U'2 + 4[1"' = 1 (33) 

(the 4 is a convenient normalization), in which m is a positive 
integer. For m = 1, the solution is the double-well potential: 

U(x) = x(1 - x), V(x) = ¥ 2(1- x 2). (34) 

For m = 2, we obtain the cosine potential: 

U(x) = ~ sin 2x, V(x) = rt, (1 - cos 4x). (35) 

Higher values of m correspond to elliptic functions. Only 
m = 1 and 2 correspond to entire functions for the potential. 
For m even, the potentials are periodic and for m odd, they 
are of double-well type. 

We shall now rewrite the recursion formula (17) by set
ting 

Sk = Tk/2kU 2k - I (36) 

and taking as a new variable z, 

z = - U'(x). (37) 

Equation (33) implies 

UU" = - (m/2)(1-z2). (38) 

The resulting expression is 

k> 1, Tk = (m/2)(1 - z2)T k _ I + (2k - 3)zTk _ I 

k-I 
+ 2 I T,Tk _, (39) 

f~ I 

and 

TI =2E+z. (40) 

It is easy to verify that Tk is a polynomial of degree k globally 
in the variables z and E such that 

(41) 

This leads to simple recursion formulas for the coefficients 

T;.s: 

Tk = I T;.szrE"'. (42) 
r+ s<k 

To complete the calculation, one needs to find the residues 
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c ~ of quantities of the form 

C~ = res[U,2rU -(2k-I I]. 

To calculate this residue, let us write the identity 

UIr+ I 

-S---. 
us+ I 

~ [U 17] = r U" U 17 - I 

dx US US 

Using then Eq. (38), we obtain 

d [U Ir ] mr ,2 U Ir - I U Ir
+ I 

dx Us = - T(I-U ) Us+1 -s Us+1 . 

(43) 

(44) 

(45) 

Since the derivative has no residue, we obtain a recursion 
formula 

c r = n 
m(2r - 1) C~-I. 

m(2r - 1) - 4(k - 1) 
(46) 

It remains now to calculate C ~ . To do this, we use Eq. (33) in 
the form 

U'2 4 1 
-+--=-. (47) 

Us us-rn Us 

Taking the residues of both members and using the con
sequences ofEq. (45) for r = 1, we obtain the following rela
tion: 

[U -S] 4(s-l-m/2) [urn-s] res = res. 
s - 1 

(48) 

The recursion formulas (46) and (48) allow us to calcu
late the perturbative coefficients for the potentials solutions 
ofEq. (33). Of course, the method can be generalized for 
various polynomial relations between U and U'. 

As a verification of our programs, we have compared 
the perturbation expansions for the double-well potential 
and the 0 (2) anharmonic oscillator [using a suitable modifi
cation of formula (20)]. We have verified as expected9

,10 that 
the series are identical after the substitution 

E[O(2)] = 2E[d.w.]. 

More precisely, the series are identical up to order 10 
and from order 10-19 the relative difference is smaller than 
10-21

, which is consistent with the numerical accuracy. 

C. The one-instanton contribution 

The algorithm that we had used previously 7 for N = 0 
can be extended to an arbitrary state N, but the calculation is 
done at N fixed and the complexity increases with N. On the 
other hand, in the method of Damburg and Propin,5 N is just 
a parameter, and this method would have been more suited 
to our purpose. Since we have only expanded up to order g 2, 

we did not need it. 
To find the expansion ofthe function A (E.g) ofEq. (7) up 

toorderg 2, we have assumed thatA (E.g) had the same parity 
property as the perturbative expansion 

A ( - E, - g) = - A (E.g). (49) 

We had previously calculated the one-instanton contribu
tion to the ground-state energy. We have in addition expand
ed the W.K.B. expression for the one-instanton contribution 
in powers of g. This expansion has given us the term of high
est degree in E at each order in g. The two pieces of informa-
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tion determine completely Ql(E) and Q2(E). For the next po
lynomial Q3' we would need another constraint. We could 
have calculated the one-instanton contribution to the first 
excited state or used the general method of Ref. 5. We have 
not done it here. 

Let us now give the W.K.B expression for A (E.g): 

!!:.. +A (E.g)- J..J~2V(X) - 2gE dx. (50) 
g g 

The W.K.B. regime is a regime in which E becomes 
large at Eg fixed. To expand expression (50) in powers of g, 
one can use a Mellin transform. 

The coefficient of g K can then be obtained as the residue 
of the expression J (a) at a = K + 1: 

J(a) = J..[ii F(-a) 2- a (x"[2V(x)]1I2- a dx.(51) 
2 F(~ -a) Jo 

Expression (51) has actually double poles at integer val
ues of a. The coefficients of these double poles correspond to 
terms of highest degree of the perturbative expansion (6). 

For the two cases we shall consider explicitly, the re-
sults are at order g 2: 

For the double-well potential ofEq. (34), 

A =g(¥ E2 +~) +g 2(2f E2 + If)E + O(g3). (52) 

For the cosine potential of Eq. (35), 

A =gGE2+~)+g2(.yE2+¥)E+O(g3). (53) 

These two expansions will allow us to test some conse-
quences of our conjecture, as will be explained in the next 
section. 

III. NUMERICAL CALCULATIONS 

A. Large-order behavior and one-instanton 
contribution 

A first simple consequence of our conjecture is a rela
tion between the imaginary part of the two-instanton contri
bution E (21( g) and the one-instanton contribution E (1)( g). 
The perturbati ve imaginary part of E (2)( g) cancels the imagi
nary part of the Borel sum of the perturbative expansion 
E (0)( g). This leads to a large-order estimate of the perturba
tive expansion II: 

E(O)(g) = E~lg \ (54) 

E (01 = _ J.. i 1m E (2)( g) d . 
k k+ I g 

1T 0 g 
(55) 

Since we can calculate many terms of the perturbative 
expansion, we can determine numerically the coefficients of 
a 11k expansion of E\?) for k large,7 and therefore the coeffi
cients of the expansion of 1m E (2)(g) for g small. 

Let us rewrite Eq. (7) as 

sin 1TS/1T = - AJl!F(1 + s)e -A. 

The one-instanton contribution to s is 

s(1) = _ Ae - A (E,g), 

(56) 

(57) 

in which E can just be replaced by the perturbative expan
sion obtained by inverting Eq.(25). 

The imaginary part of the two-instanton contribution is 
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1m S(2) = 1TA 2e - 2A (E,g!, 

1m S(2) = 1T[sll)V 

(58) 

(59) 

Let us call E 1O)(N,g) the perturbative expansion for the 
state N. Then Eqs. (58) and (59) yield 

aEIO) 
E(I)(g) = - __ Ae- A • 

aN 

This equation is very similar to Eq. (28) of Ref. 5. 

aE IO) 
ImE(2)(g) = 1TA 2e- 2A --. 

aN 

This leads to the general relation 

1m E(2)( g) = 1T[E(I)( gw[ a::)] - 1. 

(60) 

(61) 

(62) 

This relation was known at leading order ll since 

aE IO ) 

aN = 1 + O(g). (63) 

We believe that in the case of the double-well potential, 
it follows from Ref. 6, where the corresponding expressions 
are given at order g for arbitrary N. We shall present some 
numerical verifications for the double-well and cosine poten
tials, 

1. The double-well potential 

More than 90 terms are known for the expansion of E (I) 
in the case N = O. Using the correspondence between the 
double-well potential and the 0 (2) anharmonic oscillator, it 
is possible to find 50 terms for the expansion of 1m E (2) for 
N = 0 in the literature. 12 

Finally, we have calculated here 46 terms of EIO) as an 
explicit function of N. It is easy to verify on a few orders that 
relation (62) is satisfied exactly. Furthermore, the series 
agree up to order 46 with a relative accuracy of 10- 11, which 
is consistent with the numerical accuracy of the calculation. 

Using expansion (52), we can also verify relation (62) up 
to order g 2 for any value of N. To do this, we have first to 
analyze the large-order behavior of E IO)(N,g) as a function of 
N. Since we know the perturbative expansion as an explicit 
function of N, it is natural to calculate also with noninteger 
values of N. But an obvious problem arises. Let us write 
1m E (2) at leading order 

1m E(2) _ ..!... _1_ (2C)2n + Ie - 2a/g. 
2 (NW g 

(64) 

We have shown that the perturbative expansion has a 
parity property which on the E IO)(N,g) reads 

EIO)(N,g) = - E IO)( - N - 1, - g). (65) 

This property is not shared by expression (64). We shall 
therefore assume that it should be antisymmetrized: 

ImE (2)= ..!... [aE
IO

) (N)_I_ (2C)2N+le _(2a/g)_A(E,g) 
2 aN (N!f g 

aE IO) 1 
- aN (- N - 1) r 2( _ N) 

( )
2N+ 1 ] X 2~ e(2a/g) + A (E,g) , (66) 
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22112 r t 

0.25 0.50 075 1.00 1.25 1 SO 1.75 2.00 225 N.1/Z 

FIG. I. The value of the coefficient of E'g 2 in A (g.E) extracted from the 
large-order behavior of the perturbative expansion of E (Ol(N,g) for various 
values of N. compared with the prediction. The numerical error for N = 0 is 
very small on this scale because the series is much longer. For N = -! the 
coefficient of g 2 in 1m E 121 is predicted to be Wi' = 3.4965 ...• while the 

numerical result is 3.50 ± 0.01. 

We observe that the additional term has a nice property; it 
vanishes for integer values of N. It gives an oscillating contri
bution to the large-order behavior subleading by a power 
k - 4N - 2, Since we use extrapolating methods based on the 
existence of an expansion in powers of 1/ k, we have restrict
ed ourselves to values of N for which 4N is an integer, and 
extrapolated independently odd and even orders. The fact 
that the coefficients of the expansion in powers of 11k have a 
unique limit justifies a posteriori our ansatz. 

From relation (55), we see that if we know the expansion 
of 1m E (2) of up to order g I, we know also the asymptotic 
expansion in powers of 11k up to order 11k I. At order 11k, 
the agreement between the predictions and the numerical 
results is excellent. At order 11k 2 or equivalently at order g 2, 

the numerical errors are larger, but the results are quite con
vincing, as Fig. 1 shows. We have given the value of the 
coefficient of g 2 E 3 in A ( g,E ) extracted from the large-order 
behavior analysis, deriving all other coefficients from Eqs. 
(52) and (61). The check of our conjecture is that the numbers 
we obtain are within the numerical errors independent of N, 
and compatible with the prediction. 

2. The cosine potential 

Due to the fact that the cosine potential has an infinite 
number of minima, Expression (7) is modified and replaced 4 

TABLE I. The first line corresponds to the value of the coefficients of g K for 
1m E (2) calculated with expression (62). The second line is obtained from the 
extrapolation of the large-order behavior. the previous coefficients up to 
order 6 being fixed at their theoretical value. 

K 7 

1m E ~ 35323 847X2- 11 = 17247.9721... 
ImE~' 17247.974 

8 

162003.89 ... 
162000.9 
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5,60 
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5.50 - ------+----+--. H-++-t f r -i . 
545 

540 
I I I I • 

D.25 0.50 075 1.00 125 1.50 1.75 2.00 225 2.50 275 3 00 N+1!2 

FIG. 2. The value of the coefficient of E3g 2 in A (E,g) extracted from the 
large-order behavior of the perturbative expansion for various values of N. 
For N = - ~ the coefficient of g 2 in 1m E (21 is predicted to be 0.468 75 and 
found numerically as 0.468 ± 0.003. 

by 

with 

r(-S)pSAe-A[2cos lP + ~Tte:i:; pSAe- A] = I, 

(67) 

A = (VJ;:g)e-II12lg, 

p = 2/g. 

(68) 

(69) 

Since we know many terms of the perturbative expan
sion and of the one-instanton contribution (more than 90) for 
the ground state, we can verify the equivalent of relation (62) 
for N = O. Table I shows the comparison between the values 
of the coefficients at order 7 and 8, as obtained from the 
large-order behavior analysis (when the six first are fixed at 
their predicted values) and from relation (62). The terms up 
to order 6 are 

1m E (21( g) = ~ e - l/g[ 1 _ 2- g _ E- g 2 

g 2 8 

119 3 5225 4 
- -g - --g 

16 27 

_ 68715 5 _ 2079317 6 O( 7)] 
28 g 2\0 g + g . 

(70) 

We have then performed the large-order behavior analysis 
for various values of N to order 11k 2. Figure 2 shows the 
coefficient of E 3g 2 in A (E.g) as a function of N, when the 
coefficient Eg 2 has been eliminated by imposing the value at 
N = O. Again, the agreement between the prediction and the 
numerical result is very good. 

As a consequence, we can safely assume that relation 
(62) is correct, independently of our general conjecture. Of 
course, one should verify it on other examples (or prove it) to 
make sure that the potentials considered here have not some 
exceptional property. We shall explore now some further 
consequences of our conjecture. 

B. Some relations between instanton contribution 

We shall give or derive some further consequences of 
Eqs. (6) and (7). 
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Let us set 

A (N) =A (E(O)(N)), 

aE(O) 
B(N)= -In-

aN ' 

(71) 

(72) 

Cn(N) = e-B(N)-nAINI. (73) 

If we omit A (E,g) and expand in powers of A by solving Eq. 
(7), we obtain 

s=N-I(-I)nPn(lnp) -p . OC [A ( )N] n 

n~l Nl 

The four first polynomials P n ( p) are for N = 0 

P1(lnp) = I, 

P 2(ln p) = In p + y, 

(74) 

(75a) 

(75b) 

P3(lnp) = ~ (lnp + y)2 + ~/12, (75c) 

P4(lnp) = ~ (lnp + yf + (~/3)(lnp + y) + j + ;(3), 
(75d) 

where y is Euler's constant. 
With these notations and after some tedious calcula

tions, we obtain the following expressions: 

E(I)(g) = -A (~)"''' CdN), 

E(2)(g)=A2 p2N [C(N)P + ~ aC2 ] 

(NW 2 2 2 aN ' 

E(3)( g) = _ A 3 ( _p)3N [c P + aC3 P 
(Nlf 3 3 aN 2 

1 azc3 ] 

+ 6" (aN)2 ' 

E(4)(g) =A 4 p4N [c P + (p + P~) aC4 
(N 1)4 4 4 3 2 aN 

+ ~ P a
2
c4 + ~ a3

c4 ] 

2 2 (aN)2 41 (aN)3 . 

(76a) 

(76b) 

(76c) 

(76d) 

Let us consider now again Eq. (62). This equation re
lates, in particular, the large-order behavior of perturbation 
theory of the one-instanton contribution and ofIm E (2). It is 
actually more convenient to take the logarithm of this equa
tion. It will be useful from now on to distinguish between the 
perturbative imaginary part of a series, which we shall call 
1m, and the nonperturbative imaginary part of the Borel 
sum, which is connected with the large-order behavior and 
which we shall denote lb. Taking then the imaginary part of 
the logarithm of the equation, we obtain 

Ib[ln 1m E(2)] = 2 Ib[ln E(l)] - Ib[ In a::1 (77) 

The nonperturbative imaginary part of E (I) is cancelled by 
the perturbative imaginary part of E (3): 

2N 
Ib[ln E(I)] = _ A 2 ~e-2A(NI 

(NW 

X [1m P3 - (~~ + 3 ~~ )Im P2 ], (78) 
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2N 
Ib[lnE(1)] = -1TA 2 ~e-2A(N) 

(N!)2 

X { 3 [In( - p) - I/J(N + I)] 

_ an _ 3 aA}. 
aN aN 

(79) 

The nonperturbative imaginary part of E (0) is compensated 
by 1m E(2): 

[ 
aE(O)] 

Ib In-
aN 

[ an aA] = - 1T 2 In( - p) - 21/J(N + I) - - - 2 -
aN aN 

A 2 2N x-_P- e - 2A (N) 

(N!f 
Adding the two contributions, we find 

Ib [In 1m E (2)] 

= - 1T{4[ln( - p) -I/J(N + 1)] _ an _ 4 aA} 
aN aN 

A 2 2N x-_P- e - 2A IN) 

(NW 

(80) 

(81) 

In particular, as was noted previously,3 one linear combina
tion has no logarithm, and therefore, the corresponding 
large-order behavior, an asymptotic expansion in powers of 
11k: 

Ib[lnlmE (2
)- ~ InE(1)] 

1T an _ 2A (N) A 2p 2N 
--e ---. 
3 aN (N!f 

(82) 

c. The double-well potential 

The right-hand side of Eq.(82) is known for N = 0 be
cause it depends only on the perturbative expansion and the 
ratio 1m E(2)/E(1). The result is 

Ib [In 1m E (2) - j In E I I) ] 

_ (lIg)e- l/3g [2g + ¥ g 2 + litl g 3 

+ 13~W5 g 4 + ... ] . (83) 

The relative difference between the coefficients coming from 
the numerical extrapolation of the large-order behavior of 
the left-hand side and the predicted one is smaller than 
3 X 10-3

, up to order 5. For the ground state, Eq. (80) can 
also be verified in the same manner up to order g 2, and the 
agreement between numerical values and prediction has the 
same accuracy. 

Finally, using an old calculation of the Borel sum of 
perturbation theory and of the ground-state energy of the 
double-well potential,9 it is possible to compare the coeffi
cient of g of Re E (2) to numerical values after subtraction of 
the terms proportional to In g. Since the coefficient ofln g is 
an asymptotic series which we have not tried to sum, the 
coefficient oflng is only known with a finite accuracy. We 
have therefore given two results for each value of g to indi
cate the order of magnitude of the uncertainty. Figure 3 
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Coefficient of 9 
in Re[~2}(gI1 

13 

12 

2312 

11.~~:----:-l--_....L_...L.-_L-~_--:-l--_....L_...L.-_L-

0.24 0.26 0.28 OJO OJ2 OJ4 0.36 OJ8 0.40 0.42 044 9 

FIG. 3. The value of the coefficient of gin EI211 g) obtained by subtracting 
from the half-sum of the ground state and first excited energy, the Borel sum 
of perturbation theory. 

shows our results. Finally, let us note that our expression for 
Re E (2) agrees at order g with the result of Ref. 6. 

1. The cosine potential 

The fact that in this case the spectrum is continuous, so 
that the energies depend on N and an angle rp, allows a direct 
evaluation of n-instanton contributions by solving the 
SchrOdinger equation 13 and integrating over the angle rp. Let 
us write the energy as 

(84) 

in which rp characterizes the behavior of the wave function I/J 
under the translation of one period T of the potential 

(85) 

It is easy to verify that En is dominated by an n-instan
ton contribution. It is possible to evaluate for g small En at 
least up to n = 4. Figure 4 shows the relative difference 
between the numerical value and the estimates obtained 
from Eqs. (67), (75), and (76), divided by g 3. The coefficient 
of the leading logarithm has been expanded only up to order 
2. Thus the functions presented in Fig. 4 should decrease for 

Rig} 

• R'1o) 

-2.5 

-15 L-__ ---l ___ --'-___ -'-___ -'-__ ----c~ 
0015 0.02 0,025 0.03 0.035 0.04 !I 

FIG. 4. R Inl is the relative difference between the n-instanton contribution 
and the theoretical estimates divided by g 3 in the case of the cosine poten
tial. 
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g small as l/ln g. The results are consistent with the expecta
tion. 

IV. CONCLUSION 

We have presented very strong numerical evidence that 
our conjecture is correct for two potentials. It is therefore 
likely that our conjecture holds for all potentials with degen
erate and symmetric minima. One would like now to prove 
it. Maybe the work of Refs. 5 and 6 will be useful in this 
respect. It would also be interesting to extend it to more 
general potentials, and to more than one degree of freedom. 
It remains to explore the consequences of this conjecture for 
the summation of the various perturbative and instanton 
contributions. 
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Perturbative method has been applied for solving one- and two-channel Schrodinger and Klein
Gordon equations for general even power potentials, which can be expanded around a minimum. 
T~e eigenvalues and solut~ons have been derived up to and including the second order. Finally, 
this method has been appbed for calculating the eigenvalues of the one-channel equations for the 
general even power potential and hence for its different particular cases. 

PACS numbers: 03.65.Ge, 02.30.Hq 

1. INTRODUCTION 

Much interest has recently been shown in studying 
models which give rise to Schr6dinger equations containing 
confining potentials but which also allow scattering to oc
cur. 1 The simplest among such models contains two coupled 
channels, one of which is permanently closed and the other 
open for positive energies. Here although scattering occurs 
in the open channel, its amplitude is strongly influenced by 
the bound states appearing in the closed channel. Recently 
Von Gehlen and Rittenberg2 have considered a two-channel 
potential scattering problem in three space dimensions for 
the case when one channel is permanently confined. The 
examples of confining potentials that they considered were 
harmonic oscillator and the infinite well. Karlsson and Ker
bikov3 for gaining insight into the widths of quasinuclear 
levels in the BE system investigated a simple multichannel 
model for the influence of decay channels on a bound state. 
They found the shift and width of a bound state level to 
decay strongly not only on the range of annihilation and the 
BE wave function at small distances but also on the position 
of the level relative to the thresholds. Dashen et al. 4 made a 
detailed investigation on a class of nonrelativistic multichan
nel potential scattering models. In these models a subset of 
the channels contained confinement potentials that allowed 
only a discrete spectrum with an accumulation at + 00; the 
remaining channels contained the usual scattering states, 
which are allowed to communicate with the states of the 
permanently confined channel through an off diagonal local 
potential. Hom and Novoseller5 discussed the possibility of 
existence of a narrow resonance in a multiresonance system 
above the threshold of an open decay channel. 

Recently Miiller-Kirsten and Miiller6 developed a gen
eral perturbative method for solving the coupled equations 
of the multichannel formalism. The method used by these 
authors was a direct generalization of the procedure applied 
previously 7-10 to a large number of single-channel equations 
and its extension to the multidimensional case. 11 Miiller and 
Miiller-Kirsten l2 later used this technique for iterating one
and two-channel Schr6dinger equations for general power 
potentials. This general iteration procedure was then applied 
to the linear and logarithmic potentials and also their combi
nations with a Coulomb potential. 

The fact that nonrelativistic models have been quite 

successful in reproducing the observed mass spectrum of 
heavy quark-antiquark states has led to a revival of inter
ese,3,5,13 in the mulitchannel formalism. 14,15 The present 
work was thus motivated by the desire to explore the possi
bility of the existence of hadronic molecular states in the 
e + e- mass spectrum above the radial charmonium state. 
The search for such states has been activated by the recent 
observation of a rich closely spaced spectrum for "baryon
ium" states and the spectrum of Q 2Q 2 mesons. 16 Once the 
success of above models have been firmly established the 
endeavor now is to go beyond the nonrelativistic approach. 
A complete treatment should actually incorporate both rela
tivistic and quantum effects. 

Further, in e t- e -- scattering, the region just above 3.7 
GeV (center-of-mass energy) is of particular interest because 
this is where aDD * molecular state 16 is most likely to show 
up (at around 3.85 GeV), and, if the charm onium model is 
reasonably correct, this state could not be mistaken for the 
next radial excitation, which is predicted to be around 4.0 
GeV. Single-channel potential theory normally leads to 
broad widths, but narrow widths can be generated by the 
weak coupling to a second channel. 15 It is therefore worth
while to investigate the two-channel problem defined by the 
transitions CC--">-DD *-+DD *. 

In the present investigation we shall, of course, not be 
concerned with a specific application. In Secs. 2A and 2B we 
have applied the general perturbative method ofMiiller-Kir
sten and Miiller6 for solving one- and two-channel Schr6-
dinger and Klein-Gordon equations, respectively, for gen
eral even power potentials. The channel coupling is assumed 
to be weak. The general expressions for the eigenvalues and 
eigenfunctions for this class of potentials have been derived. 
These general expressions for the Schr6dinger equation have 
then been applied to obtain corresponding expressions for 
Gauss and anharmonic oscillator potentials in both one and 
two channels as special cases. This has been done in Sec. 3. 

2. DERIVATION OF ASYMPTOTIC EIGENSOLUTIONS 

A. SchrOdinger equation 

We consider the two-channel problem defined by a sys
tem of coupled radial Schr6dinger equations of the form 
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dr r II 12 ¢1(r)_O (
~+E_/(/+I)_V -V) 

_ v: -.!!.....+E- 1(/+ 1) _ v: (¢2(r))-
21 dr r 22 

(Ii = c = 1, m = !). (2.1) 

Here E is the total energy of the system, which we assume to 
be the same in both the channels in order to permit the sys
tem of channel 1 to convert into the system of channel 2 and 
vice versa. 

The channel potentials are chosen as 

00 

V,'i(r) = FI I (N2p )urP (i = 1 or 2), (2.2) 
p=o 

where the coefficients (N2p lu can be negative also. In particu
lar, we require (N2lu to be negative so that the eigenvalues to 
be derived below are real. Further, for simplicity, we assume 

We now assume that, as g-oo, (E - FlNo)l(4F1N2) 1/2 -fin
ite and nonzero, i.e., of 0 (gO). Then the right-hand side of the 
above equation is of 0 (JIg). Hence in the limitg- 00 (i.e., for 
small perturbing contributions of the two channels and for 
weak channel coupling) the right-hand side of (2.6) may be 
neglected to a first approximation, i.e., the solution 

¢(z) = (¢I(Z)) 
¢2(Z) 

for the zeroth order is given by 

.f.{O)(z) = (¢(O)(Z)). 
'f' ¢(O)(z) (2.7) 

Setting ¢(O)(z) = Zl + Ie - z'14X (O)(z) and 

S=!z2, (2.8) 

one gets (to a first approximation) from Eq. (2.6) 

( 

d2 d ) s-+(b-s)--a ° 
ds2 ds (X (O)(S)) _ 

d 2 d \%(0) - 0, ° s - + (b - s) - - a (s) 
ds2 ds 

(2.9) 

where 

1 3 E-glNo 3 
a ="2+""4 - (4F1N

2
) 1/2 , b = 1+"2' (2.10) 

Then each solution of (2.9) is given by 

X(O)(s) = ¢ (O)(a,b;s), (2.11) 

where ¢ is a confluent hypergeometric function. 
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that 

and (2.3) 

(N2 )11 = (N2lz2 = N 2• 

The coupling potentials will be assumed to possess the 
following expansions: 

00 

Vij(r) = I (N2p )ijrP
, (2.4) 

p=O 

where il=j. 
We now wish to determine the eigenenergies E under 

normal bound state boundary conditions for large values of 
the coupling constant Fl. 

On substituting (2.2) and (2.4) in (2.1) and changing the 
independent variable to 

z = (4F1N2)1/4r, (2.5) 

one obtains 

Then the first approximate solution of (2.6) 

will be a normalizable bound state wave function, if 

a=-n forn=0,I,2, .. ·. (2.13) 

Setting q = 4n + 3 gives 

(E - FINo) = gJN;(21 + q). (2.14) 

Hence in our original problem we may write 

(E - FINo) = gJN;(21 + q) + 2N~, (2.15) 

where.J is an as yet undetermined expansion in descending 
powers ofg. 

Next we substitute (2.15) in (2.6) and multiply the equa
tion by ( - 2). The resulting equation can then be written 

(2.16) 

where 

(2.17) 

g = _ 2( ~ + 1+ !L _ / (/ + 1) _ r ) (2.18) 
q dr 2 r 4' 

and 
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with 

h = .[N;/g. 

Thus the zeroth-order solution (2.16) i8 given by 

!iJ qq !/J qq = 0, 

where 

g q + ;.q + ;!/J q + ;.q + I = 0, 

!dJq+i.q+; = !dJ qq -.1';;, 

where .1';; is the unit matrix multiplied by i, we have 

(2.20) 

(2.21) 

(2.22) 

!iJ qq!/Jq + ;.q +; = .1';;!/Jq + ;.q +;. (2.23) 

This equation will now be used in the development of our 
iteration procedure. 

Considering the right-hand side of (2.16), we first reex
press U(;!/J qq as a sum over various !/J q + ;.q + i> i.e., we write 

(2.24) 

where each coefficient C is a matrix. We next come to the 
perturbation procedure. Thus the zeroth-order solution 
tiP = t/Jqq (z) leaves uncompensated on the right-hand side of 
(2.16) the contribution 

(2.25) 

Using (2.23), we see that a term C (q,q + i)!/Jq +i.q+; of the 
sum can be taken care of by adding to !/J(O) the contribution 
.1'ii IC (q,q + i)!/Jq + ;.q +; except of course when i = O. This 
means that the first-order contribution of !/J is 

(2.26) 

Following Muller-Kirsten et al., we make an important ob
servation that the contribution !/J(1) is obtained only by virtue 
of the fact that!iJ qq and f;; are multiples of the unit matrix 
which commutes with C (q,q + i). 

We observe that the first-order contribution leaves un
compensated in (2.25) the term in !/Jqq. This will be used to 
determine A. and henceE. Since !/J(O) = !/Jqq leaves uncompen
sated R ~, the contribution !/J(J) leaves uncompensated 

558 

= IC(q,q + i)f;, I 
i#O 

x IC(q + i,q + i + j)!/Jq+ ;+j,q+ i+j' 
j 
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(2.27) 

(2.19) 

It follows that the next order contribution !/J(2) becomes 

!/J(2) = IC(q,q+ 1).1';,1 
;i'O 

X I C(q+i,q+i+j)f;~~.;+/!/Jq+;+j,q+I+j" 
j+ ii'O 

Thus finally we have the iterated sum 

t/J = !/J(O) + !/J(I) + t/J(2) + .... 

(2.28) 

(2.29) 

This would be a solution of our coupled equation pro
vided the sum of the coefficients of the terms containing !/J qq 
in R ~~, R ~~, ···left uncompensated so far is set equal to zero, 
i.e., 

0= det(C(q,q) + IC(q,q + i)fii IC(q + i,q) + ... ). (2.30) 
ii'O 

To calculate..1 and hence E, we now return to (2.24). For 
convenience we set 

t/Jq(Z) = t/J(a,b;z) = !/J(a) (2.31) 

and write the recurrence relation for !/J(a) in the form 

i'2!/J(a) = (a,a + l)t/J(a + 1) + (a,a)t/J(a) 
+ (a,a - l)t/J(a - 1), (2.32) 

where 

(a,a + 1) = a = - !(q - 3), 

(a,a) = b - 2a = 1+ q/2, (2.33) 

(a,a - 1) = a - b = - !(q + 3) - t. 
By repeated application of (2.32) we obtain the following 
general relation: 

m 

(i'2r!/J(a) = I Sm (a,a + j)!/J(a + j), (2.34) 
j= - m 

where the coefficients Sm (a,a + r) satisfy the following re
currence relation: 

Sm(a,a+r)=Sm_l(a,a+r-1)(a+r-1,a+r) 

+ Sm_1 (a,a + r)(a + r,a + r) 
+ Sm _ I (a,a + r + l)(a + r + l,a + r) 

(2.35) 

with So(a,a) = 1; all So(a,a + i) = 0 for i::;60 and 
Sm (a,a + r) = 0, for Irl > m. 

Using the relations (2.19), (2.24), and (2.34), we obtain 
(for i,j = 1,2) 

ICij(q,q + k )!/J(a + k) = 2..1h!/J(a) 
k 

+ f (N2P );;h P
-

1 

p~2 Nl 
P 

X I Sp(a,a + j)!/J(a + j), 
j~ -p 

(2.36) 
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and for i =1= j 

00 (N2 ) .. hP+ 1 P 

~Cij(q,q + k )¢r(a + k) = - P~o ~~+ 1 j=~pSp(a,a + j)¢r(a + j). (2.37) 

These general expressions (2.36) and (2.37) can now be used for writing different coefficients C's directly. 

Inserting these coefficients into (2.30) and evaluating the determinant, we obtain 

L12 = _ (No)12(Nob + { (N4)11(N4lzz }{9q4 + 72q31 + 6q2(32/ 2 _ 41 + 3) + 24q1(8/2 - 41 + 3) + (8/2 - 41 + 3n 
22N~ 28N; 

+ L1 [{ (N4)11 + (N4lzz } {3q2 + 12ql + 8/ 2 _ 41 + 3} + h {( (N6)11 + (N6h2 )(5q3 + 3Oq2/ + q(48/ 2 - 121 + 25) 
24N~ 25N~ 

+ 16/ 3 - 241) - ( (N4)f~7:~N4)~2 }17q3 + 67q + 2(51q2 - 18q + 67)1 + 24(7q - 3)J2 + 64J3)} + O(h 2)] 

+ h [{ (N4)I1(N6lzz + (N4b(N6 )11 } {15q5 + 15Oq41 + q3(544/ 2 - 561 + 90) 
29Ni 

+ q2(864f3 - 336/ 2 + 5401) + q(576/ 4 - 576/ 3 + 992J2 - 1361 + 75) + (1281 5 - 2561 4 + 544f3 - 272J2 + 1501)1 

_ {(N4)II(N4)~2 + (N4)zz(N4)il JI51 5+510 41 +q3(1864/ 2-176/+252)+q2(3024/ 3 -10561 2+ 1512/) 
29N 6 q q 

2 

+ q(2112/4 - 1824/ 3 + 2792/ 2 - 3761 + 201) + 512/ 5 - 8321 4 + 1552/ 3 - 7521 2 + 4021 1 

- { (NO)12(N2)21 + (NOhl(N2)12 } 121 + q I] + 0 (h 2). (2.38) 
23N~ 

Solving for L1 by iteration, we finally obtain 

E =1fNo + ,fFi;g(21 + g) + 2N2[(B + hD)2 +A + hF] 112, 

where 

A = { (N4)II(N4b } {9q4 + 72q31 + 6q2(32/2 - 41 + 3) + 24q1(8/2 - 41 + 3) + (8/2 - 41 + 3)2} 
28Ni 

(No)dNo)21 
22N~ 

B = { (N4) I I + (N4lz2 }{3q2 + 12q/ + 8/ 2 - 41 + 3}, 
24N~ 

D = { (N6 )11 + (N6lzz }{5q3 + 3Oq21 + q(48/ 2 _ 121 + 25) + 16/ 3 - 241 z + 50/} 
25N~ 

- { (N4)il + (N4)~2 } {17q3 + 102q21 + q(168J2 _ 361 + 67) + 64[3 - 72/2 + 1341} 
~4 ' 

2 

F= { (N4)11(N6b + (N4lzz(N6 )11 }{15q5 + 15Oq41 + q3(544/ 2 - 561 + 90) + q2(864P - 336/ 2 + 5401) 
29N~ 

+ q(576/ 4 - 576/ 3 + 992/ 2 - 1361 + 75) + (1281 5 - 2561 4 + 5441 3 
- 272J2 + 150/)} 

(2.39) 

- { (N4)II(N4)~;9:~N4b(N4)il }{51q5 + 51Oq41 + q3(1864/ 2 _ 176/ + 252) + q2(3024f3 - 1056/ 2 + 15121) 

+ q(2112/4 - 1824/ 3 + 27921 2 - 3761 + 201) + (512/ 5 - 8321 4 + 1552/ 3 
- 7521 2 + 4021)} 

_ { (NO)I2(Nzlz l + (Nob(Nz)12 }{21 + q}. 
23N~ 

Equation (2.39) gives an explicit expression for the eigenenergies of our coupled equations. 

B. Kleln-Gordon equation 

(2.40) 

We next consider the two-channel problem defined by a system of coupled Klein-Gordon equations which we write as 

(

d
2 

. V )2 2 1(1 + 1) V ) -+(E- II -m - - 12 

dr'- r (¢rl(r)) 
- 0 (Ii = c = 1). (2.41) 

_ V
21 

~+(E- Vd2 -m 2 _ /(1+ 1) ¢r2(r)-
dr'- r'-
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As assumed in Sec. 2A, we consider the total energy E of the system to be same for both the channels. 
For the potentials given by Eqs. (2.2), (2.3), and (2.4), Eq. (2.41) takes the form 

dr + + £.. g 2P)I1 - 2E15 N1P )I1 I - _.2 - £.. (N1p )121 
p=o I p=o tPt(r) = 0 

(

d
2 

k2 ~ { 4(M '...2( }_.2p 1(1 + 1) ~ _.2p) 

- JoiN" I"r' :; + k '+ ,t {g'(M" In - 2Eg'IN" In}'" _ / 1/; I I ("',lrJ ' 
where 

P 

k 2 = El - m1 and (M1Plu = L {N1IP-s)};;(N1S!u' 
s=o 

Now changing the independent variable to 

z = (2igRMl - 2EN1)t/l, 

Eq. (2.42) reduces to 

(

d 1 kl_g4(2ENoIgZ-Mo) Zl l(l+ 1) 0) 
dr + 2(ig)1(2EN2IgZ - Ml)t/l - 4 - Z2 (tPt(Z)) 
o ~ + k 2 - g4(2ENoIgZ - Mo) _ r _ 1(1 + 1) tP2(Z) 

dz2 2(ig)2(2EN2/gZ - M2)t/l 4 Z2 

= 2P~2 (igfP- 2{2EN21gZ - M2lIP+ 1)/2 2p~o (igfP+ 2 {2EN21gZ - M2lIP+ 1)/2 (tPt(Z)). 

(

1 00 I2E(N2P)I1/gZ - (M2P )I1j(r12)" 1 00 (N2P)dz2/2)" ) 

1 00 (N2pbt(Z212)" 1 00 {2E(N1P blgZ - (M1P bj(r12)" tPl(Z) 

2p~0 (ig)2P+2{2EN2IgZ-M1lIP+ I)12) 2P~2 (ig)2P-2{2EN2/gZ-M2]IP+I)/2 

We now assume that g~ 00 

{k 2 - g4(2ENoIgZ - Mo)J/l2gZ(2EN2IgZ - M2)t/l] 

remains finite and nonzero, i. e., of 0 (gO). 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

Hence in the limitg~oo (i. e., for small perturbing contributions of the two channels and for weak channel coupling) the 
right-hand side of (2.45) may be neglected to a first approximation, i. e., the solution 

tf!(Z) = (tPl(Z)) 
tP2(Z) 

is given to zeroth order by 

(
tP(O)(Z)) 

tP(O)(z) = tP(O)(z) . 

Setting tP(O)(z) = ZI + Ie - z'/4X(O)(z) and s = ~, one gets from (2.45) (to a first approximation) 

( 

dl d ) 
S ds2 +(b-s) ds -a 0 (X(O)(S))=o 

d 2 d \x (O)(s) , 
o s-+(b-s)--a 

d~ ds 

where 

a=~+1-- k2_g4(2ENoIgZ-Mo) and b=I+1-. 
2 4 4(ig)2(2EN1IgZ) - M2)1/2 2 

The first approximate solution of (2.45) 

tP(O)(z) = ZI + Ie - z'/4f/J (a,b;r 12) 

will be a normalizable bound state wave function, if 

a = - n for n = 0, I, 2, .... 

Setting q = 4n + 3 gives 

k 2 - g4(2ENoIgZ - Mo) = (ig)2(2EN1IgZ - Ml)t/l(21 + q). 

Hence in our original problem we may write 

k 1 - g4(2ENoIgZ - Mo) = (igf(2EN2IgZ - M2)t/l(21 + q) + 2ig(2EN2/gZ - Ml)l/l.;:1, 

where.;:1 is an as yet undetermined expansion in descending powers of g. 
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(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 
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Now we substitute (2.52) in (2.45) and multiply the equation by ( - 2). The resulting equation can be written as 

gqq.,p=o//.,p, (2.53) 

where 

(2.54) 

g = _ 2( ~ + 1+ !L _ I (I + 1) _ r ) 
q dr 2 r 4' 

(2.55) 

and 

(2.56) 

where 

'Y= ~ {2E(N2P)jgZ-(M2P);;lh2P-2(rI2)P, 'Y __ ~ (N2P)ij(Z212)ph2p+2 h=1-. (2.57) 
1I P~2 {2EN21gZ - M 21(P+ 1)12 ij - P~o {2EN21gZ - M21(P+ 1)/2 ' ig 

Thus the zeroth-order solution of (2.45) is given by 

(2.58) 

(2.59) 

Proceeding exactly as in Sec. 2A, we finally obtain the following expression for .::1: 

.::1 2 = .::1h [( (a2b + (a2)1l )(3q2 + 121q + 81 2 _ 41 + 12) + h 2{( (a3)22 + (a3)1l )(5q3 + 3Oq21 + q(48/ 2 _ 121 + 25) 
2 23{33/2 24{32 

+ 16/ 3 _ 24/2 + 501) _ ( (a2)i I ;3 (a2)~2 )( q3 + 6q21 + q( 20/
2 

-;41 + 7 ) _ 41 3 + 412 _ 71 )} + 0 (h 4) ] 
+ ~ [ (NO)12(Nohl _ (a2)1l(a2b (3q2 + 12ql + 81 2 _ 41 + 12)2] + ~ [{ (N2hl(NO)12 + (N2)12(Nohl } 

4 {3 26{33 4 2{33/2 

X{21 + q} - { (a2)1l(a3h2 + (a3hda2h2 }{15q2 + 150q41 + q3(544/ 2 - 561 + 90) + q2(864f3 - 336[2 + 540/) 
27{37/2 

+ q(576/ 4 - 576/ 3 + 992/ 2 - 1361 + 75) + (1281 5 
- 2561 4 + 5441 3 - 272/2 + 150lJ}] + 0 (h 6), (2.60) 

where 

(ap);; = [2E(N2p)jgZ - (M2p );;]' where p = 1,2, "', and {3 = [2EN21gZ - M 2]. (2.61) 

3. APPLICATIONS OF THE GENERAL EIGENENERGY 
EXPANSION 

We now apply the eigenenergy expansion (2.39) to some 
particular cases. 

A. General even power potential in a single channel 

For the case V12 = V21 = V22 = 0, i.e., 

(N2p )ij = (N2p b2 = 0 

and (3.1) 

(N2P )1l = N2p ' 

Eq. (2.1) reduces to a simple Schrodinger equation with a 
general even power potential. In this case the general eigen
energy expansion (2.39) reduces to 

561 J. Math. Phys., Vol. 25, No.3, March 1984 

E = gZ No + g.[fl;(21 + q) + (N4/2
3 N2) 

X [3(q2 + I) + 4(3q - 1)1 + 81 2] 

+ (N ~24N ~/2g) [5q(q2 + 5) 

+ 2(15q2 - 6q + 25)1 + 24(2q - 1)/2 + 16[3] 

- (NU26Nr2g)[q(17q2 + 67) 

+ 2(51q2 - 18q + 67)1 + 24(7q - 3)12 + 64/ 3] 

+ o (l/gZ). (3.2) 

This expansion is in exact agreement up to o (l/g) with the 
expression derived previously. 17 

B. Harmonic oscillator 

The harmonic oscillator potentials in the two channels 
will be given by 
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With 

(NO)ii = (N2p )ii = 0 for p>2, 

one obtains 

E = g..;N;(2/ + q) = - A ..;N;(2/ + q), 

which is the well-known result. 

C. Gauss potentials 

The Gauss potential is given by 

VIr) = _g2e- a2
,." 

so that 

(N2P )ii=(-1Y'a2Plp! and g2~-g2. 

(3.3) 

(3.4) 

(3.5) 

Hence the eigenenergy expansion in two-channel formalism 
is obtained from (2.39) by making the following substitu
tions: 

i 

562 

A = _1_ {9q4 + 72q3/ + 6q2(32/2 - 4/ + 3) 
210 

+ 24q/(8/ 2 
_ 41 + 3) + (8/ 2 - 4/ + 3)2} 

(NO) l2(Noh I 
22a4 

B = ~ {3(q2 + 1) + 4(3q - 1)/ + 8/ 2
}, 

2 

D = ~ [11 q3 + 6q2/ + q(120/2 - 12/ + 1) 
3X2 
+ 64/ 3 

- 24/2 + 2/], 

F = 4 [123q5 + 123Oq4/ + q3(4504/ 2 
3X2 
- 416/ + 576) + q2(7344/ 3 - 2496/ 2 + 34561) 

+ q(5184/4 - 4320/ 3 + 6392/ 2 
- 856/ + 453) 

+ (1280/ 5 
- 1984/ 4 + 3568/ 3 

- 1712J2 + 906/)] 

+ [ (No)dN2lzl + (NOlzl(N2)12 ] [2/ + q]. 
23a 6 

'J
0

" 

10 o 30 40 
-E_ 

J. Math. Phys., Vol. 25, No.3, March 1984 

FIG. 1. Ground-state Regge trajectories for the two-channel SchrOdinger 
equations with general even power potentials for different values of cou
pling constant If with No = - 3, N2 = - I, (No)12 = (No)2/ = 0.1, 
(N 2p )1I = I for p;;> 2 and (N 2p ln = -I forp;;>2. 

D. The anharmonic oscillator 

We consider the potentials 

Vll(r) = No + Nz~ + (N4)ll r4, 

V22(r) = No + Nz~ + (N4 lzzr\ 

and 
2 

Vij(r) = L (N2P)IZ~P, 
p=o 

Hence the eigenenergy expansion is again given by (2.39) 
with the only difference that the term F is now given as 

F= _ { (N4hl(N4)~2 + (N4)~I(N4b }{51 5 510 4[ 
29N~ q + q 

50 

+ q3(1864/ z - 176/ + 252) 

+ qZ(3024/ 3 _ 1056/ z + 15121) 

+ q(2112/4 - 18241 3 + 2792/ 2 - 376/ + 201) 

+ (512[5 - 8321 4 + 1552e - 752/ z + 4021)} 

_ { (Nohz(Nzlzl + (No!zJ(Nz)12 }{21 + q}. 
23N~ 

FIG. 2. Regge trajectories for the two-chan
nel Klein-Gordon equations with general 
even power potentials for different values 
for the quantum number q. The other con
stants areg' = - 10, No = - 1, N, = I, 
(Mp ),; = I for p;;>2 and i = 1,2; 
(Mp)ij = (Mp)p = 0.1 for i,) = 1,2, 
p=O,I,2, .... 

V. P. Iyer and L. K. Sharma 562 



                                                                                                                                    

4. CONCLUSIONS 

In the preceding sections we have seen, without being 
concerned with any specific application, how the perturba
tion method can be used for solving explicitly the eigenvalue 
problem defined by the coupled equations ofthe multichan
nel formalism (both in Schrodinger and Klein-Gordon 
equations) using a general even power potential in the two 
channels. Our method is a direct generalization of the meth
od applied previously to the single channel general even 
power potential problem. 17-19 However, in spite of its simpli
city, it will be seen that this generalization is by no means 
trivial, since the procedure depends crucially on the con
struction of unperturbed "Hamiltonian," which is a multiple 
of the unit matrix and so commutes with each of the matrix 
coefficients of the perturbation. Although numerical meth
ods are quite useful in such type of study, it has been thought 
worthwhile here to obtain analytical solutions using pertur
bation technique for answering questions pertaining to glo
bal analyticity. The eigenvalues are given by expansions 
(2.39) and (2.60) for the Schrodinger and Klein-Gordon 
equations, respectively. The Regge trajectories for the two 
cases, assuming the angular momentum to be the same in 
both the channels, are also shown in Figs. I and 2. While Fig. 
I is a study of Regge trajectories for different values of the 
coupling constants in the Schrodinger setup, Fig. 2 depicts 
rising trajectories in the Klein-Gordon equation for differ
ent values of the quantum number q. 

In the preceding two-channel problems, for simplicity 
we have taken the reduced mass in each channel to be!. One 
could as well have taken different reduced masses f.-ll and f.-l2 
for the two channels. It is of interest to point out that for 
studying the meson spectra the problem of different masses 
in the two channels could be solved by proceeding along the 
lines suggested by Miiller-Kirsten and Miiller.6 In the above 
calculations we have assumed the angular momentum also 
to be the same in both the channels. For different angular 
momenta we have to, however, treat the difference between 
channel angular momentum as a further perturbation. 
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Stochastic formulation of Feynman path integrals from the least action point 
of view 

Lech Papiez8
) 
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It is shown that solutions of Schrodinger equation may be represented by the action of a 
stochastically perturbed classical system. In a sense this means that quantum mechanics could be 
regarded as being a consequence of a variational principle applied to randomly disturbed 
dynamical systems. A comparison with the Feynman-Kac formula is made and the classical limit 
is discussed. 

PACS numbers: 03.65.Ge, 03.20. + i, 02.50.Ey 

1. INTRODUCTION 

This paper is devoted to a more careful analysis of the 
idea which was briefly sketched in Ref. 1. Let us remember 
that in Ref. 1 we showed that the Schrodinger equation 
could be regarded as being a consequence of the variational 
principle applied to a stochastically perturbed system. In 
this previous paper we argued rather heuristically, using an 
imaginary diffusion constant. Here we pay more attention to 
the mathematically proper formulation. Thus we use a real, 
positive diffusion constant to obtain the heat equation and 
then we exploit the idea of analytic continuation (with re
spect to a diffusion constant) to get the Schrodinger equa
tion. The idea of analytic continuation for a heat equation is 
not new, and it was discussed many times, especially when 
the Feynman-Kac formula of path integrals approach to the 
formulation of quantum dynamics2 was being considered. 
Therefore, we do not discuss this problem in full detail, as
suming it is rather well known. More attention is paid to the 
problem of stochastic optimal control3-6 which has been less 
studied by physicists. 

This paper is constructed in the following way. First, to 
make motivation of this paper more clear, we give a short 
review of classical mechanics from the deterministic optimal 
control point of view and we introduce stochastic control 
methods. Then we apply these methods for stochastically 
perturbed (classical) systems, we derive a heat equation for 
such systems, and we discuss its analytic continuation to the 
SchrOdinger equation. Next we try to find the place for our 
stochastic-variational formulation of quantum mechanics 
among the other methods, and consider its interpretation. 
We stress, first of all, that it may be seen as the realization of 
Feynman and Dirac ideas 7-11 of quantum mechanics' for
mulation. Comparing it with the Feynman-Kac formula we 
try to show its advantages. In this context we examine the 
classical limit which, as is well known, leads to difficult 
problems in the Feynman-Kac formulation of quantum me
chanics. We show that using our method we can overcome 
these problems, i.e., that this limit is well defined and that it 
leads to reasonable and interesting implications. The main 
implication is that Maslov's WKB approximation of quan
tum mechanics12 has its basis in the theory of stochastically 

alOn leave of absence from Silesian University, Katowice, Poland. 

perturbed dynamical systems.3.6·13 Therefore, many results 
of stochastic perturbation theory3.6· 13 may be adjusted to 
quantum mechanics. 

Finally we make some remarks about the interpretation 
of the proposed stochastic quantum mechanics, and about 
the possibility of extending our formulation to include rela
tivistic and spin embedding systems. 

2. OPTIMAL CONTROL THEORY AND HAMIL TON
JACOBI FORMULATION OF CLASSICAL MECHANICS 

It is well known that the Hamilton-Jacobi equation is 
obtained when the variational principle is applied to a classi
cal dynamical system. In the optimal control language, the 
Hamilton-Jacobi theory may be very briefly reviewed in the 
following way. 

Let us consider R m both as a configuration space of a 
classical system and also as a space where values of control 
parameters belong. We shall denote points in the configura
tion space and in the control space by x and u, respectively, 
i.e., (x,u) E R m XR m. Later we shall use also the same nota
tion x and U for appropriate functions (evolution and con
trol, respectively) but it will not lead to misunderstandings. 
A dynamical equation is given which binds together a state 
of a system and a control function, namely, 

xIs) = Us 

subject to the initial condition 

x(so) = x E R m, (2.1) 

where the dot denotes the derivative with respect to time s. 
Here the symbol u., should be understood quite generally, 
i.e., that the value Us at time s depends on complex informa
tion about a system (for example, Us may be regarded as a 
functional of the trajectory of a system between the initial 
time So and the times). However, such a general point of view 
is not necessary. Namely, the deterministic nature of a classi
cal system suggests that information which may be used to 
choose the control parameter Us at any moment s is con
strained to a state of a system at that moment. Thus, in prac
tice, Us must be a function of x and s only, i.e., Us = u(x,s). 
Hence, (2.1) may be written explicitly (and less generally) as 

dx(s) 
- = u(x(s),s) 

ds 
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subject to the initial condition 

x(so) = x E R m. (2.2) 

Moreover, our system is characterized by a Lagrange func
tion L (x, u, s), where x, U E R m and s E R. 

Now, we are ready to use the variational principle to 
decide which one of control functions u(x, s) is to be chosen 
in order to determine the real evolution of our system. Let us 
define, firstly, S, the classical action of our system as a func
tion which depends on initial conditions x and t (from now 
on, we make a substitution So = t ) as 

Six, t) = inf [fT L [xis), u(x(s),s),s]ds + g(X(T),T)], 
UE u 1 

(2.3) 

where T is some fixed, final moment of evolution, and U is a 
class of admitted control functions. The policy u* for which 
the lower bound in (2.3) is attained is called the optimal con
trol, and the solution of(2.2) for u = u* is called the optimal 
trajectory. The variational principle of classical mechanics is 
in fact a statement that the optimal trajectory is the real one 
for a classical system. 

Here, some questions arise, however. The main one 
concerns the existence and regularity offunctionsS (x, t) and 
u*(x, t). Fortunately, the above problem is quite simple from 
the optimal control point of view (the so called simplest 
problem of the calculus of variations) and some satisfactory 
answers may be formulated. 3 Briefly speaking, for sufficient
ly good functions Land g (and when the set U is not restrict
ed too much, a priori) the action S and optimal policy u* exist 
and are regular (continuous, differentiable, etc.). In this case, 
it is found also that the action S satisfies the nonlinear, differ
ential equation3 

. f [as(X,t) L( ) as(x,tJ]_o 
III + x, u, t + u - , 

UER ~ at ax 
(2.4) 

Six, T) =g(x, T). 

This equation will take a more familiar shape if we express 
the Lagrange function in the usual form as 

L (x, u, t) = (m/2)u2 
- V(x), (2.5) 

where V(x) is the potential and m > Ois the mass. In this case, 
Eq. (2.4) yields 

as(x,t) _ _ 1_(aS(X,tJ)2 _ V(x) =0, 
at 2m ax 

Six, T) =g(x, T) (2.6) 

as the value of the control function [at a point (x, t)] for 
which (2.4) attains the lower bound u(x, t) = - (11 
m)(aS(x, t)/ax). 

This last equation is the well-known backward Hamil
ton-Jacobi equation. The reason why it is the backward 
equation is that the action S depends on initial conditions 
(not final, as is usual in classical mechanics 14. 15). Using defin
ing equation (2.2) and the action Sin (2.3) with final condi
tions we obtain the forward (usual) Hamilton-Jacobi equa
tion; however, this construction is somewhat artificial from 
the optimal control point of view. 
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3. OPTIMAL CONTROL OF STOCHASTICALLY 
PERTURBED CLASSICAL SYSTEMS 

Let us now consider a stochastically perturbed classical 
system. For such a system we will choose one which differs 
from the system described earlier only in that Eq. (2.2) em
beds a (white) noiselike random disturbance.3

,4,6.13 The con
sequences of this perturbation will be crucial. 

First of all, if we wish to apply the variational principle 
to such a system we have to use not deterministic, as before, 
but stochastic optimal control methods. These are well 
known to specialists but are not very accessible to many phy
sicists, so we shall be more expository here. 

The configuration space of our system is, as before, R m. 

There are, also, no constraints on values of control functions, 
i.e., we assume that they take values in R m. For convenience 
we assume that the potential V is a real-valued, C OO(R m) 
bounded function (such strong regularity is not necessary to 
obtain main results but simplifies our argument). We must 
also recognize here that the admitted stochastic nature of the 
perturbation will affect the control and the state, so both of 
them must be regarded, during the evolution, as stochastic 
processes, Taking into account the above remarks we see 
that, formally, our system is characterized by a stochastic 
equation 

xis) = Us + cW(x) 

subject to the initial condition 

x(soJ = x E R m, (3.1) 

and by a Lagrange function 

L (x, u, s) = (m/2Ju2 - V(x), (3.2) 

where V(x) is the potential discussed earlier, c is some real, 
positive constant which determines the variance of the c W (s) 
process while W(s) is the standard, m-dimensional Wiener 
process, and x is a nonrandom point in R m from which our 
system starts at the moment so. It will be convenient for us to 

write the constantc in the form c = "JfI'/m wherem is a mass 
[as in (2.5) or (3.2)] and fI' some positive constant. 

Equation (3.1) demands some further explanation. First 
of all, it is much easier to give a precise meaning to (3.1) when 
it is written in the integral form. Also, we have not so far 
explained how a control policy u should be understood when 
a stochastic perturbation is allowed. Intuitively one may ar
gue that the Markovian nature of disturbance [W (s) is a Wie
ner process] implies, as it does in the deterministic case, that 
only information about the state of the system at moment s 
matters for determination of the control parameter u at that 
moment. This means that as in the deterministic case, 
Us = u(x, s). Such policies u are known as Markov strategies. 
Actually, it may be proved rigorously3,4 that even when the 
most general strategies [i.e., when Us are progressively mea
surable processes with respect to a system of u-algebras 
[ Y s l generated by a Wiener process W (s)] are admitted, the 
real evolution of a perturbed system derived with the help of 
(Lipshitz) Markov policies is not affected (this becomes 
clearer later). Thus Eq. (3.1) may be rewritten as the stochas-
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tic integral equation 

x(s,w) = x + is u(x(s/, w),s')ds' + ~fl'/m W(s, wi, s;;'so, 
So 

(3.3) 

where, for the moment, to stress the random nature of our 
variables, we explicitly use the random parameter liJ (the set 
n of all w may be interpreted as the set of all Brownian 
motion trajectories). We are in a position now to apply the 
variational principle to our system. As in the deterministic 
case we start with a definition of the action Sp depending on 
initial conditions for x and t (similarily, as before, we make 
now a substitution So = t). For our perturbed system, for any 
fixed x and t, we assign the value 

Sp(x, t) = }n( Ex [iT L (x(s),u(x(s),s),s)ds + g(X(T),T)], 
UE U t 

t<T, (3.4) 

where g is some C 00 function on R m, ilis a set of Markov 
control policies suitable for a perturbed system, and Ex de
notes the relevant probability average which, in a sense, may 
be interpreted as the average over all trajectories starting 
from x E R m (for any fixed policy u). For the moment the 
behavior at infinity (Ixl ~ (0) of the function g(x,T) is not 
important-later, for obvious reasons, we shall put some 
constraints on it. Let us notice here that the action Sp of a 
perturbed system so defined is a nonrandom, real-valued 
function, depending only on the moment t and on the config
uration space point x. The variational prinicple should be 
understood to mean that the real (stochastic) evolution of a 
perturbed system is determined, thanks to Eq. (3.3), by the 
control u* (optimal one) such that the lower bound in (3.4) is 
attained. What can we say, however, about the regularity of 
functions Sp and u*? One may show, using the standard 
technique of step strategies,4 that minimalization over these 
strategies in (3.4) gives us a function Sp(x, t) which is no 
different from the one obtained by using the most general 
policies (or Markov policies, what was hinted earlier). This 
implies that, under our previous assumptions, differenti
ation of Sp(x, t), to any order, is possible with respect to x 
and t. Details of differentiation for functions defined like 
Sp(x, t) in (3.4) are exhaustively discussed in Ref. 4. These 
properties ofthe action Sp allow us to apply Ito's formula to 
this function. 16,17 We have for any (not necessarily the real) 
evolution xIs) the identity 

Sp (x(s),s) - Sp (x, t) 

is[fl' a2 a a] = --2 + u(x(s/),s/)-+ - Sp(x(s'),s')ds'. 
t 2m ax ax at 

(3.5) 

Combining the last expression with (3.4), where T = sand 
g(x(s),s) = Sp (x(s),s), we get easily, for a standard form of a 
Lagrange function (3.2), the equality for Sp: 

(is {[ a fl' a
2 

a ] inf Ex -+ --2 + u(x(s/),s/)- Sp(x(s/),s/) 
" E " t at 2m ax ax 

+ ;u2(X(s/),s/) - V(X(S'))}dS') = 0, t< T, (3.6) 

Sp(x, T) = g(x, T). 
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When we divide throughout by s - t, and we let s tend to t, 
(3.6) yields 

. [a fl' a a mf -Sp(X, t) + --2 Sp(X, t)u -Sp(x, t) 
U E R m at 2m ax ax 

+;u2 -V(X)]=0, t<T, 

Sp(X, T) =g(x,T). 

(3.7) 

This is the so-called Bellman equation. It may be regarded as 
a generalization of the backward Hamilton-Jacobi equation 
for a stochastically perturbed classical system. We notice 
that the lower bound in the bracket is attained if a control 
parameter, at any point (x, t ), is equal to 
- (l/m)(aSp(x, t )lax). Therefore, Eq. (3.7) may be also 

written as 

a fl' az I 
-S (x,t)+ --S (x,t)-
at p 2m ax2 p 2m 

(
asp (x, t))2 

X ax - V(x) =0, t<T, 

Sp(x, T) =g(x, T). 

(3.8) 

Thus, we have found, in addition, that the optimal control 
u*(x, t) is a C = function of x and t, and that 

u*(x, t) = - (l/m)(aSp(x, t)lax). (3.9) 

Incidentally, thanks to stochastic optimal technique, we 
have found that the nonlinear, differential equation (3.8) has 
a solution which is a Coo function of x and t jointly. 

4. THE SCHRODINGER EQUATION AND 
STOCHASTICALLY PERTURBED CLASSICAL 
SYSTEMS 

Let us consider a function tp(x, t), depending on a con
figuration space point x and time t, defined as 

tp (x, t) = exp( - (l/fl/)Sp (x, t )), t< T. (4.1) 

This is a positive-definite nonrandom function of the class 
C oc with respect to x and t. As a consequence of (3.8), we 
have the following differential identity for this function: 

atp (x, t) + .E..~tp (x, t) + 1. V (x)tp (x, t) = 0, 1< T, 
at 2m ax2 fl' 

(4.2) 
tp (x, T) = exp( - (l/fl')g(x, T)), 

i.e., the function tp(x, t), defined by (4.1), is the solution of the 
backward Cauchy problem for a heat equation (4.2) with a 
source (l/fl')V(x). 

We may interpret this result in the following way. It is 
well known that the backward Cauchy problem for a heat 
equation in L 2(R m) has a unique solution with properties of 
positivity and C 00 regUlarity with respect to x and t. Thus, if 
we restrict ourselves to the case when tp (x, T) E L 2(R m) [or 
more precisely, tp (x, T) E L 2(R m) n C oo(R mIl, then we have 
the solution of the backward Cauchy problem for a heat 
equation (4.2) in L 2(R m) represented, thanks to (4.1), by the 
action Sp of the perturbed classical system (3.4). 

So far we have discussed only real-valued functions, 
and therefore real space L 2(R mI. However, it is easy to see 
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that the solution of (4.2) in L 2(R m)-complex [let us denote 
this space L ~(R m)] with the final condition 
fiJ (x, T) E L ~(R m) n C ;o(R m) can also be represented by the 
action (3.4). It is enough to realize that a heat equation is 
linear, and that for any fiJ E L ~(R m) we have fiJ = fIJI + ifiJ2 
where fiJI,fiJ2 E L 2(R m)-real. 

Let us consider now, more carefully, Eq. (4.2) as the 
evolution equation on L ~(R m). We shall be interested espe
cially in the likeness between this equation and Schrodinger 
equation. We shall use here the idea of the Schrodinger equa
tion definition by "analytic continuation" of the heat equa
tion. 2 In our case we may argue in the following way, using 
semigroup theory. 18.19 The first question is whether the op
erator 

fI' a2 1 
A = --+ -V(x) (4.3) 

2m ax2 fI' 

on L ~(R m) with appropriately chosen domain D (A) 
(D(A) = W~(R m),asecond-orderSobolevspacewithrespect 
to L ~(R m)), is the generator of the backward linear semi
group in L ~(R m). The answer will be obvious if one regards 
A as the sum of two linear operators, i.e., A = A I + A2, 
whereA I = (1i'/2m)(azlax2), A2 = (lIf1')V(x) andD (AI)-
= D (A 2 ) = D (A ). The results of the perturbation theory of 

semigroups 18,19 immediately give us a positive answer [let us 
remember our assumptions about V(x)]. Let us denote this 
semigroup of operators (linear, continuous, and contractive) 

generated by A in L ~(R m) by Tr In our case, T~' is the 
backward semigroup "starting back" at moment T, so 

T~'fP(x, T) = fiJ (x, t), and Tt = 1 is the identity operator. 

But semigroup perturbation theory assures us also that T~', 
as a function offl', has analytic extension to the right, com
plex semiplane P. We shall denote points in P by fI", i.e., 
Ii" E P = {z:largzl <1T12} = {z:Rez>O}. It is enough to 
notice that A ; = (Ii" 12m)W I ax2), D (A ;) = D (A ) gener
ates a semigroup, that A i = (lIf1")V(x) is a bounded opera
tor, and to recall the known results for the perturbation of 
semigroups, 19 to conclude that A '= (Ii" 12m)(azlax2) + (11 
Ii") V(x) has D (A ) as its domain, and generates a semigroup 

fi" 2 m Tfi"l fi' fi" T t on L c (R ) ( t fi" = fi' = T t ). Moreover, T t fP (x, T) 
is, in general, a holomorphic L ~(R m)-valued function of Ii" 
(in P). From the theory of holomorphic functions we know 

that for every function T~" fP (x, T) there exists a nontangen
tial limit to almost every point on the imaginary axis 
Re z = 0 (excluding a set of Lebesgue measure 0). If we 
choose on this axis a point z = iii, where fI is the Planck 
constant, we shall obtain, thanks to this limit, a function 
l{!(x, t) = Ti[' fP (x, T) which satisfies the equation 

Ii a fI" az i at I/J(x, t) = - 2m ax2 I/J(x, t) + V(x)l/J(x, t), t < T, 

(4.4) 
I/J(x,T) = fP (x,T). 

This equation is, of course, a consequence of (4.2), and the 
property that during the extension and continuation to the 
imaginary axis the differential operations remains valid. 

Equation (4.4) is the backward Cauchy problem for the 
Schrodinger equation in L ~ (R m). Thus, in the sense of defin-
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ition by analytic continuation, quantum dynamics is ob
tained from a variational principle applied to a stochastically 
perturbed classical, Lagrangian system. 

Let us stress here two problems associated with Eq. 
(4.4). The first is that we have got the backward Schrodinger 
equation: This is because the action Sp (x, t ) for a perturbed 
system was defined as a function of the initial conditions x 
and t. If the formulation is given through the action defined 
as a function of final conditions then the usual, forward 
Schrodinger equation will be obtained instead of (4.4). The 
next problem is whether we have to assume such strong regu
larity off unctions V(x) and g(x, T) [or, as is equivalent, of 
fP (x,T)]. It turns out, for example, that all the steps we have 
taken can be repeated for V(x) andg(x,T) in C 2(R m)_it is 
clear that the application ofIto's formula for Sp (x, t) in (3.5), 
crucial to our arguments, is still admissable under these cir
cumstances. It is possible to consider even more general 
cases, e.g., if Sp (x, t) is nondifferentiable in the usual sense, 
and to apply the generalized Ito's formula4 for Sp (x, t) to get 
our results. Let us point out, however, that the principal, 
nontechnical, difficulty in treating such cases appears to 
arise when the action is no longer a common function but an 
element of some functional space. The point is that in this 
case the minimalization in the definition (3.4) of Sp (x, t ) loses 
its meaning! This last difficulty appears, in practice, only 
when we try to consider the final conditions rp (x,T) [or 
g(x,T)] as functional space elements, for example, as ele
ments of L ~(R m). Potential V(x) is usually understood to be 
at least a continuous function in common sense. Therefore, a 
more attractive way to treat the general conditions for fP (x, T) 
in Eq. (4.4) is to work initially with smooth final conditions 
in L ~ (R m) n C ;0 (R m), and then to extend this equation to 
general final conditions, which are elements of functional 
space L ~(R m), approaching them, in the sense of L ~(R m) 
limit, by functions from a dense set L ~ n C ;0 . 

It is worthwhile to notice at last that a standard tech
nique exists which enables us to extend the stochastic con
trol, as well as the semigroup theory considerations, for un
bounded potentials V(X),z·20 

5. COMPARISONS WITH THE FEYNMAN-KAC 
FORMULA AND CLASSICAL LIMIT 

The connections between our method and Feynman's 
path integral formulation of quantum mechanics are ob
vious. Especially, the stochastic representation of quantum 
dynamics, thanks to the Feynman-Kac formula, is in some 
ideas very similar to our above considerations, but with one 
important difference: the Feynman-Kac formula does not 
use the variational principle at all. This will be clearer if we 
put the Feynman-Kac quantization in our notation. In the 
Feynman-Kac method diffusion of the form 

xIs, cu) = x + ~(fI'lm) W(s, cu) 

subject to the initial condition 

x(t, cu) = x (5.1) 

is assumed [here all symbols have the same meaning as in 
(3.3)]. This enables us to define a linear, holomorphic semi
group F~' on L ~ (R m), the so-called Feynman-Kac formula; 
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that is, 

F~' lP (x, t) = Ex {exp [ + ~, iT V (x(s))ds ]lP (X(T),T)}, 

(5.2) 

Ff. lP (x,T) = lP (x,T), 

which, thanks to known results connecting diffusions with 
linear second-order differential equations, 16-18 fulfills an 
equation of the form (4.2). In particular, this equation may be 
considered as an evolution equation in L ~(R m). Thus, using 
the same analytic continuation in fI' as before, the quantum 
dynamics is determined by the Feynman-Kac formula. As 
we see from (5.2) this formulation realizes, to some extent, 
the idea of "summation over all paths," but it completely 
ignores the variational principle. Also, the classical limit 
causes problems when (5.1) and (5.2) are to be interpreted for 
fI' -+ O. These shortcomings have no place in the stochastic 
optimal control formulation. The variational principle exists 
there by definition and the classical limit is an essential part 
of this formulation, too. 

Before discussing some details of the classical limit, let 
us concentrate on the problem of how it should be under
stood in our formulation. For this purpose, a simple diagram 
giving interpretation of some points of a complex plane is 
useful. 

quantum :')... 
evolution, z = ifl 

generalized evolutions 
z = fill, i.e., Rez>O 

classical/stochastically perturbed evolutions 

evolution, z = 0 1m z = 0, Re z = fI' > 0 

Complex plane - z 

Let us recall that in our formulation the quantum evolution 
(z = ifl) is a limit case of generalized evolutions (z = fill, i.e., 
Re z > 0) and that the classical evolution (z = 0) may be re
garded as a limit case of generalized evolutions, too (this will 
be more clear later). These limits exists only when fi" -+ ifl 
and fi" -+ 0 nontangentially to an imaginary axis. In our 
method it makes no sense therefore to approach classical 
evolution (z = 0) converging to 0 over the imaginary axis 
(Re z = 0). The only reasonable definition of a classical limit 
emerges when the nontangentiallimit fi" -+ 0 is applied to 
generalized evolutions. The most convenient way to ap
proach classical evolution is, of course, over the real fi" 
(when fi" = fI'), i.e., over stochastically perturbed evolu
tions. So let us discuss this limit more accurately. 

First of all, we expect that the perturbed evolution will 
tend to a purely classical one if the perturbation parameter 

~fI' 1m converges to 0 (we will then be fully justified in calling 
the evolution obtained from the non tangential limit fi" ---+ 0 
a classical evolution). This problem is one of stochastic con
trol for "small noise intensities," and has been exhaustively 
investigated in the literature.3

•
6

•
21 The rigorous results con

firm the intuitive predictions. The stochastic optimal policy 
as a function of fI' converges for fz' -+ 0 to the classical opti
malone, the optimal stochastic trajectory converges to the 
optimal (real) classical trajectory, and the action Sp(x, t) 
tends to the classical action S (x, t). Also, the generalized 
Hamilton-Jacobi equation (3.8) becomes the classical one 
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(2.6). The more exact results3
•
6

•
21 tell us that optimal stochas

tic policy u· , optimal stochastic trajectory i·, and the action 
Sp (x, t) can all be expanded with respect to the value fI'lm as 
follows: 

_. • fz' (fz')k ((fz')k) U = U + m u1 + ... m Uk + a m ' 
_. fI' (fI')k ((fI')k) X = x· + m Xl + ... + m xk + a m ' (5.3) 

fI' (fI')k ((fI')k) Sp = S + m Sl + ... + m Sk + a m ' 
where U·, x·, and S are appropriate classical variables, and k 
is any integer. For us, the most interesting coefficients are 
Si' i = I, ... ,k of the action expansion. We know already that 
S is a classical action which fulfills the Hamilton-Jacobi 
equation (2.6). From the Bellman equation one may get also 
the equations determining functions Si for i = I, ... ,k. For 
example, for i = I (WKB approximation), we have 

aS1(x,t) ~aS1(X,t)aS(x,t)+ a
2
S(x,t) =0, 

at m ax ax ax2 

(5.4) 

where S is a classical action and the final condition for 
SI(x,T) is determined by assumed final conditions for Sp and 
S. 

But we must remember also that our definition of gener
alized evolutions admits the complex-valued final condi
tions lP (x,T) and, ipso/acto, complex-valued conditions 
g(x,T) in the Bellman equation (3.7) or (3.8). These must be 
reflected in the classical limit case if we understand it in the 
sense given earlier. The most visible consequences are that 
functions Sand Si will be, respectively, solutions ofEqs. (2.6) 
and (5.4), but, in general, with complex-valued final condi
tions! 

Let us notice here that our concept of classical limit for 
quantum evolution has much in common with the one used 
in Maslov's book, 12 where equations of type (2.6) and (5.4) 
are obtained in WKB approximation from the (usual, for
ward) Schrodinger equation, and are analyzed as equations 
with complex (initial) conditions. Our formulation enables 
us to see Maslov's approximation scheme from a new point 
of view, and justifies the application of stochastic perturba
tion theory in the classical limit of quantum mechanics. 

6. DISCUSSION 

Maybe it is worthwhile to forestall here some questions 
of interpretation which always arise when one attempts to 
embed quantum mechanics in the frame of stochastic pro
cesses. Here this problem is much more serious than for the 
Feynman-Kac formula; there the realization ofthex(t) pro
cess defined by (5.1) is not believed to be the real path of a 
particle. This realization has nothing in common with classi
cal trajectory. It is purely random. The situation is, however, 
different when we consider the realization of a diffusion pro
cess x(t) defined by (3.3). It is natural to see it as a possible, 
fluctuating trajectory of a particle (particles). The situation 
is, in fact, similar to Nelson's stochastic quantum theory.22 
Thus efforts made earlier to interpret Nelson's theory find 
application in our work, too. This interpretation is described 
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clearly in Ref. 23 and I merely repeat here, briefly, the main 
points of that interpretation. 

First of all, we are not claiming that particles and trajec
tories really exist in the physical sense. They should be treat
ed rather as useful but additional construction, and without 
new information of a physical nature, it is impossible to con
firm or exclude their existence. Thus there is no "stochastic 
interpretation" of quantum mechanics other than the stan
dard one. 

Let us say, finally, that the considerations of this paper 
apply only to a simple system of nonrelativistic, spinless par
ticles in the field of the potential V. They may be generalized 
to the relativistic case. Some preliminary ideas were 
sketched in Ref. 24, and more careful analysis is in prepara
tion. It seems, also, that the extension to general Lagrangian 
systems with configuration space given by a Riemannian 
manifold is merely a matter of technical complications. In 
this case, Eq. (3.3) has to be seen as an equation on such a 
manifold. 25

•
26 The papers on stochastic mechanics26

•
27 sug

gest that in our formulation spin also may be embedded if 
configuration space R 3 (of one particle) is replaced by 
R 3 X SU(2). 
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Non-self-adjoint Zakharov-Shabat operator with a potential of the finite 
asymptotic values. II. Inverse problem 
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~h~ in~erse spectral and scattering problem of the Zakharov-Shabat (ZS) operator is studied. The 
slmtlanty transformation between ZS operators is examined when their potentials Q (x) have the 
common nonvanishing asymptotic values Q ± at the infinity. The Marchenko equation is derived 
from the Parseval equation. We give the necessary as well as the sufficient condition of the 
scattering data for the potential of the specified class. 

PACS numbers: 03.6S.Nk, 03.80. + r 

1. INTRODUCTION 

The direct and inverse spectral problem of the one-di
mensional Dirac type operator with complex potential or the 
Zakharov-Shabat (ZS) operator L, 

Lv=i0"3{d/dx-Q(x)Jv(x), XEJR (Ll) 

was first investigated by Zakharov and Shabatl in their anal
ysis of the nonlinear Schrodinger equation and examined 
systematically by Ablowitz, Kaup, Newell, and Segur2 for Q 
vanishing rapidly as Ix 1- 00 • The study is extended3

.4 to the 
case of non vanishing asymptotic values Q-Q ± #0 as 
x- ± 00 but under the restriction q +r + = q _r _. Here and 
henceforth the double signs ± are ordered. In the preceding 
papers (hereafter cited as I) we investigated the direct prob
lem of the ZS operator for general asymptotic values Q ± . 

The values Q ± with u2
± -q ± r ± #0 are classified as 

Cs and Cd' In the case Cs ' u2
+ - u2

_ EC - JR, the continuous 
spectrum of L is simple, whereas in the case Cd' u2+ - u2

_ 

EJR, L has the doubly degenerate continuous spectrum. Let 
us specify as in I the vector or matrix function A (x) by the 
integrability of A ± (x) = A (x) - A ± in such a way thatA' + 

ECF ± (n) means -

± i± oc dy(1 + lyln)<A ± (y) < 00, XEJR 

for an integer n (;>0), where (A ) denotes the maximum of the 
absolute values of the components of A. Further, when A (x) 
is piecewise absolutely continuous, we write A' ± ECF '± (n) 
(n;>O) if 

i± 00 (1 + lyn(dA (y) < 00, xEJR 

where dA (y) = A (y + dy) - A (y). It is shown in I that the 
direct spectral problem is solved for Q ± ECF ± (1 )nCF '± (1) 
in both cases Cs and Cd under some additional conditions on 
the point spectrum and on the leaps of Q at its discontinuity. 
In the present paper we discuss the inverse problem of the 
same operator with nonvanishing Q ± by means of the Mar
chenko equation6 and exhibit especially the correspondence 
between the potential and the spectral function or the scat
tering data. The latter problem was studied for the case Q ± 

= 0 by the present authors7
•
8 obtaining the correspondence 

of 

QECF ± (m)nCF'± (n)~F ± ECF ± (m)nCF'± (n), 

m;>O, n;>1 (1.2) 

where F ± is the kernel ofthe Marchenko equation and de
termined from the spectral function. A slightly different type 
of correspondence was pointed out by Eckhaus and van Har
ten.9 In the present paper we establish the correspondence 
analogous to Eq. (1.2) in the analysis of the inverse problem 
for the potential of Q ± #0. 

As in I the Riemann plane R for two functions A 
= (A 2 - u2± ) I /2 is constructed from four complex A pl~nes 

connectedalongbranchcutsFj (1~<4)(seeFig.l).r is the 
straight line from u ± ( - U ± ) to the origin but some df them 
may be defined as a combination of line segments so as to 
include the other, as shown in Fig. 1 of I. Our analysis is 
performed on the first Riemann sheet R I , where A ± _A 
holds as 1.1. 1-00. The continuous spectrum 0" c of the ZS 
operator L consists of four curves Cj (1~<4) on R I which 
originate at u ± or - u ± and approach asymptotically 
positive or negative real axes as 1.1. 1-00. The curves F j and 
Cj divide R I into four regions R j (1 ~<4) in the case Cs and 

R, u. 

FIG. 1. The first Riemann sheet R[ (A = 5 + i7J). 
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two regions RI and R4 in the case Cd' where C I and C2 (C3 

and C4 ) join into a curve to give the doubly degenerate con
tinuous spectrum (see figures in I). The point spectrum up of 
L consists of the zero points of the components of the matrix 
S = IS;j(A); i,j = 1,21, whereSw S21,SJ2,S22 are defined as 
the Wronskians of the Jost solutions of L and regular in R I' 
R 2, R 3, R 4 , respectively. Q' stands for the class of potentials 
with only the finite number of simple point spectrums and 
without a point spectrum on Cj • In the case Cs ' if the leaps 
8Qj ==Q (Xj + 0) - Q (Xj - 0) satisfy for some € > 0, 

1~8QjejSXJI >€(~ ~) (R3f-± (0), (1.3) 

then we write QE~ . Here for any matrix (or vector) A we 
define a matrix (or vector) IA I by IA lij = IA;j I (or 
IA I; = lA, I) and the inequality IA 1< IB I means IAjj 1-< IBjj I 
(IA I =lIB IJ and so on. In this paper as in I we consider only 
the potential QEQ' in general and QE~ in the case Cs • 

In Sec. 2 we discuss the similarity transformation in the 
form of an integral operator I + K ± with kernel 

V ± (x,y) = 8(x - y) + K ± (x,y), 

where K ± (x, y) is the Volterra kernel 

K± (x,y) =0, x~. 

The Jost solution <1> (~(x, A, A ± ) of the ZS operator Ll with 
potential QI is transformed by means of the above K ± to the 
Jost solution <1> (~(x, A, A ± ) of L2 with potential Q2 

<1> (~ (x, A, A ± ) 

= <1> (~ (x, A, A ± ) ± i ± '" dy K ± (x, y)<1> (~ (y, A, A ± ), 

when Q I ± = Q2 ± . For the simple case where Q I is the step 
potential with a discontinuity at /, 

Ql(X) = Qo(x;/ )=Q ±' x~/ 

we estimate K ± under the assumption that the perturbation 
Q2 - QI is small in the sense specified there. In Sec. 3 we 
derive from the Pars~al equation for L j (j = 1,2) the Mar
chenko equation for K ± with the kernel F ± and also give 
the estimate of F ± in terms of Q. Sections 4 and 5 are devot
ed to the solution of the inverse problem. The existence, the 
uniqueness, and the estimate of the solution of the Mar
chenko equation are given in Sec. 4. In Sec. 5 the main results 
for the inverse problem are presented. We establish the nec
essary and sufficient condition of scattering data such that 
the potential which yields the scattering data belongs to the 
class CF ± (m)nCF '± (n) (m,n> 1). In the Appendix the spec
trum for the step potential Qo(x;/) is examined in detail, since 
Qo plays an important role corresponding to the constant 
potential of the Schrodinger operator in the quantum scat
tering problem. 

2. SIMILARITY TRANSFORMATIONS 

We study the ZS equation (1.1) with the potential Q (x) 
having the asymptotic values 

Q(X)_Q=( ° 
r± 

q± ) ° ' x_± 00. (2.1) 
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Throughout the present paper we assume that 
Q ± = Q - Q ± is piecewise differentiable and 

ij ± = q - q ±' r ± = r - r ± ECF '± (0). 

The matrix Jost solution <1> ± for L is introduced as 

L<1> ± (x, A, A ± ) = A <1> ± (x, A, A ± ), (2.2) 

<1> ± (x, A, A± )-<1>(~ (x, A, A ±), x_ ± 00, (2.3) 

where 

AECIUC4 

AEC2UC3 

[A+ = (A 2 - u2+ )1/2ER] for <1>+, 

[A_ = (A 2 - u2
_ )1/2ER] for <1>_. 

The solution of ZS equations with a constant potential Q ± 

is expressible as 

<1> (~ (x, A, A ± ) = T ± ( A, A ± )J (x, A ±), A ± ER (2.4) 

T ± (A,A±) 

= Cr ± 1(; + A ± ) 

e ± 

( 

- j,( x 

J(X,A±)= ° 
We also define a "free" Jost solution 4> (~ (x, A, A ± ) as an 
eigenfunction of the "free" ZS operator L (0) with a "step" 
potential Qo(x)=Qo(x;O), 

L (0) = iu3JIJx - iu3Qo(x), (2.7) 
thus 

4> (~ (x, A, A ± ) = <1> (~ (x, A, A ±), x~O. (2.8) 

Hereafter it is assumed without loss of the generality that the 
step is located at the origin; / = 0, and further we often write 
<1> (~ (x) in place of <1> (~ (x, A, A ± ) and so on. As exhibited in 
the Appendix, there are three cases: (1) L (0) has two simple 
eigenvalue, (2) L (0) has a doubly degenerate eigenvalue, and 
(3) L (0) has no eigenvalue. In this paper we consider case (3). 
Case (1) can be discussed analogously. Theorems 1-1,1-2, 
and their corollary in I show that the continuous spectrum of 
L is stable under such a perturbation of the potential that 
does not change the asymptotic values Q ± if Q ± =Q - Q ± 

decreases rapidly as x_ ± 00. In this sense the free ZS oper
ator L (0) characterizes a family of L with the same contin
uous spectrum and Q ± ' and we show in this section that 
there exists a similarity transformation V ± between Land 
L (0), 

LV - V L (0) (2.9) 
± - ± ' 

which connects the "free" Jost solution to the Jost solution, 
- - (0) <1> ± (x, A, A ± ) = u ± <1> ± (x, A, A ± ) 

=(1 + K ± )4> (~ (x, A, A ± ). (2.10) 

V ± should be an operator in the function space, which will 
be specified later, and (2.10) is expressible as 

<1> ± (x, A, A ± ) = 4> (~ (x, A, A ± ) 

+ f dy K ± (x, y)4> (~ (y, A, A ± ). 

(2.11) 

First, we introduce transformations U ± = 1 + K ± 

and U ± 0 = 1 + K ± 0 by 
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f/J ± (x, A, A ± ) = f/J I~ (x, A, A ± ) 

+ J dy K ± (x,y)f/JI~ (y, A, A ± ), 

(2.12) 

~ I~ (x, A, A ± ) = f/J I~ (x, A, A ± ) 

+ J dy K ±o(x,y)f/JI~ (y, A, A ± ). 

(2.13) 

We denote a 2 X 2 matrix A as 

A = A D + A N, A D = (A 01 
I 0 ) 

A22 ' 

AN =( 0 Al2). 
\.A 2 I 0 

Lemma 2.1: Let Q ± ECF ± (1 )nCF'± (0), QM 
= sup{ Iql + Irll. Then K ± has the Volterra kernel 

K ± (x,y) = 0, x<y, (2.14) 

and is piecewise differentiable with respect to x and y. We 
have the following estimates: 

(K ~ (x, y) - !Q ± ((x + y)/2) 

<!QMI ± ((x + y)/2)! ± (x)exp [ 4QMI ± (x)] 

<D ± (x)! ± (x)! ± ((x + y)/2), (2.15) 

(K~ (x,y)<!QMI ± ((x + y)/2)exp[6QMI ± (x)] 

,D ± (x)I ± ((x + y)/2), 

(K ± (x,y)<D ± (x)1' ± (x + y), 

I±(x)=± i±oo dy(lq±(y)1 +r±(y)I), 

I±(x)==± i±oo dyI±(y)<oo, 

J ± (x)= ± i± 00 (ldq(y)1 + Idr(y)I), 

l' ± (x)=I ± (x/2) + J ± (x/2). 

Further, let Q ± ECF ± (1 )nCF:r (1), then the estimates for 
the partial derivatives are given as 

(K~A(X,y) -lQ'((x + y)/2) 

,QMI ± (x)J ± ((x + y)l2) 

+ 2{QMJ ± (x) + 2QM2I2± (x)II ± ((x + y)/2) 

xexp[ 4QMI ± (x)] 

,D ± (x)1' ± (x)r ± (x + y), (2.16) 

(K~A(X,y) 

,1Q ~J ± ((x + y)/2) + !Q ~I ± ((x + y)/2).l ± (x) 

+ 2QMQ ~I ± ((x + y)/2)! ± (x)exp [QMI ± (x)] 

,D ± (x)1' ± (x + y), 

Q ~ = QM + J ± ( + (0), 

J ± (x)= ± i ± 00 dy J ± (y) < 00. 

HereK ±A denotesK ±x==(J/Jx)K ± or K ±Y==(J/Jy)K ± 

and D + (D _) denotes some decreasing (increasing) function. 
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The lemma is proved from the integral equation exhib
ited as 1-[(2.24), (2.25)] for K ~ (M ± ), K ~ (N ± ). Equation 
(2.15) is already given in Lemma 1-3 [1-(2.2WOj. Equation 
(2.16) is derived from the equation obtainable by differentiat
ing 1[(2.24), (2.25)] with respect to x and y and we omit the 
details of the proof here. 

We define the inverse of U ± (x, y), 

U ;;: I(X, y) = b(x - y) + K I; II(x, y), 

which transforms f/J ± to f/J I~ as 

f/J (~ (x, A, A ± ) = f/J ± (x, A, A ± ) 

+ J dy KI; II(x,y)f/J ± (y, A, A ± ). 

(2.17) 

K I; II is given formally by 

KI; II(x,y) = f (- ItK 1nl(x,y) 
n=l 

= - K ± (x,y) - f dz K ± (x,z)KI; II(z,y), 

K Inl(x, y) = f dz K ± (x, z)K I~ - II(z, y), 

(2.18) 

KI~ (x,y) = K ± (x,y). 

Lemma 2.2: Under the condition Q ± ECF ± (1) 
nCF'± (0) we have 

KI; II(x,y) = 0, x<y (2.19) 

(KI; II(x,y),D ± (x)1' ± (x + y), (2.20) 

(KI; IIN(X,y) + !Q((x + y)/2) 

,D ± (x)! ± (x)! ± ((x + y)/2), (2.21) 

(KI; IID(X,y),D ± (x)! ± ((x + y)l2), (2.22) 

and under the condition Q ± ECF ± (1 )nCF'± (1) we have 

(K';l IN(x,y) + lQ'± ((x + y)/2) 

,D ± (x)1' ± (x)1' ± (x + y), 

(K I; l ID(x, y) ,D ± (x)1' ± (x + y). 

(2.23) 

(2.24) 

Here D + (D _) denotes some decreasing (increasing) func
tion. 

Proof Equation (2.19) is evident from Lemma 2.1 and 
(2.18). To obtain the estimate ofK I; II, we derive from (2.15), 
(2.16), and (2.18) the inequalities 

IKI;II+K± -KI~ l,fdZ nto IK±KI~ IIKI~ I 

,D ± (x)7 ± (2x)exp [ D ± (x)7 ± (2x)] 

xC ~)~~p(KI~(Z'Y)' (2.25) 

(IKI~ IN)'JdZ(K~ )(K~) + (K~ )(K~») 

,D ± I ± (x)I ± ((x + y)/2), (2.26) 

(IK(~ ID)'JdZ(K~ )(K~) + (K~ )(K~») 

,D ± I ± ((x + y)l2), 
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where we used the relation (Q ± (x) <J ± (x). Equations 
(2.25) and (2.26) yield (2.20). Equation (2.22) is obtainable 
from the diagonal part of (2.25), (2.26), and (2.15). The off
diagonal part of(2.18) yields the equation for K(; I)N: 

K(; I)N(X,y) +H ± (x,y) 

± J: dz K ~ (x, z)K (; I)N(Z, y) = 0, (2.27) 

H ± (x, y)= - K ~ (x, y) ± f dz K ~ (x, z)K (; I)D(Z, y), 

where by the estimates of K ~ and K (; I)D 

(H ± (x,y) + ~Q ± ((x + y)l2)<D ± I ± (x)! ± ((x + y)l2). 

Then by the iteration of(2.27) we have (2.21). Differentiating 
(2.18) by x, we have 

K(;;)(x,y) + K ±x(x,y) =FK ± (x, x)K(; 1)(X,y) 

(2.28) 

and the off-diagonal and diagonal parts of the equation lead 
to (2.23) and (2.24) for K (; ;), respectively. By the differenti
ation by y of (2.18), we have 

K(;))(x,y) + L ± (x,y) ± f dz K ± (x, z)K(;))(z,y) = 0, 

(2.29) 

L ± (x,y)-K ±y(x,y) ± K ± (x,y)K(; I)(y,y), 

and hence (2.24) for K(±-yl)D by the iteration 

(K(;))D(X,y)) < (K(;yl)(X,y)<D ± (x)r ± (x + y). 

Taking the off-diagonal part of(2.29), we derive the equation 
for K(;yl)N: 

KI;yl)N(X,y) +M ± (x,y) 

± f dz K ~ (x, z)K l;yl)N(Z, y) = 0, 

M ± (x,y) L~ (x,y) ± f dzK~ (x,z)K(;yl)D(Z,y), 

which yields (2.23) for KI;))N. 
Lemma 2.3: K ± 0 (x, y) and K (; d)(x, y) are continuously 

differentiable in the region xSY except at x + y = 0 and 

K ±o(x,y) = K(;OI)(X,y) = 0 for x + y~O or x~y, 

(K ±o(x,y), (K(;OI)(X,y)<D ± (x)r ±o(x + y) 

for x + ySO, xS y, 

where r +0 (r -0) andD+ (D_) are positive decreasing (in
creasing) and 

r ±o(S )-0, s----+ ± 00, 

7- ±0!S )= ± L± "" d1J r ±0(1J) < 00, SER. 

The kernel of U ± = 1+ K ± defined by (2.9) and 
(2.10) is determined from the relation U ± = U ± U ± 6 or 
K± =K± +KI;d)+K±KI;d)as 
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{

K ± (x, y) + K I; d)(x, y) 
y 

- I-I) K ± (x,y) = ± i dz K ± (x, z)K ±o (z,y), xSy, 

0, XEry. 

(2.30) 

Lemma 2.4: Let K ± (x, y) be given as in Lemmas 2.1 
and 2.2, then we have 

- _ {K ± (x, y), x + y~O 
K± (x,y)-

0, x~y 

and X ± is piecewise differentiable with respect to x (y) for 
eachy (x)EH. The properties of X ± and X(; I) are given by 
Lemmas 2.1 and 2.2 but replacing K ± by 
X ± in (2. 14H2. 16) andK(; I) by X(; I) in (2. 19H2.24), re
spectively. 

The proof is same as in Lemma 2.2. 

3. DERIVATION OF MARCHENKO EQUATION 

3.1. Parseval equation 

In this subsection, we prove the identity 

(J, g) = lim (J, .1p g), 
P"-"" 

(3.1) 

where/a I(H) andgEC~(H) are vector functions,pER, 
(J, g) = S~ "" dxlT(x)g(x) with complex conjugatelofJ, and 
.1p is the integral kernel to describe the expansion theorem. 
Hereafter, we call (3.1) the Parseval equation. 

The Green function G;.. (x, y) for the operator L is intro
duced in I as 

x<y x>y 

l CP_I(X)CP+2(y)A, l CP+2(X)CP_I(y)A (AER.), 
11 II 

- ; CP_I(X)CP+I(y)A, - ..J-CP+I(X)CP_I(y)A (AER 2), 
21 S21 

l CP_2(X)CP+2(y)A, i )A (AER 3 ), S CP+2(X)CP-2( y 
12 12 

- l CP_2(X)CP+I(Y~' - ..J-CP+I(X)CP_2(y)A (AER4 ), 

22 S22 

(3.2) 

where, as in I, for a vector v = (VI' v2f, ~ = (V2' VI)' An esti
mate in Lemma 3.1 is necessary for obtaining the expansion 
theorem. 

Lemma 3.1: Let Q± EQEnQSnCF'± (1)11 (u ± ,=0), 
g(x)EC~, and h (x)==£g with h '(x) = dh /dx. Then, we have 
an estimate for R3p----+00, 

(£ ~A J: "" dy G,dx,y)h (y)) 
p 

<K OIh III + IIh'II + IIgll",,), 
p 

where Cp is the circle with center at the origin and radiusp, 
K a constant depending on Q andg, IIglil = J/g,lli + IIg2/l1' 
and /lgli "" = sup(g(x) are L I(H) and L ""(R) norms, respec
tively. 

Proof We give the details of the proof only for AER I' 
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For AER I, the Jost solutions<p_I(x) and <P+2(X) are estimated 
in Lemma 1-2 as 

( 
iq+} 

<P+2(X) = A tA+ iA~x + ¢'+2(X), (3.5) 

1¢'+2(x)1 < C) el~:+lx C [I + (x) + J +(x)] 

XeIC/IA+III+lxl (v+#O), (3.6) 

where C is a real constant, v _ (v +) vanishing on the curve CI 
(C2), and 1+, J + (1_, J _) are positive, monotone decreasing 
(increasing) functions. From these estimates and the asymp
toticpropertyofSII,i.e.,Su--.1 as 1..1. 1-00 (Lemma 1-6), one 
has 

(;1 <p+2(x)f: '" dy <p_I(y)Ah (y)) 

.;;; 1:1 (11c5h III + Ilh Iltlp(x), 1..1. 1-00; (3.7) 

here IIc5h 1I1.;;;2S: (d (Lg(x))), supp gC [a, b 1,K a constant de
pending on supp g and Q and pix) is a function 
pix) = e- v +x + v _ b (b.;;;x), = e(V- -v+lx (a.;;;x<b), = 0 (x<a). 
A similar calculation yields 

where q(x) is defined as q(x) = 0 (b <x), = e1v
- - v+lx 

(a <x.;;;b), = ev
_

x
-

v
+

a (x.;;;a). Since Iv _ - v + 1-0 for 
1..1. 1-00, the sum of(3.7) and (3.8) gives 

(3.8) 

({"'oo dy GA(x,y)h (y)).;;; I~I (lIc5h III + IIh III) (3.9) 

for 1..1. 1-00 inR I • The right-hand side of(3.9) can be replaced 
by 

J 
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via the inequality 

IIc5h 1I1.;;;lIh 'III + (J +(a) + J _(b) + sup(Q »)lIgll 00' 

which completes the proof of Lemma 3.1 for AER I' The 
proof for A in other regions R i (i =1= 1) is similar except at the 
point of the asymptotic property of SI2 (S2tl for AER2 (R3): 
For Q ±EA E, IS 1211 (IS 21 11)-0(..1.) as 1..1. 1-00 by Lemma 
1-6 and 1-(3.3) and the integral with respect to AER2 (R3) 
vanishes as 0 ( lip) for p----+ 00. Summing the integrals in Ri we 
establish the Lemma. • 

The expansion theorem of the funciton g(X)EC 6 (H) for 
the potential Q ± (x)EQEnQS proved in 1 takes the form 

g(x) = lim fdY.:1p(X,y)g(y), (3.10) 
p---oo 

where 

.:1p (x, y) = .:1 ; (x, y) + .:1 : (x, y), (3.11) 

.:1~(X,y)=_I_{f dA _d-t: <P_I(X)<pA_I(y) 
21T Jc,p SIISZl 

_ f dA _ d-:; <P+l(X)<p A+ tty) 
Jc,P SZtS22 

_ f dA _ d-:; <P+2(X)<p A+2(Y) 
Jc]P Sl,S'2 

+ f dA _ d-t: <P-Z(X)<P~2(Y)}' (3.12) 
Jc4P SI2Sn 

.:1 :(x, y) 

= - iI..J- <P_t(x)<p A+ 2(y) + iI..J- <p-,(x)<p A+ tty) 
R, S;t R, S;t 

The integration contour C,p (l.;;;i.;;;4) is the part of Ci 

within the circle Cp in Lemma 3.1 and always directed from 
left to right. For the later use, we give another form of 
.:1 ~ (x, y), obtained by substituting the following relation 
(3.13) into (3.12): 

<P_l(X) = (lId+)(<P+l(X)SJI(A) + <P+2(X)S21(A)) 

<P+I(X) = (lId_)(<P_I(X)S22(A) - <p-2(x)SzM)) 

<P+2(X) = (lId_)( - <p-l(x)SdA ) + <p_2(x)SJI(A)) 

<P-2(X) = (lId+)(<P+I(X)S12(A) + <P+2(x)S2z(A)) 

In fact, we have 
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and also 

It is noted that (3.14) and (3.15) are expressed by ¢> +j and 
¢> _j (j = 1,2), respectively. 

Let us define the Fourier coefficients of the function 
j = (/I,hf Eeo(R) by the Jost solutions; 

f±j(A) = f~", dY{¢>±j,(y)ft(Y)+¢>±j,(y)j2(Y)]. 

(3.16) 

for AEO"c or AEO"p. Note that these coefficients are also defin
able forjEL I(R). 

Lemma 3.2: Let Q ± EQ EnQ sneF'± (I), Im(u2+ - u2_ ) 
#0, u ± #0. Then we have the Parseval equation 

(f, g) = lim (f, .::1pg) (3.17) 
{J--'" 

forjEL l,gEe~, where.::1p is defined by (3.11) with.::1 ~ given 
by (3.12). In (3.17) we may interchange the function spaces of 
jandg, i.e.,fEe~ and gEL I. 

Proof In terms of the Green function, the resolvent of 
L, we have obtained in I the identity 

(I/A. )8 (x - y) + G,dx,y) = (I/A )G,..(x,y)L (3.18) 

in the Hilbert space ( ® L 2(RW for Q ± EeF ± (0) and 
AEe - oiL). Multiplyingj· =ITEL I andgEe~ by (3.18) 
from the left and right sides, respectively, one has, after the 
integrations by AEep' YER, and xER, 

(f,g) = - ~fdXfdyl dAj*(X)G,dx,y)g(y) 
2m YCp 

+~fdXfdyl dA j*(x)G,dx,y)Lg(y). 
2m YCp A 

(3.19) 

The second term of the right-hand side of (3. 19) vanishes for 
p-,,"oo due to Lemma 3.1, while the substitutions of(3.1), 
(3.13), and (3. 16) into the first term followed by the modifica
tion of the integral contour to ejp (I..;; i<4) yield 
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Equation (3. 17) can easily be obtained from this expression 
by rewriting this in terms of.::1 ~ and.::1: defined by (3.1 I) and 
(3.12). • 

For later use, we write the Parseval equation in terms of 
.::1 ~ [(3.14) or (3.15)] instead of(3.12). 

Lemma 3.3: Let Q ± EQEnQ'neF'± (I), Im(u2+ - u2_) 
#0, u ± #0, gEe~, andjEL 1 with suppj bounded from be
low. Then we have the Parseval equation 

(f, g) = lim (f, .::1pg), (3.20) 
{J--'" 

where.::1p is defined by (3.1 I) and (3. 14). Ifsuppjis bounded 
from above, (3.20) still holds with.::1p given (3.11) and (3.15). 

Proof For proof of the first part, it may suffice to note 
that, for XESUPP jilsupp g, ¢> + I (x) and ¢> + 2(X) are bounded on 
e 1, e 4 , e 2 and e 1, e 4 , e 3, respectively, and that dA IA+ 
= dA. +1 A is also finite on these curves. Then, the integrals 
defining the right-hand side of (3.20) converge to give the 
same value as that of (3.17). The second part of the lemma is 
similarly proved. • 

3.2. Marchenko equation 

From the Parseval equations derived above, we obtain 
the Marchenko equation by means of the distributions. Let 
us define the convergencejm=?O (m-""oo) for a sequence 

N. Asano and Y. Kato 575 



                                                                                                                                    

{fm jECO' as 

(i) There exists a compact set D such that {supp fm j 
CD, 

(ii) sup If~)I-o (m~CX)) (p = 0,1, ... ), (3.21) 
XED 

where p denotes the p-times differentiation. Then a func
tional T (f)EC (fEC 0') is said to be distribution iffit is contin
uous, i.e., T(fm)-oasfm=$).12 

- 2 2 Lemma 3.4: Let Q ± ECF ± (l)nCF'± (0), u + :- u_ 
EC - R, and u ± #0. Then the Fourier coefficientsfm. ±j{A ) 
and/!. ±j(A ) offm eC 0' (m = 1,2, ... ) are analytic (resp. c~n
tinuous) inAERJ for which ¢ ±j(x,A ) is analytic (resp. contm
uous) and have the properties 

1m. ±j,f!. ±j = 0(1/1,.1.1), IAI~CX), (3.22) 

and 

I/'~ .1 If~ * .I.:.K Ilfm 1100 + Ilf;" 1100 -0, 
m. ±J ' m. ±J '"" 1 + 1,.1. I 

m~CX), 

(3.23) 

iffm=$) (m~CX)), where K is a constant depending on Q. 
Proof For definiteness, we consider the case Im(u2+ 

- u2
_ ) > 0 and give the proof for 1m. + 1 only. As defined 

by (3.16),fm + 1 is determined by rP+I (y, A, A+), which is 
analytic or ~ontinuous for A such that lmA.+ <0, i.e., 
AERzUR4 or AECIUC4 • If we present ¢+ I(X) in the form 

¢+I(X)=( i:+ t-iA+X+if!+I' (3.24) 

A+A+! 
if! + I is estimated, from Lemmas 1-1 and 1-2, as 

or 

I¢+II <G)ev+xIAC+I [J+(x) +J+{x)]e(clIA+JII+(X) (v+<O). 

(3.26) 

Since the domain of the integration (3.16) is finite, (3.25) 
gives the absolutely convergent upper bound to the integra
tion (3.16) and hence leads to the analyticity and continuity 
of 1m, + I according to those of ¢+ I' The substitution of(3.24) 
into (3.16) yields 

11m. + I I < If: 00 dX(A: ~+ fm,1 + fm,2 )r iA,X I 

+ If: 00 dX(¢+12fm.1 + if!+IJm.2)I 
<~(!lf;"lloo +llfmlloo) (IAI~CX)),(3.27) 

1,.1.+ I 

i.e., (3.22), where we have used the integration by parts and 
(3.26) to get the last estimate. It is clear that (3.16) is bounded 
by const X II fm 1100 for a finite IA + I in virtue of (3.25); hence, 
taking (3.27) into account, we have (3.23). • 

Now let us introduce a function F ± p (x, y), from which 
the integral kernel for the Marchenko equation is construct
ed. By A (f), we denote the difference of the functionf(A ) 
evaluated for the general potential Q (x) andf(A )(0) for the step 
potential Qo(x); A (I) = f(A ) - f(A )(0). 

F +p(x,y) = 2~ {LIP :~ [A (~::)¢(~ I (x)¢(~ I (y)A + A (~~:)¢ (~2(X)¢(~2(y)A J 

+ r dA [A (~12)¢(~ 1 (x)¢ (~I (y)A + A (~22)¢(~2(X)¢(~ 2{y)A ] 
Jc4P d + S22 12 

- ( dA d_A (-:--L)¢(~ I(X)¢(~ l(y)A - i dA d_A (+ )¢(~2(X)¢(~2(y)A} 
Jc2P S21S22 C3p SI2 II 

- iI-l_( !: )¢(~2(X)¢(~2(y)A + iI-l_( !: )¢(~ I(X)¢(~ l(y)A 
R, d+ S 11 R, d+ S 21 

- iI-l_(!~ )¢(~2(X)¢(~2(y)A + iI _1_(!~ )¢(~ I(X)¢(~ I (y)A, 
R, d+ S 12 R. d+ S 22 

(3.28) 

F _p(x,y) = _1_{ ( dA d+A (-:--L)¢(~ I (x)¢ (~I (y)A + ( dA d+A (5 ~ )¢ (~2(X)¢ (~2(y)A 
211" JclP SIIS21 Jc4P 12 22 

+ ( dA [A (~22)¢(~ I (x)¢(~ l(y)A + A (~21)¢ (~2(X)¢(~2(y)A] 
JC2p d_ S2J S22 

- ( dA [A (~12)¢ (~I (x)¢ (~I (y)A + A (~lt )¢ (~2(X)¢ (~2(y)A ]) Jc3P d_ SI1 SI2 

- iI d + (_1_,_)¢ (~ I (x)¢ (~ I (y)A + i}2 _1_(_~_,_)¢ (~ I (x)¢ (~ I (y)A 
R, YkS 11 R, d_ Yk S 21 

- iI _1_(_1_,_)¢ (~ 2 (x)¢ (~ 2 (y)A + i"'L d + (-+-)¢ (~ 2 (x)¢ (~2 (y)A, 
R, d_ YkS 12 R. Yk S 22 

(3.29) 
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where Yk is a constant defined at zeros of Sij' i.e., up by the 
relations 

cP_I(X) = YkcP+2(X), AkEUp CR, 

cP_I(X) = YkcP+I(X), AkEUp CR2, 

cP-2(X) = YkcP+2(X), AkEUp CR 3 , 

cP-2(X) = YkcP+I(X), AkEUp CR 4 • 

We have assumed the absence of the point spectrum of L (0). 

Lemma 3.5: Let Q ± EQEnQSnCF'± (1), Im(u2+ - u2
_ ) 

,=0, U ± ,=0. ThenF ± p(x,y) is continuous functionofx and 
y and bounded for x~xoER at each fixedy and also bounded 
for y~oER at each fixed x. Further, there exists 

F ± (x,y) = lim F ±P(x,y) (3.30) 
p--oo 

in the sense of the distribution on y at each x, satisfying 

J F ± (x,y)/(y)dy <K (x~xo)' (3.31) 

w here/EC a and K is a constant depending on xo' Yo, and! In 
(3.31) one may interchange the role of x andy. 

Proof We give the details of the proof only for F + (x, y). 
Since Q ± ECF ± (O)nCF'± (0), Lemmas 1-1 and 1-2 in I give 
the esti~ates of the type (3.24)-(3.26) for ~ (~j(x) (j = 1,2). 
Hence, cP (~I (x) is bounded and analytic for x;;,xo and 
AER 2uR4 and continuous at AECIUC2UC4 while ~ (~ 2 (y) has 
the corresponding properties for y;;'Yo and AER luR 3 and at 
AECIUC3UC4 , respectively. The domains of the integrations 
in (3.28) are finite and d+ a: (A +u+)1/2nearA= ±u+on 
C1p or C4p ; hence the integrations in (3.28) are convergent. 
The first half of the lemma can be obtained from these facts. 

The later half of the lemma will be proved by seeing; for 
'It/(x )EC a and,u > p~ 00 , 

J F +p(x,y)/(y)dy - J F +p(x,y)/(y)dy~. (3.32) 

Let us first consider the term f C
4 

(dA Id+J.J (S121 
- - - p 
SdcP (~ I (x)cP (~ I (y)A in (3.28). Noting the properties 
IS12I-0(l/IA I), IS221-1, dA Id+ -dA+ for A+~oo and 
I~ (~ I (x) I < 3 K for x;;,xo, IA I;;. 3 Po as deduced from (3.24) 
and (3.26) and applying (3.22) of Lemma 3.4, one has 

I 
{ dA .1 (~12)~ (~ I (xl! + I(A ) I 

Jc41' - C4p d + S22 

II' K 
.;;; dA+--2 ~ (p~oo) 

p IA+I 
as required. If we use the estimate of ~ (~ 2 (x) corresponding 
to (3.24) and (3.26), similar discussions also apply to the term 

f C,p(dA IA+l.1 (S2t1S,,)~ (~2(X)~(~ 2(Y~ in (3.28). Next, we 
estimate the terms due to the sum f c (dA I d + J.J (SIll 

'p 

c, 

FIG. 2. Integration contour for Eq. (3.34). 
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S2tl~ (~ I ~ (~ - f C2p dAd _.1 (l/S2ISd1 (~ I ~ (~ . ~s veri
fied from the Lemma 1-6, we may put Sll = T + 8S11 and 
S 221 = T + 8S 22 1, where T = 1 - (1T _(0) - 1T + (0))/2iA, 
while8S

" 
and8S 221 areoftheorderoflA 1-2. Then we have 

an identity 

{ dA .1 (~,,)~(~ ,J~(~/dY 
Jc,I' - C'p d+ S21 

- { dAd_.1 (~)~(~,J~(~tfdY 
Jc21' - c2p S21S22 

= 1 dA .1 (-!-)~ (~I 1+1 
C'I'-C'p-C21'+C2p d+ S21 

+ 1 dA A [ 1 (S- ] - (0) "'" -d La --- ,,- T) cP +tf+1 
C'I' - C'p + S21 

_ ( dA d_.1 [J-(J- - _T_)]~ (~I/+I' 
JC21'-C2P S21 S22 d+d_ 

(3.33) 

where 1+ I is given by (3.16) for cP+I = ~ (~I. The integrand 
in the first term ofthe right-hand side of (3.33) is analytic in 
R 2andcontinuousonC,p - Clp andC2p - C2p,andontwo 
segments Lp and Lp connecting these curves to form a closed 
contour. Thus the first term reduces to the integrations on 
Lp and Lp by the Cauchy theorem, from which we have (see 
Fig. 2) 

I 
( dA .1 (~)~(o) j I 

Jc,I' _ c'p _ C21' + c2pd+ S21 + I + I 

<Ilp:~ .1(£)~(~I/+11 + IIp:~ .1(£)~(~I/+II· 
(3.34) 

It is not difficult to see that the right-hand side of(3.34) tends 
tozeroforp~oo ifonenotes the length ofLp -0 (l/p), 1.1 (l/ 
S2tll-O(p), I/+II-O(l/p), I~ (~II <K for x;;,xo and 
I pl;;.po, as shown by Lemmas 1-6,3.4,1-1, and 1-2. 

The second and third terms of the right-hand side of 
(3.33) are also shown to tend to zero asp~oo if the inte
grands of these terms are 0 (l/IA 12). In fact, the estimates of 
each factor given above imply the required property of the 
integrands. Thus the left-hand side of(3.33) tends to zero as 
p~oo . 

We can repeat the similar method for the rest of the 

terms in (3.32), i.e., f c41';:- c~ (d~ I d +1:'1 (S22/S2tl~ (~ 2 1+2 
- fc)I'- c)pdA d_.1 (l/S12S11)cP (~2 /+2' which completes 

the proofs of(3.32) and hence Lemma 3.5 for F +(x,y). • 

We are now in the position to describe the Marchenko 
equation. In See. 2, we have studied the properties of the 
kernels for the similarity transformation K ± (x, y) and 
K \;;- I)(X, y). The Marchenko equation is the relation between 
K ± and F ± and will be used in Sees. 4 and 5 to determine 
K ± from F ± in the inverse problem. As shown in Sec. 2, the 
similarity transformations from if> (~ to f/J + and the con
verse are presented by the operators iJ + and V(; I), respec
tively. We rewrite (3.11) with.1 ~(x,y) given by (3.14) simply 
as.1p(x,y) = f/J+(x)!Jpf/J A+ (y), whereIJp is a formal opera
tor of the 2X2 matrix acting on both f/J +(x) and f/JA+ (y), 
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r d)' _1_ 
Jc4P + C'p d+' 

.( -~ ;;1 ' ~ ;:1 ) + I , 

-~~ ~~ 4.t- '~-
R, S;2 R. S~2 

where" means that the functions on the left- and right
hand sides of .. should be integrated or summed and <p A is 
the adjoint matrix of <P: 

<pA = (1)22 1>12). 
1>21 1>11 

We denote [)p as [)~) for the step potential Qo(x). 
Lemma 3. 6: For Q ± EQ EnQ snCF'± (1), Im(u2+ - u2

_ ) 

,t:O, and u ± ,t:O, F ± (x, y) is the function defined for almost 
all x, y and satisfies 

K ± (x,y) +F ± (x,y) 

± i + 00 dz K ± (x, z)F ± (z, y) = 0 (y~x). (3.36) 

F ± (x, y) is bounded, integrable with respect to yE[x, ± (0) 
for fixed x. 

Proof Let us consider F +(x, y) and the case Im(u2+ 
- u2

_ »0. Defining.::i~) by.::i~) = tP+(x)[)ptP(~ (y)A, we 
can see that forf, gEC~, the form (f,.::i ~O)g)=(f(x), 
tP+(x)ilp(P(~ (y)Ag(y)) has a finite value forp < 00. Note 
that this.::i (0) depends on y parametrically and yields two 

p - - -
expressions (f, .::i ~)g) = (f(x), U + <p (~ [)p tP (~ (y)Ag( y)) 
= (f(x), tP +(x)ilp(U:; ItP +)(y)AG (y)). Subtraction of these 
two expressions and a short calculation lead to 

0- (f, (P (0) [) (O)(P (O)Ag) + (f, K (P (0) [) (O)(P (O)Ag) -, +p + '++p + 
+ (f, (P(~ .::i[)p(P(~g) + (f, K+(P(~ .::i[)p(P(~g) 
- (f, tP +[)p tP A+ g) - (f, tP +[)p tP~ K(; I)Ag), 

(3.37) 

where .::i[)p = ilp - [) ~). In (3.37), let p-+oo and use Lem
mas 3.2, 3.3, and 3.5, then 

0= (f, g) + (K~ f, g) + (f, F +g) 
-. - (-I)A +(K + f,F+g)-(f,g)-(f,K + g), (3.38) 

where each term corresponds to that in (3.37) in this order 
and K ~ is the adjoint operator of K +. Since g(x) and 
(F +g)(x) are bounded for x>xo as shown in Lemma 3.5 and 
K+(5, 1/) is integrable with respect to 1/ by Lemma 2.2, we 
have from (3.38) and Lemma 3.5 

- - - (-I)A _ 
(K+ +F+ +K+F+ -K + )g-O 

for almost all x and 

K +(x, y) + F +(x, y) + i'" dz j( + (x, z)F +(z, y) 

_K(;I)A(y,X) =0. 

578 J. Math. Phys., Vol. 25, No.3, March 1984 

(3.39) 

r d)' _1_ 
JC4P +C,P d+ 

(3.35) 

I 
Hence, by Lemma 2.4, (3.36) holds in the sense of the distri-
bution ony for almost allx. As shown in Sec. 3.3 the expres
sion of F + in the Neumann series of j( + by means of (3.36) 
and (3.39) converges with the upper bound D ± (x)'T ± (x + y) 
X exp [D ± (x)-r ± (2x)] by Lemma 2.4 and it is also easy to 
see by (3.31) that this gives theuniqueF + satisfying (3.36) .• 

3.3. Properties of F ± (X, y) 

In this subsection we observe how the properties of Q (x) 
yield those of F ± (x, y) via the Marchenko equation (3.36). 

Lemma 3.7: For Q ± ECF ± (I)nCF'± (I), F ± (x,y) has 
the partial derivatives F ± x (x, y) and F ± Y (x, y) and the fol
lowing estimates in terms of Q ± : 

(F ± (x, y) <;D ± (z)'T ± (x + y), (3.40) 

(F~ (x,y)<;D± (z)I ± ((x + y)/2), (3.41) 

(F~ (x,y) - ~Q ± ((x + y)/2)<;D ± (z)I ± (z)I ± ((x + y)/2), 
- (3.42) 

(F~ A (x, y) <;D ± (Z)'T ± (x + y), 

(F~ A (x, y) - !Q'± ((x + y)/2) 

<;D ± (Z)'T ± (z)'T ± ((x + y)/2), 

where 

z={min}(X,y) 
max 

(3.43) 

(3.44) 

is defined corresponding to the double signs ± and D + (D _) 
denotes some positive decreasing (increasing) function. 

Proof From (2.14), (2.19), and (3.39) we have the rela-
tion 

F ± (x,y) ± i± 00 dz K ± (x, z)F ± (z,y) = N ± (x,y) 

{ 
- j( ± (x, y), y~x, 

= j( (; I)A( y, xl, ys;x, 
(3.45) 

in the sense of the distribution on y for each x. Hereafter we 
discuss F + as an example and omit the suffix + for brevity. 
First consider the case y-,x. As in (2.25) and (2.26) we have 
by the formal iteration of (3.45) in the operator form and by 
Lemma 2.4: 

F=N -KN +KKF=N -KN - i: (_I)nj(nKN, 
n=1 

(3.46) 

N. Asano and Y. Kato 578 



                                                                                                                                    

IF-N +KNI(x,y)<L'" dz n~1 IKnl(x, z)IKN I(z,y) 

<D (x)1-(2x)exp [D(x)1-(2x)] 

(1 1) -
XII ~~~ (KN(z,y), 

(IKN IN) <D (x)I (x)I ((X + y)l2), 

(IKN ID) <D (x)I ((X + y)/2) 

which, again by Lemma 2.4, yield (3.40) and (3.41) and thus 
we see thatFis defined for x,yER as described in Lemma 3.6. 
The off-diagonal part of (3.45) gives the equation for FN as 

FN+ L"" dzKDFN=M==NN- L"" dzK NF D.(3.47) 

Since by Lemma 2.4 and (3.41) we have 

(M(x,y) + !Q((x + y)/2) <DI(x)I((x + y)/2), 

the iteration of (3.47) leads to (3.42). Differentiating (3.45) 
with respect to X or y we have the relations 

Fx(x,y)-K(x,x)F(x,y)+ L"" dzKx(x,z)F(z,y) 

= Nx(x,y), 

Fy(x,y) + LX> dzK(x,z)Fy(z,y) = Ny(x,y). 

The estimates of F~, F~ (A = x, y) are obtained from the 
relations using the estimates of K and K (- 1) in Lemma 2.4 
and of F given by (3.40)-(3.42). The analysis is quite similar 
to that given for the derivation of (2.23) and (2.24) for K \t I) 
from (2.28) and (2.29) in Lemma 2.2 and we omit the details. 
We proved the estimates of F ± (2.40)-(2.44) for y~x (z = x). 
The estimates for y~x (z = y) are given from the definition of 
F ± by (3.28)-(3.30). • 

4. SOLUTION OF THE MARCHENKO EQUATION 

4.1. Marchenko equation 

The Marchenko equation (3.36) is analyzed in the func
tion space L aIR ±oX )= 1 ® L aIR ± ,x W (a = 1,2), which is 
defined in the sense that t/J==. 1 t/J ij J EL aIR ± .x ) with its norm 
Iit/Jila -I l:L= I Iit/Jij II~ J l/a. L I + 2(Rx • ± ) is the set off unctions 
t/J such that t/J = t/JI + t/J2' t/JaEL a(R±.x) (a = 1,2). We also 
define L In2 (R ±.x )=L I(R ± ,x)nL 2(R ±.x)' A linear operator 
IF'x± in L aIR ± ,x ) with a parameter XER is defined in terms of 
the integral kernel F ± (5, 7]) of the Marchenko equation 
(3.36) as 

t/J = ¢IF'x± 

or 

t,b(y) = ± L± "" dz¢ (x)F ± (z,y) 

for ¢EL aIR ±.x) (a = 1,2), where IF'x± is put on the right of ¢, 
since ¢F ± is the product of matrices ¢ and F ± . 

The following conditions are introduced for the kernel 
ofF"± . 
[ C ± ] There exist positive decreasing (increasing) functions 
h+ and c+ (h_ and c_) such that 
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(F ± (5, 7]) <c ± (;)h ± (5 + 7]), ;= {min}(5' 7]), 
max 

(4.1) 

h ± (x)==. ± L± "" dth ± (t) < 00, zER. (4.2) 

[ S ± ] F ± (5, 7]) is piecewise differentiable with respect to 5 
and 7], and there exist positive functionsf(~ (t), t~ (t), 
f'± (s, t), 8'± (s, t), h ~ (t), and t: (t) such that 

(F~ (5, 7]) q(~ (5 + 7]) + f'± (2;,5+ 7]), 

(F~A(5' 7])<t~ (5 + 7]) +8'± (2;,5+ 7]), 

; = {min } (5, 7]), 
max 

(F~ (5, 7]) <h ~ (5 + 7]), 

(4.3) 

where f' ± (s, t ), 8' ± (s, t ) defined in 1 s, t; sSt J are monotone 
with respect to sand t and 

f(~ , t~ ECF ± (1), h ~, h ~ ECF ± (0), 

i± "" ds l± "" dtf'± (s, t), 

i±"" ds l±"" dt8'±(s,t)<oo, aER. (4.4) 

For p(~ ,pr± (p = j, g) introduced in the condition S ± ' 
the functions 

p(~ (s)= ± i ± "" du p(~ (u), 

p(~ (s, t)==. ± f du pr± (u, t), (p = j, g) (4.5) 

p(~ (s)= ± i ± "" dv pr± (s, v), 

exist with 

p(~ (x), p(~ (a, x), p(~ (x)ECF ± (0) (for each aER), 

pr± (x, x)ECF ± (1), 

and the following lemma is obtainable. 

Lemma 4. 1.: Under conditionS ± ,condition C ± issat
isfied with 

h±(t)==. L Ih'(t)+h~(t)JECF±(O), loSt, 
p=/,g 

where h 'ECF ± (0) is given by (4.3) and (4.4) and h ~ 
ECF ± (0) is defined as 

h ~ (t ) = p(~ (t) + ~ p(~ (20, t) + p(~ (t) 

(4.6) 

(p =j,g), loSt· (4.7) 

Further, we have the following relations: 

(F~ (5,7]) <h ~ (5 + 7]), 7]~5~a, (4.8) 

(4.9) 
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r± '" ± J dy (F~ (x,y)<h'¥(lx), 

± i± '" dy (F~A(X,y)<h ~(lx), 
x~a. 

Note that h ~ , h 7: (p = f, g) exist for each aeRo 
Proof By (4.3) we have (4.8) for F~ : 

(F~ (S,77) 

<L'" ds(F~s(s, 77) (a<S<77) 

<g(~ (S + 77) + f' ds g'+ (2s, s + 77) 

+ {'" ds g'+ (277, s + 77) 

<~~ (S + 77) + IX> ds g'+ (2s, S + 77) 

+ L'" dsg'+ (s + 77, s + 77) 

<g~ (s + 77) + ~t~ (2s, S + 77) 

+ t~ (s + 77)<h ~ (s + 77)· 

(4.10) 

All the other relations are obtainable in an analogous way .• 
Lemma 4.2: Let F ± satisfy C ± . Then P± is completely 

continuous in L aIR ± .x) for a = 1 and 2 and 

IIFx± 1I1<2h ± (lx) 
2 A -0, x_± 00. (4.11) 

IIFx± Ib <4h ± (lx)h ± (lx) 

There is x(~) eR such that the inverse (I + P± ) - I in L aIR ± .x ) 

exists for x~x(';' (a = 1, 2). Further 

F± (y)=F ± (x, y) eL lra (R ±.x). (4.12) 

Proof We consider the case ofP_ . Put ¢ = tfJP- and 
let tfJeL I(K -.x)' then 

IltfJP_III<2~ f:", dy f:oo dzltfJij(y)lh_(y+z) 

= 22: f 00 dy f:~Y dzltfJij(y)lh_(z) 

= 211tfJ IIlh_(lx), 

i.e., IIP_III<2h_(lx). Since by (4.1)F -Is, 77) is dominated by 
means of the folding kernel h_(S + 77) (S, 77 <x) which is 
integrable with respect to 77eK_.x by (4.2), the compactness 
ofP_ inL I(R -.x) follows in a standard way and we omit the 
details. Further, 

4ffdydZlF _ij(y,zW 
I,) 

<4f: 00 f: 00 dydz h 2_ (y +z)<4h 2_ (lx) < 00. 

Hence P_ is an operator of the Hilbert-Schmidt type in 
L 2(R _ ,x). The existence of x(~) (a = 1, 2) is evident from the 
asymptotic properties (4.11). Equation (4.12) follows from 
(4.1) and (4.2). • 

We express the Marchenko equation (3.36) in the form 

(4.13) 

or 
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tfJ (y) + f~ (y) ± 1 ± 00 dz tfJ (z)F ± (z, y) = 0, y~x, 
(4.14) 

and find the solution tfJeL aIR ± ,x) for a = 1 or 2. 

4.2. Uniqueness and the estimate of the solution 

Lemma 4.3: Let F ± satisfy condition C ± ' then the 
Marchenko equation (4,13) has at least a solution 
tfJeL aIR ± ,x) for a = 1 and 2. The solution tfJ is unique in 
L I + 2(R±,x)' if and only if the homogeneous equation 

¢+¢F'± =0 (4.15) 

in L 2(R ± .x ) has only the zero solution ¢ = O. We note 
tfJeL lnl (R ± ,x). 

Proof By Lemma 4.2, (4.13) has at least a solutiontfJa in 
L aIR ± .x ) for each a. Note that, by (4.1), 

«(tfJIP ± )(y) = (i± '" dztfJI(z)F ± (Z,y)) 

<sup (F ± (z,y)lltfJIIII<h ± (x + yllltfJllll' 
z~x 

IItfJIF""± IIi < ± 4 i ± 00 dy«(tfJIF x± )( y)2 

<4h ± (lx)h ± (lxllltfJllli, 

i.e., tfJI P± eL 2(R ± .x). Hence, if (4.15) in L 2(R ± ,x ) has only 
the zero solution ¢ = 0, then (4.15) in L I(R ±.x) has only the 
zero solution and tfJa is the unique solution in L aIR ±.x) 
(a = 1,2). SincetfJleL 2(R±.x) bytfJIP± ,F± eL 2(R±.x), and 
(4.13), we see tfJleLlnl(R±.x) and thus is the unique solution 
of (4.13) in LI +2(R ±.x). • 

We define the open interval I ± such that, for xeJ ± ' 
(4.15) in L 2(R ±.x) has only the zero solution. Let I (~ be the 
largest of (x(~, ± 00), then 

I(~ CI ± . (4.16) 

The formal differentiation of (3.36) with respect to y or x 
leads to the following relations: 

K ±y(x,y) + F ±y(x,y) 

± i± '" dz K ± (x, z)F ±y(z,y) = 0, y~x, (4.17) 

K±x(x,y)+G± (x,y) 

± i±'" dzK±x(x,z)F±(z,y)=O, y~x, (4.18) 

G ± (x,y) F ±x(x,y) +K ± (x, x)F ± (x,y). 
Lemma 4.4: Under condition C ± ' (4.17) and (4.18) hold 

for xeJ ± and 

K ± (x,y), K ±x(x,y), K ±Y(x,y)eLlra(R±.x) for xel ± 
(4.19) 

as functions of y. 
Proof The existence of K ± A for almost all (x, y) is 

shown by approximating F ± by the infinite set {F (~ 
eC "'(R2); n = 1,2, ... J and it can also be shown that 
K ± A satisfies (4.17) and (4.18). The analysis is similar to the 
one given by Agranovich and Marchenko13 and Kato8 and 
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we omit it. Equation (4.19) follows easily from C ± and (4.17) 
and (4.18) for xEl ± . • 

Lemma 4.5: Under condition S ± ' the following esti
mates hold for the solution of (4.13), ¢J = K ± (x, y): 

- ~ (K ± (x, x) + F ± (x, x) <D ± (x)h ± (2x), xEl ± ' 

(4.20) 

(K~ (x, x) + F~ (x, x)<D ± (x)h ± (2xllh 1(2x) 

+ h ± (2x)h 1 (2x)), xEl(~, 
(4.21) 

(K ±A(X, x) + F ±A(X, x)<D ± (x)h ± (2x), 

- N N) (K ± A (x, x) + F ± A (x, x) 

<D ± (x) [ h ± (2x1l h ~ (2x) + h 1 (2xll 

+ h 2± (2x) I h ~ (2x) + h 1 (2x) I ] , 

where, by (4.3), (4.6), and (4.8) 

(F ± (x, x) <h ± (2x), 

FN {f(~ (2x) + f'± (2x, 2x), 
( ± (x,x) < h ~ (2x), 

(F~A(X, x)<h ~(2x), 

(F~A(X,X)<to~ (2x) +g'± (2x, 2x), 

xEl(~ , 
(4.22) 

xEl(~ , (4.23) 

(4.24) 

(4.25) 

and D +(x) [D_(x)] is some positive decreasing [increasing] 
function. 

Proof From (4.13) we have 

K ± = - F± (I + F~ )-IEL1n2 , xEl ± 

and by (4.1) 

11K ± 1I1<IIF± 11111(1 + r± )-IIII<D ± (x)h ± (2x), xEl(~. 
From (4.1) and (4.13) we obtain 

(K ± (x,y) + F ± (x,y) < 11K ± IIlsup (F ± (z,y) 
z~x 

<D ± h ± (2x)h ± (x + y) 

and hence (4.20). The off-diagonal part of (4.13) gives the 
equation for K -: ' 

KN +FN +i±oo dzKD FN +i±oo dzK N FD =0 
± ±- ± ±- ± ± 

x x 

(4.26) 

with the kernel ofr;>, F~ (5,1/), and the inhomogeneous 
term F~ ± Sdz K ~ F~ . Solving (4.26), we have the 
unique solution 

K~ = - (F~ ± J dz K~ F~ )II + P:i:D)-I, xEl ± 

(4.27) 

giving by (4.9) and (4.10) 
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± i± 00 dy (K~ (x,y) 

<11(1 + r:i:D)-1111 

X [ ± i± "" dy(F~ (x,y) 

+ ~~r (K ~ (x, z) i ± 00 i ± 00 dy dz(F~ (z, y) ] 

<D ± [h 1 (2x) + h ± (2x)h 1 (2x)] . (4.28) 

Hence from (4.26), (4.9), (4.20), and (4.28), one has 

(K~ (x,y) + F~ (x,y) 

-D N -N D (i ±oo ) < x dz(K ± F ± + K ± F ± ) 

< ± sup (K ~ (x, z) dz(F~ (z, y) i
± 00 

z~x x 

± ~~r (F~ (z,y) i± "" dz(K~ (x, z) 

<D ± [h ± (2x)h 1 (x + y) + h ± (x + y) 

X (h 1 (2x) + h ± (2x)h 1 (2xl)] , (4.29) 

giving (4.21) for x = y. After an analogous calculation using 
(4.20), (4.21), (4.24), (4.25), and (4.29) we obtain (4.22) and 
(4.23) from (4.17) and (4.18). We omit the details here. • 

5. INVERSE PROBLEM 

5.1. Theorems of the inverse problem 

Weare considering the perturbation of the ZS operator 
under the restriction 

.:1Q =Q (x) - Qo(x)-o, x-+ ± 00. (5.1) 

In the inverse problem we determine L from a given L (0) 

[(2.7)] and given scattering data S = 18ij)' The point spec
trum of L (0) is examined in the Appendix for simple exam
ples. Since it is determined from the zeroes of the algebraic 
equation of A, its dimension is finite. The continuous spec
trum of L is identical to that of L (0). A typical configuration 
of the continuous spectrum is given for Re u2

_ > Re u2+ > 0, 
1m u2

+ > 1m u2
_ > 0 from the group Cs (u 2+ - u2

_ eC - R) 
and Re u2

_ > Re u2+ > 0 (1m u2+ = 1m u 2
_ ) from the group 

Cd (U
2+ - u2_ eR) and we discuss the details only for these 

cases. Most of the other cases can be treated similarly except 
the cases u + = 0 or u _ = 0, where the separate study is 
needed. The continuous spectrum for the case Cs is illustrat
ed in Fig. l. The straight lines Fj (1 < j<4) constitute the cut 
on the complex A planeandA+ (,1_) changes its sign when A 
crosses FI and F4 (F2 and F 3 ) from the upper side, FI + and 
r4 + (F2 + and r 3 +), to the lower side, r l_ and F 4 _ (r2-
and F3_)' 

The main results of the inverse problem are summar
ized in Theorems 5.1 and 5.2 under the following conditions 
I and II on the scattering data. 
l. (i) 8ij(A) is regular in the following respective region R/; 

811 AeR 1, 821 AeR2 , 812 AeR 3 , 822 AeR4 , 

and has a set of finite number of simple zeros, 
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O"I-[Ak; 1 <.k<.NI JERI (1<.1<.4), 

5'11 = 0 for AkEO"I' 5'12 = 0 for Ak E0"3' 

S;I = 0 for Ak E0"2' 5'22 = 0 for Ak E0"4' 

(ii) 5'ij(A ) is continuous on the boundary of the region of 
analyticity given above and has no zero point on the bound
ary. Moreover it satisfies the following relation on rj: 

(5.2) 

ir + S- r ( 1 ~ T' ) 
A + ,1+ 12 on 4 /L + t::l 4 - • 

(iii) 5'ij(A ) has the following asymptotic form: 

5'11 = 1 +A 1,1 + 0(,1 -2), 

5'21 = 0(,1 -I), 

5'12 = 0(,1 -I), 

5'22 = 1 - AlA + 0 (A - 2), 

,1-00, AERI + C I , 

,1-00, AER z + CI + C2, 

,1-00, AER3 + C3 + C4, 

,1-00, AER4 + C4, 
(5.3) 

whereA is some complex number. Note that the asymptotic 
forms of 5'21 and 5'12 are redundant in the case Cd' 
II. (i) ± F ± satisfies conditions S ± . 

(ii) I +uI _ = R, i.e., at least one of the inverses 
(I + F'± ) - I exists in L 2(F ± ,x) for each XER. 

We solve the inverse problem in two steps. 13,14 

First, by solving the Marchenko equation for K + 

[(3.36 +)] we obtain the potential Q(+)(x) = Q+(x) + Q+, 
Q+(x) = - 2K ~ (x, x), and the Jost solution (/> + 

= (I + K +)41 (~ for xE! +. This process constitutes the right 
inverse problem. Similarly the left inverse problem is to de
termine Q(-)(x) = Q_(x) + Q_, CL(x) = 2K~ (x, x), and 
(/> _ = (I + K _)41 (~ by solving the Marchenko equation 
(3.36 - ) for xE!_. In the second step we establish the condi
tions for S such that Q (+ )(x) = Q (- )(x) = Q (x) holds and Q 
reproduces the given S. The results for the first and second 
steps of the inverse problem have their own role and are 
given as Theorems 5.1 and 5.2, respectively. 

Theorem 5.1: Let S(A) satisfy condition I with u ± #0 
and F ± given by (3.30) satisfy condition II-(i) ± . Then the 
potential 

Q (± )(x)= + 2K ~ (x, x) + Qo(x), xE! ± 

is determined uniquely by the Marchenko equation (3.36 ± ) 
with the property 

± i± 00 dx (1 + lyl)IQ(±I(y) - Qo(y)1 < 00, 

xE!(~ , 

(5.4) 
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and the expansion theorem (3.10) of/(x)EC ~ (supplE! ± ) 

holds in terms of the Jost solution (/> + = (I + K ± )41 (~ for 
Q ( ± I(x), xE! ± . ~ 

Proof Under the assumptions for S, the unique K ± 

exists by Lemma 4.3 and (4.13) for xE! + and has the proper
ties given in Lemma 4.4 for xE! ± and Lemma 4. 5 for xE! (~ . 
From (4.17)-(4.19) we obtain (5.4). Put 

i
± 00 

- -(01 ± x dy K ± (x, y)(/> ± (y, A, A ± ), 

(5.5) 

then we see easily that all the properties of F ± p' F ± ' and 
K ± required for Lemma 3.6 hold and hence, by the reverse 
of the reduction in the proof of Lemma 3.6, the Marchenko 
equation (3.36 ± ) yields the expansion theorem (3.17) for I 
under the restriction supplE! ± . Next, we show that (/> + is 
the Jost solution for the potential Q (+) for xE! +. By Lemma 
4.4 and (3.28H3.30) we easily derive the relations 

(alax+alay)F~ (x,y) 

= Qo(x)F~ (x,y) +F~ (x,y)Qo(Y), 

(alax - alay)F~ (x,y) 

= Qo(x)F~ (x, y) - F~ (x, y)Qo( y). 

We decompose the Marchenko equation 

into diagonal and off-diagonal parts: 

-D 
K+ +F~ + J: ds(K~ F~ +K~F~ )=0, 

KN 
+ +F~ + i oc 

dz (K~ F~ +K~F~ )=0, 

(5.6) 

y>x. 

(5.7) 

Differentiating (5.7) with respect to x or y, using (5.6) to 
eliminate F~ y' F~y in the integrands, and integrating by 
parts with respect to z, we obtain 

with 

H(x,y) + i oo 

dzH(x,z)F+(z,y) =0, y>x (5.8) 

H=HD+HN, 

HD(X,y) = K~x + K~y - Q(+)(x)K~ (x,y) 

- K ~ (x, y)Qo( y), 

HN(X,y) = K~x - K~y - Q(+)(x)K~ (x,y) 

+ K ~ (x, y)Qo( y). 

Since H D, H NEL In2 by Lemma 4.4, and ¢ = JFx+ ¢ has only 
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a zero solution in Lln2 for xEl +, we have H = 0 from (5.8), 
i.e., 
- D - D 
K+x+K+y 

= Q(+I(xJK: (x,y) +K: (x,y)Qo(Y), 
- N - N y>xEl+. 
K+x-K+y 

= Q(+)(x)K~ (x,y) -K~ (x,y)Qo(Y), 

Then, a simple calculation shows that (/> + [(5.5)] is the Jost 
solution for the potential Q (+). The proof is similar for (/> _ 

and QI-I. • 
Theorem 5.2: Consider the case Cs (u 2+ - u2

_ iR) with 
u ± #0. IfQEQEnQS and both Q± ECF'± (1), then the ma
trix S satisfies conditions I and II-(i) + and II-(i)_. Converse
ly, if S satisfies conditions I and II, then Q is determined 
uniquely for XER and S is the scattering data with QEQ EnQ S , 

and Q ± ECF'± (1). 
Consider the case Cd (u2+ - u2

_ ER) with u ± #0. If 
QEQ S and both Q ± ECF '± (1), then S satisfies conditions I 
and II-(i)+ and II-(i)_. Conversely, if S satisfies the condi
tions I and II, then Q is determined uniquely for XER and S is 
the scattering data with QEQs, Q ± ECF'± (1). 

The proof of the Theorem 5.2 will be given in the last 
subsection. 

5.2. Connection of the left and right inverse problems 

We introduce a sufficient condition (iHiii) ± for the 
function tP ±j(x, A, A ± ) (j = 1,2) to be, similar to the Jost 
solution tP ±j(x, A, A oJ (j = 1, 2), expressible in terms of 
some integral kernel K ± and the free Jost solution 
~ (0) • tP ±j(x,A, A ± ) (j = 1,2). 

(i)+ tP+ I (tP+2) is analytic in R2uR4 (R luR 3 ) corresponding to 1m ,1+ < 0 (> 0) and is continuous on the boundary 
CIUC4uFluF4 • 

(ii)+ tP+2 = - iq+/(A + A+)tP+I on F luF4(ReA+ = 0, ImA+>O), (5.9) 

(iii)+ I tP+I(X, A, ,1+) - tP (~I (x, A, A+lle
iA

+
X

} _ in RpR4 
(01 -iA+X - 0(1/,1+) . R R 1,1+1-+00. 

{tP+2(x,A,A+)-tP +2(x,A,A+)}e 10 IU 3 
(5.10) 

(i)_ tP-I (tP-2) is analytic in R luR 2 (RpR4) corresponding to ImA_ > 0 «0) and is continuous on the boundary 
C2UC3uF2uF3 · 

(ii)_ tP_2=iq_/(A+A_)tP-I onF2uF3(ReA_=0,lmA_>0), (5.11) 

(iii) I tP_I(X, A, ,1_) - tP (Oil (x, A, A_))e- iLX
} in R l uR2 

- - . = 0(1/,1_) . 1,1_1-+00. 
{tP_2(x,A,A_) - tP 1~2(X, A,A_)}e'A -

X 10 RpR4 
(5.12) 

Lemma 5.1: Put u ± =I 0 and consider both cases Cs and 
Cd' Let a matrix function '/I ± (x, A, A ± ) = (tP ± )7 tP ± 2)' sa
tisfying conditions (i)-(iii) + for XER. Then there exists the 
unique integral kernel K ± -(x, y) such that 

'/I ± (x, A, A ± ) = (/> (~ (x, A, A ± ) 

± i ± 00 dy K ± (x, y)(/> (~ (y, A, A ± ), 

K ± (x, y) = 0, y:Sx, 

r± 00 

± Jx dy (K ± (X,y)2 < 00. 

A± ER, (5.13) 

(5.14) 

(5.15) 

The expression (5.13) for tP ± I and", ± 2 is valid also for 
1m A ± :sO and 1m A ± ~O, respectively. 

Proof We introduce the formal representation of '/I + II 
and '/1+ 12 as 

'/I +II(X) - (/>(~ 11 (x) = fdY [K+II + ir + K+12] 
(,1+,1+) 

(5.16) 

'/I +dx)- (/>(~ 12(X) = fdY [ - iq+ K+II + K+12) 
(,1+,1+) 

Xe iA
+

Y, ImA+>O. 

Replacing A by - A and A + by - A + in the first equation 

583 J. Math. Phys., Vol. 25, No.3, March 1984 

r 
and using the identity 1 + q +r +/(,1 + ,1+)2 = U 1 
(A + A +), we have 

f dy K+ Il eiA
+

y 

= (A + A+)/(U ){('/I +11 - (/>I~ II )(x, - A, - ,1+) 

+ ir +/(,1 + ,1+)('/1+ 12 - (/> I~ d(x, A, ,1+) J, 
AERluR J (ImA+>O). (5.17) 

By (i)+ the right-hand side is analytic in R luR 3• By (ii)+ we 
have on F luF4 

('/1+ 11 - (/>I~ 11 )(x, - A, - ,1+) 

=(-,1 +A+)I(-iq+)('/I+12-(/>(~12)(X, -,1,,1+) 

= -ir+/(A+A+)('/I+12-(/>(~12)(x, -,1,,1+). 

Hence we have 

f dy K+lle
iA

+
y 

=ir+/(U){ -('/I+12-(/>(~12)(X, -,1,,1+) 

+ ('/1+ 12 - (/>(~ 12)(X, A, A+)} 

onFluF4 ImA+>O. (5.18) 

Since the right-hand side of(5.18) is invariant under the re
placement of A by - A on F luF4 , the right-hand side of 
(5.17) is an analytic function of A + for 1m ,1+ > 0 except the 
isolated point ,1+ = ( - u2+ ) I /2, 1m ,1+ > 0 (i.e., A = 0). But 

N. Asano and Y. Kato 583 



                                                                                                                                    

the quantity in! J of (5.17) vanishes at A = 0, which cancels 
the singularity A - \ and the right-hand side of (5.17) is ana
lytic for 1m ..1,+ > O. By (iii)+, (5.17) is square integrable along 
any line with 1m ..1,+ >0 parallel to the real axis. Hence, by 
the Paley-Wiener theorem, 15 the formal representation 
(5.17) yields the lemma for K + II' The proof is similar for the 
other components of K ± . • 

Lemma 5.2: Under the same conditions as in the pre
ceding lemma we have the unique integral kernel K ± (x, y) 
such that 

'/I ± (x, A, A ± ) = (J> I~ (x, A, A ± ) 

f ± 00 - - (0) ± x dy K ± (x, y)cI> ± (y, A, A ± ), 

A±ElR (5.19) 

K ± (x,y) = 0, y:Sx (5.20) 

(5.21) l
± 00 

± x dY(K ± (X,y)2 < 00. 

Expression (5.19) for tP ± I and tP ± 2 is also valid for 1m A ± 

:SO and 1m A ± ~O, respectively. 
Proof Into (5.13) we insert the expression of cI> I~ , 

which is derived by inverting (2.13), to get (5.19) and, by 
means of the estimate of KI;OII and (5.14) and (5.15), we ob
tain (5.20) and (5.21). • 

We now formulate the alternative method for the left 
and right inverse problems, where the Jost solution is deter
mined directly from the matrix S using the theorems of ana
lytic functions, whereas in Theorem 5.1 the potential and the 
Jost solution were determined in terms of the solution of the 
Marchenko equation (3.36). For this purpose we introduce a 
set of functions !tP±j(x,A,A±), ¢±j(x,A,A± );j= 1, 2J. 
The following conditions (ivHvi) ± ' together with condi
tions (iHiii) ± imposed on tP ±j' determine the unique set 
! tP ±j' tP ± ;j = 1, 2J. Then the Jost solution ¢ ±j correspond
ing to S of the preceding subsection will be given by tP ±j 
(j = 1,2). 

(iv)+ ¢+d¢+2)isanalyticinR;R; (R;R~),where 
R ;=Rj - uj ' with boundary values 

(5.22) 

The singularity of ¢ + j consists of simple poles having resi
dues 

(5.23) 

with arbitrary Yk (#0) EC and the discontinuity across C2 

and C3 from the lower to the upper side, 

584 

D¢+I = - d_I(SIIS I2)tP+2 on C3 

D¢+2 = - dj(S2IS22)tP+1 on C2 
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(5.25) 

1..1,+1_00 
inR3' 

(5.26) 
(iv)_ ¢_d¢_2)isanalyticinR3uR~ (R;uR;)with 

boundary values 

¢_I = {( - tP-l + ~2/~22tP-2)1d- on C2, 

(- tP-l + SII/S12tP_2)1d_ on C3, 

¢ 2 = {( - ~22/~21tP-I + tP-z)ld-
- (-SI2/SlItP-l + tP_2)1d-

(5.27) 

The singularity of ¢ _ j consists of simple poles with residues 

Res ¢-2 = Yk- ItP_I/Sil' 
A"ECI 1 

and the discontinuity across C1 and C4 , 

D¢_I = d+/(S12SnltP_2 on C4 (..1,+ <0), 

8¢_2 = d+/(SIISZI)tP_I on C I (..1,+ >0), 

(v)_ ¢-2 = - iq_/(A +A_)¢_I onrZur3 

(ReA_ = 0, ImA_>O), 

(vi) (./, _-1.10) )eo,-x= {O(lIA_), 1..1,_1-00 
- 'f' - 2 'f' - I ° (1 j, 

(:t, _ .1.(0) )e-i-Lx = {O(lIA_), 1..1,_1-00 
'f'-2 'f' -2 0(1), 

(5.28) 

(5.29) 

(5.30) 

inRI 
inRz' 

inR4 

inR3' 
(5.31) 

Lemma 5.3: Let S satisfy conditions I and II-(i) + with 
u+ #0. The set of functions ! tP +j' ¢ +j;j = 1, 2J sa~sfying 
conditions (i)-(vi)+ is determined uniquely for xEl +. K + giv
en by Lemma 5.2 is the unique solution of the Marchenko 
equation (3.36 + ) and tP + j (j = 1, 2) is the Jost solution of 
the potential Q (+) = - 2K ~ (x, -:) + Q +. The a~alogous 
statement holds for the set! tP _j' tP _j;j = 1,2 J, K _, and 
Q(-) = 2K~ (x,x) + Q_ forxEl_. 

Proof Assume the existence of a set offunctions ! tP + j' 
if; + j;j = 1, 2 J satisfying conditions (i)-(vi)+ except posgibly 
the boundary condition of(5.22). We use the set! ¢ I~j' ¢ (~j; 
j = 1,2 J, where ¢ (~j is the Jost solution for the step poten
tial Qo and 

{

..I. 101 IS 10) . R 
"" (0) _ 'f' - I II In 1 

¢ + 1 - ..I. (0) IS- (0) • R' 
'f' - 2 12 10 3 

Evidently the set !¢ I~j' ~I~j J satisfies conditions (iHvi)+ 
with S (0) in place of S. Construct a function 
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with 

Res E = rk~tP+2;P (~/S;I' 
A.kEU. 

Then under conditions (i)-(vi)+, Eis analyticinR ; uR ;uR i 
uR ~ with the singularity consisting of simple poles with resi
dues 

(5.32) 

and the discontinuity across Cj from the lower to the upper side, 

• - - - (01 
where, for Instance, ~ (tP+1 + S21/S11tP+2) = tP+1 - ¢ + 1 

S- IS- ./, S- (OI/S- (01 A. (01 N t th t :::. I + 2111'1"+2- 21 11'1"+2· oe a_lsreguaron 
F 1uF4 by (v)+. In the Cauchy theorem with a contour C not 
containing the singularity of E, 

£ dAE(x,y,A)=O, y>x, (5.34) 

we decompose C = Cp + Kp into Cp and Kp [the path ex
cluding the singularity Cj and uj (l..;j..;4) contained in Cp ]. 

Then the contribution from Cp vanishes asp-+oo by (vi)+ 
and (5.34) leads to the relation among the singularities (5.32) 
and (5.33) of Eon K-K oo • Expressing tP +j in terms ofK+ 
and;P (~ by Lemma 5.2 and using (3.28) and (3.30) we obtain 
the Marchenko equation (3.36 + ) which, for xEl +, has the 
unique solution K +. Thus, (iHvi)+ assure the existence of 
the unique set K + and tP + j. Using the Cauchy formula, we 
express E (AER ; uR ~ uR i uR 4) in terms of the boundary 
value onK, or the singularity (5.32) and (5.33), which is com
posed of tP + j' ;p (~j' and S: 

E(x A)=-I-l dA,E(x,y,A') 
,y, 2· 1 l' 

1Tl K /l, - /l, 

= I _I (( dA' 8E + I Res E) 
J. 21Ti Jc A - A ' a A - A' , 

J J 

AER ;uR ~uR iuR 4. (5.35) 

The existence of E is verified if the integral on Cjl-' = Cj 
- Cjl-' (1..; j..;4) for some large,u converges. We examine, for 

instance, 
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across C1 

across C2 

across C3 

across C4 

By the asymptotic forms 

S- S- S- (01 S- (0) d 
II' 22. 11' 22' ± 

S21' SiOl = O(l/A). 

(5.33) 

= 1 + O(l/A). 
IA 1-+00. 

"'- "'-
and by (iii)+ the singularity of E on both C11-' and C21-' is 
reducible to 

IA'I-+oo 

(5.37) 

(5.38) 

Since the left-hand sideof(5.38) is analytic for IA 'I >,u inR2• 

N. Asano and Y. Kato 585 



                                                                                                                                    

J - 1 f dA' A (.1, ;;, IO)A IS- ) 
B - -. ---,.Ll '1-'+''1-' +' 21 

2m BA - A (5.39) 

as IA 1---+ 00 

if A is contained in B, 
if A is outside of B, 

where B = C,I-' + (:ZI-' + C ~ and C ~ is the part of CI-' con
tained in R2 and the integral on C ~ gives a (t/IlA ) by (5.38). 
The contribution to 8,.z of the second term of (5.37) [0 (11 
A ')] is easily estimated to give a (11 A ). Hence we have 

:: _ {O(l) as IA 1---+ AER2, 
-1,2 - O(lIA) 00, AER,uR

4
. 

This proves the existence of 81.2 and also its asymptotic esti
mate. The similar calculation is also performed on C3 , C4 and 
we have the existence of E. The asymptotic property of 8 
shown above implies (vi)-l;. for ¢j' It remains to show the 
boundary value (5.22) oftP+j' From (5.33) we have 

..:i¢I: i(x)¢ I~~(y) - ¢I;( (x)¢ I~A, (y) 

(5.40) 

+..:i (SIJS2ItP+I + tP+z)¢I~~ Ild+, 

where ¢I: I (¢I; ( ) denotes the boundary value of ¢ + I on the 
upper (lower) side of C,. Since ¢ I~~ (y) and rp I~A, (y) depend 
on y only through eiA

• Y and e - iA • Y, respectively, for y > I (I: 
the location of the step of Qo), (5.40) leads to 

AI I - -
..:itP:, =..:i (tP+, + SzJS l1tP+z)ld+ , 

AI_I --
..:itP +, =..:i (Sl1/SZ'tP+, + tP+z)ld+, 

which yield (5.22) on C, and similarly we have (5.22) on C4 . 

In this way the unique existence of ( tP + j' ¢ + j I is shown and 
the right inverse problem is solved. • 

Thus by an elementary calculation we obtain the lemma 
connecting the left and right inverse problems. 

Lemma 5.4: Put 

tP-, = {SI1
0+:. 

inRi' tP-z = f'z~+~ in R 3 , 

-S2,tP+2 in R z, -S22tP+2 inR4' 

¢_, = {tP+ZIS'2_ in R 3 , ¢ 2= {tP+2/S
11_ 

inRi' 

- tP+I/Szz in R 4, - - tP+I/S2 , in R 2, 

(5.41) 

then condition (i)-(vi) + for ( tP + j' ¢ :t j; j = 1, 21 is equiva
lent to condition (i)-(vi)_ for (tP _ j' tP _ j;j = 1,21· 

5.3 Proof of the Theorem 5.2 

We prove Theorem 5.2 for the case Cs • In the direct 
problem let 0 ± C Q <nQ snCF'± (0), then S satisfies condi
tion I by Lemmas 1-2-7. IfQEQ<nQsnCF'± (1), then the ker
nelF ± of the Marchenko equation satisfies, by Lemma 3.9, 
S ± ' i.e., II-(i) ± . In the inverse problem let S satisfy condi
tions I and II and put xElo - I +nI _. Note that I ± and ac
cordingly 10 (#0) are open intervals. By Lemma 4.3, the 
Marchenko equation with kernel F ± has the unique solution 
K ± giving (/> ± in the form (2.11) and the potential 0 ± (x) 
= =F 2K N (x, x) [1-(2.26)] for xEl ± . On the other hand, 
~inceS satisfies conditions I and II-(i)+, the unique set (tP + j' 

tP+j;j= 1, 2) satisfying the condition (i)-(vi) + exists and 
tP +j = rp +j (j = 1,2) by Lemma 5.3 and Theorem 5.1. By 
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Lemm~ 5.4 ! tP +j' ¢ +j;j = 1, 2} determines the unique set 
! tP-j' tP _j;j = 1, 2} satisfying the condition (iHvi)_. Since 
S satisfies conditions I and II -(i) _, we get tP _ j = rp _ j (j = 1, 
2) by Lemma 5.3 and Theorem 5.1. Hence, by (5.22) and 
(5.41) we have 

rp_1 = (lId+)(Sl1rp+, +S2,rp+2) onC" 

rp-z = (lId+)(S12rp+ 1+ SZZrp+2) on C4 • 

rp_, and rp-2 satisfy the same differential equation for AEC, 
and AEC4, respectively, for xElo. This means that the left and 
right inverse problems give the common potential 
Q (x) = Q I ± I(x) + 2K ~ (x, x) + Q ± for xElo. Thus we can 
define a potential Q (x) for xE(I + uI _) = lit by 

Q(x)_QI±I(x), xEl ±. 

Since F ± satisfies condition S ± we see 0 ± ECF ± (1) 
nCF'± (1) by Lemma 4.5. Obviously, 0 ± EQ <nQs by condi
tion I-(ii), I-(iii). Thus Theorem 5.2 for Cs is proved. The 
proof for Cd is analogous and is omitted here. • 

5.4 Correspondence between the potential and the 
scattering data 

We introduce the function class GCF ± (1) in such a 
sense that p(s, t )EGCF ± (1) means 

1+ oc ds 1+ 00 dt Ip(s, t)1 < 00, XElIt. 

Ifp(x)ECF ± (1), then 

,0 ± (x) = ± 1± 00 dy Ip(y)1 < 00, 

1 ± 00 ds 1 ± x dt Ip(s + t) 1 = ± 1 ± 00 ds ,o(2s) < 00; 

hence p(s + t )EGCF ± (1). This shows that GCF ± (1) defined 
for the function of two variables is a natural generalization of 
CF ± (I) defined for the function of a single variable. In an 
analogous way GCF ± (n) (n> 1) is defined as the class of 
functions of two variables; i.e., if p(s, t )EGCF ± (n), then 

1+
00 

ds1+oodt(I+ltln-I)lp(S,t)I<00, XElR. 

Evidently GCF ± (n) C GCF ± (n') if n < n'. We note that if 
pIs, t )EGCF +(n) [GCF _In)] and Ip(s, t)1 is nonincreasing 
[non decreasing] with respect to s, thenp(t, t )ECF +(n) 
[CF _(n)] (n> 1). 

We deduce easily the following theorem from the esti
mates in Lemmas 3.7 and 4.5. 

Theorem 5.3: In Theorems 5.1 and 5.2 the relations 

(F~ (5, 1]) <f'~ (5 + 1]) + F± (2;,5 + 1])EGCF ± (m), 

m>l, (5.42) 

(F~ A (5, 1]) <gl~ (5,1]) + gr± (2;,5 + 1])EGCF ± (n), 

n>l, 

yield 

if m>n>l, 

(5.43) 

_ {ECF ± (m)nCF'± (n) 

(Q± (x) ECF ± (m)nCF'± (m) if m = n - 1>1, 

and conversely (0 ± )ECF ± (m)nCF'± (n) (m>n> 1) implies 
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(5.42) and (5.43) for m = n (:> 1). 
We note that due to the relation 

IQ± (x)l< ± i±oo IdQ± (y)l, 

IF ± (x,y)l< ± i± 00 d1]IF ±'1(x, 1])1, y~x 
I ± ECF ± (m) follows fromJ ± ECF ± (m + 1) and (5.42) fol
lows from (5.43) with n = m + 1 and the cases with 
m < n - 1 can be neglected in Theorem 5.3. 

6. SUMMARY FOR THE DIRECT AND THE INVERSE 
PROBLEMS 

Our study is performed under the assumption of the 
potential QEQ s, which means that the point spectrum is sep
arated from the continuous spectrum and composed of only 
a finite number of simple eigenvalues. In the case Cs we add 
the condition to the potential QEQ E [(1.3)]. This condition is 
satisfied if the perturbation from the step potential, 
Q (x) = Q (x) - Qo(x) (q + =l-q~, r + =l-r ~), is a continuous 
function, since then 

I I DQj/sx' l = IQ+ - Q~ I:>D(~ ~) 
with 

D=min{lq+-q~l, Ir+-r~IJ>O. 

Thus the condition QEQ E is quite natural in the present 
study, which starts from the step potential Qo' 

The expansion theorems of cases Cs and Cd (q ± r ± =I- 0) 
were considered in I for the potentials 

Q ± ECF ± (l)nCF'± (0) (Theorems 1-1,1-2), 

whereas the Marchenko equation is derived for Q ± 

ECF ± (l)nCF'± (1) (Lemma 3.6). The inverse problem is dis
cussed for the scattering data satisfying S ± of Sec. 4.1, 
which corresponds to the potential 

Q ± ECF ± (l)nCF'± (1) (Theorems 5.1 and 5.2). 

Hence we obtain in our study I and II the mapping of the 
potential to the scattering data 

Q ± ECF ± (l)nCF'± (1) +----+ F~ , F~AEGCF ± (1). 

(6.1) 

Here two relations on the right-hand side mean the conven
ient expression of conditions S ± . Further, we obtain in 
Theorem 5.3 a more general correspondence 

Q± ECF ± (m)nCF'± (n) 

F~ EGCF ± (m), 
+----+ N for m:>n:> 1 

F ±AEGCF ± (n), 
(6.2) 

with the convenient expression of (5.42) and (5.43) on the 
right-hand side. 

The inverse problem for the potential Q with vanishing 
asymptotic values Q + = 0 was studied by the present auth
ors7 for QEQs with the resulting correspondence 

QECF'± (1) +----+F~ = F ± ECF'± (1), (6.3) 

or more generally (1.2), that is, 

QECF ± (m)nCF:(n)+----+F~ =F ± ECF ± (m)nCF'± (n), 

m:>O, n:>1. 

From (6.1)-(6.4) we note that the inverse problem is mana
geable in terms of the Marchenko equation for QECF ± (0) 
when Q ± = 0 under some additional conditions, whereas it 
seems to require the condition QECF ± (1) when q ± r ± =I- O. 

There are A-dependent potentials considered in the in
verse scattering method. 16,17 The direct and inverse spectral 
problem of ZS operator with a potential polynomial in A, 

N~I 

Q(x; A) = I A nINQn(x), 
n=O 

may be treated by the method similar to the present series I 
and II. 

APPENDIX: SPECTRUM FOR THE STEP POTENTIAL 

The step potential in this paper corresponds to the con
stant potential to define an unperturbed free state in the usu
al scattering problems in quantum mechanics. Let Q (x) have 
a step at x = 1 and be given by Q (x) = Qo(x; 1) = Q ± (=1-0) 
(x~l). The corresponding operator L is denoted as 
L (0) = iu3 [d /dx - Qo(x; 1)] with the Jost solutions ~ I~ 
= <P I~ (x) (x~l). The matrix S (0) is explicitly given by-

L ~:+ - A ~A~ }e iIA

+ +L)l ) 

{ 1 - (A + Aq+)~+ + A~Je ~ ilA+ ~ L)l 

(AI) 

and analytic on our A plane RI for u ± =1-0. The spectrum 
af.L (0)) consists ofthe continuous part U c and the discrete part 
up' As shown in I, U C is presented by the curves C1 - C4 in 
the A plane while up is determined by the zeros of S ~)(A ). 
More specifically, up is given by a set of zeros of S \°1 , S ~ol , 
S\~, andS~ in thedomainsR 1,R2,R3, andR4 , respectively. 
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I__ 
The conditions for S\OI (Sm to have zeros in RI (R4) and 
S~I (SI~d) in R2 (R3) are given by the equation 

(A2) 

with the upper and the lower signs of the left-hand side, 
respectively, where A gives the zero point for all cases and is 
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T 

~ 
" "<,"" 

FIG. 3. Distribution of zeros for the case q = yr. 

expressible by 

A 2=..!.. (q+r __ q-,+)2 

4 (q+ - q_Hr _ - r +) 
(A3) 

forq+ #q_ and r + #r _. There is no zero point forq+ = q_ 
or r + = r _ while two zeros eup at the branch points A ± = 0 
for q+ = q_ and r + = r _. From (A2) and (A3), it is clear 
that there are possibly three cases; (1) nondegenerate two 
zeros symmetric with respect to the origin for 
q +r _ - q -' + #0, or (2) doubly degenerate zero at the origin 
A = 0 for q +r _ - q -' + = 0, or (3) no zero in the prescribed 
regions. We consider two simple examples. 

1. The case q(x) = riW with yeC (r#O) 

The classification of the three cases (1)-(3) above is con
veniently made in terms of r = r +/r _ = q +/q _. The do
mains of the r plane where S (0) has two simple zeros ± A are 
givenbycos 0< Irl < l/cos 0 (10 I < 1T/2) and 17/2 < 10 I <1Tas 
shown in Fig. 3; here 0 = arg r, while the domain of the r 
plane with doubly degenerate zero is 0 = 1T, i.e., negative real 
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axis. The domains in the r plane without any zero in the A 
plane are given by Re r> 1 and Ir - ~ I <!. It is noted that in 
the r plane the classification does not depend on r. 

2. The case q(x) = rr(x) with yeC (r#O) 

Since the right-hand side of (A3) identically vanishes, 
only a double zero A 2 = 0 is possible in this case. The condi
tion (A2) reduces to ± (rr)1/2 = rr with the upper sign 
corresponding to zero of S ~oi and S ~od and the lower sign to 
that of S ~oi and S \°1. Obviously one of these two cases is 
possible. 
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A definition of a special family of congruences of null strings is given, and a link between its 
existence and "projective extensions of heavens" is provided. Next the integrability conditions of 
the problem are studied, and a subclass of all "heavens" admitting these special congruences is 
described in terms of one function of three variables subject to a nonlinear, differential second
order constraint. 

PACS numbers: 04.20.Cv, 02.40. + m, 04.20.Jb 

1. INTRODUCTION 

The concept of a congruence of null strings (two-dimen
sional totally null surfaces) turned out to be a key one in the 
studies of algebraically degenerate complex Einstein space
times. 1,2 The existence of a congruence of null strings is, 
however, something exceptional. Indeed, if such a con
gruence does exist then the spinor field k A related to it (a 
dotted spinor field if the congruence is anti-self-dual3

) turns 
out to be a Debever-Penrose spinor direction of the left con
formal curvature CABeD . Therefore, the existence offive dis
tinct, self-dual congruences already implies that CABeD = O. 
An assumption that the Einstein equations are satisfied 
makes the situation even simpler. 1 

The spaces with C ABeD = 0 became of independent in
terest due to Penrose4

• Those among them which are Ein
stein space-times have been investigated by many authors 
from different points ofview.4-6 If, therefore, that specific 
subclass ofleft-flat spaces ("heavens") is expected to be relat
ed to a self-dual nonlinear graviton, more general complex 
space-times, restricted only by CABeD = 0 could correspond 
to a nonlinear graviton interacting with matter. 

The condition CABeD = 0 turns out to be necessary and 
sufficient for the existence of a complete set of null self-dual 
strings; twistor surfaces in another terminology (see for ex
ample Ref. 4). Then one can construct congruences and fam
ilies of congruences. Of special interest are one-parameter 
families. 4 In "heavens" there is a canonical family, the con
gruences of which are defined by covariantly constant un
dotted spinor fields. In a general, left conformally flat space 
(weak "heaven") there are it seems no distinguished congru
ences, with some exceptions. In this paper we discuss such an 
exceptional case. 

In Sec. 1 a special family of congruences of null strings 
called a generalized canonicalfamily is defined, and then it is 
shown, that the family can exist only in "projective exten
sions of heavens" -the spaces investigated some time ago by 
Finley and Plebanski in Ref. 7. 

In Sec. 3 the integrability conditions (and therefore nec
essary and sufficient conditions for the existence of general
ized families) are established in a covariant form. In the last 
section a full characterization of "heavens" admitting those 
special families is given. 

alOn leave of absence from Technical University of Kielce, Poland. 

The formalism used throughout this paper has been de
veloped by Plebanski. For a summary we refer the reader to 
Ref. 8 and also to Ref. 3, where the definitions of basic con
cepts can be found. 

Below some basic identities and facts are listed. Let (M, 
ds2

) be a complex space-time. Then the null-tetrad one-forms 
I ea

}, a = 1,2, 3,4, or 19AiI} are defined by 

d~ = 2(el ®e2 + e3 ®e4
) = - ~AiI ®gAiI, (1.1) 

s 

and the convention is that 

gAil = v'2 (e
4

, e
2

) • (1.2) 
e l

, - e3 

The skew-symmetric Levi-Civita symbols are defined by 

(EAB) = (~B) = (EAiI) = (~iI) = (_ ~ ~), (1.3) 

and the spinorial indices are manipulated as follows: 

¢A = EAB~' ¢A = ¢B~A. (1.4) 

The null-tetrad dual to 19AiI} consists of the vector fields 
laAiI }, such that gAil (aBcl = - 2{jABDilc . 

The two-forms S AB and S AB are defined by the formula 

(1.5) 

The components of a one-form a are determined ac
cording to 

a = - !aAilgAii. (1.6) 

Let A denote the Cartan-Grassman algebra of holo
morphic forms on M, and let Y be a module of hoi om orphic 
spinor fields on M. 

Then D: A ® Y -+A ® Y is defined according to the 
formula 

DT::: = dT::: + FAs 1\ T:::s", - FB
S 1\ T:::s ... 

+ Fe S 1\ T :::~ ... - F b S 1\ T :::s ... + ... (1.7) 

for TEA ® Y, where FAB = FlAB) and FAil = FlAil) are af
fine connection one-forms determined uniquely by the con
dition 

(1.8) 

As a consequence of (1.7) the Ricci identities follow: 

D2T::: = R AS 1\ T:::S
'" - RB

S 1\ T:::s ... 

+ R c. " r"s", _ R . s" T .. ·· 
s" D " .. oS .. ·' (1.9) 

589 J. Math. Phys. 25 (3), March 1984 0022-2488/84/030589-08$02.50 @ 1984 American Institute of PhySics 589 



                                                                                                                                    

with R A Band R A B being curvature two-forms: 

RAB = drAB + r AS I\r s
B, (1.10) 

RAB = - !CABCDSCD + i4RSAB + !CABCbSCb, etc. 
(1.11) 

We notice also that 

DS AB = 0 = DSAB. 

Now let TEY; then V AB T ::: is defined by 

(1.12) 

DT::: = - !(VABT:::~B. (1.13) 

The Bianchi identities obtained by application of the 
operator D to both sides of (1.10) and (1.11) are 

VS
A CBCDS + VfBCCD)AS = 0, 

VASCBCbs + Vi'BCIASICb) =0, 

VRSCARBS +!V ABR = O. 
(1.14) 

Next we notice that according to our conventions, for 
anyone-form a its inner product" _-1" with S AB is deter
mined by 

a~AB = - a(ANgB)N' (1.15) 

We recall also that gCb 1\ S AB provide a basis for three
forms, denoted by ~B, such that 

SAB I\gcb = ~C~b + ~crb. (1.16) 

2. A GENERALIZATION OF CANONICAL 
CONGRUENCES IN HEAVENS 

We begin this section by recalling that the existence of 
self-dual congruence of null strings is equivalent to the exis
tence of a spinor field k A satisfying the equation 

k Ak BV ACkB = 0, (2.1) 

which is equivalent to the statement that the two-form 

(2.2) 
is integrable in the sense that it vanishes on a two-parameter 
set (congruence) of null strings.3 We notice also that (2.1) 
does not distinguish between spinor fields which are propor
tional. 

Assume now, that there is a set of solutions of (2.1), 
which is at the same time a two-dimensional vector space F. 
Take two arbitrary, independent members' k A and" k A. 

Then obviously 

F= [kA:kA=a'kA +b"kA,a,bEq. (2.3) 

Next we notice that from (2.1) it follows that 

(2.4) 

and 

(2.5) 

for some spinor fields 'P AB' "P AB' 'u AB' and "u AB' 

Then substituting a general member of F, in the form of 
(2.3), into (2.1), after some elementary spinorial calculations 
one obtains the condition 

(2.6) 

Define now the following two-forms: 
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'~= 'kA 'kBS AB, "~=" kA" kBS AB, "'~ = 'kA" kBSAB. 

It is easy to show that 

d'~ = - 2a 1\ '~, 

and 

d"~ = - 2f31\ "~. 

(2.7) 

(2.8) 

(2.9) 

In fact, those equations are equivalent to (2.1) with k A re
placed by 'k A and" k A, respectively.3 To obtain an explicit 
form of a and f3, we employ the formalism of Ref. 8: 
d'~ = 2'kAD 'kB I\SAB = - 'kA (V cb'kB)gCb I\SAB 
- 'k C 'k (' 2' \;t,.Bb 2 1\' .... - B U cb - Pcb Jl5 = - a .::-
= 2acb'k c'kBrb [for the definition of ~B see (1.16)]. 

Hence, 

2acb = 'Ucb - 2'Pcb + 'kcab (2.10) 

and a = - !acbgCb (ab is an arbitrary spinor). 
In a similar way one obtains 

2f3cb = "Ucb -2"Pcb + "kcf3b and f3= -!f3ABgAB. 
(2.11) 

It is important to notice now that, since' kc and" kc are 
independent, one can always find a band f3 b such that 
a = f3. Suppose, therefore, such a choice has been made. 
Then, employing (2.4)-(2.6) and (2.10) with that specific a b, 

one checks that 

d "'~ = - 2a 1\ "'~. (2.12) 

Now we observe that a rescaling of all elements of F, by 
the same factor, results in a set 'Fwith the properties identi
cal to those of F. Therefore, employing this freedom, as well 
as that of null-tetrad one-forms gAB, one can obtain' k A and 
"k A in the form of: 'k A = 81 and" k A = 8~. Then Eqs. (2.8), 
(2.9), and (2.12) are equivalent to 

(2.13) 

The condition (2.13) has been used by Finley and Plebanski 
to define a class of spaces called "projective extensions of 
heavens.,,7 The following lemma is true. 

Lemma 2.1: There exists a set of solutions of (2.1) form
ing a two-dimensional vector space if and only if there is a 
null-tetrad gauge in which dS AB = - 2a I\SAB. 

The ambiguity of that gauge consists of constant "heav
enly" and arbitrary "hellish" SL(2,Q transformations. 

It is only "projective extensions of heavens" (among 
them heavens) which admit such gauges. 

Proof Indeed the assertion follows in one direction 
from considerations above. On the other hand, if there is a 
gauge in whichdS AB = - 2a I\SAB, then 'k A = 81 and" k A 
= 8~ satisfy automatically (2.1) and the members of the cor

responding set F have also that property. The remaining part 
of the lemma follows from the transformational properties of 
S~ • 

A nontrivial solution of (2.1), and all others proportion
al to it, give rise to a congruence of null strings. Therefore, 
F - 101 defines a one-parameter family of congruences of 
null strings parametrized by the points of piC [ratios of the 
coefficients a and b in (2.3)]. We call it a generalized canoni
cal family of congruences of null strings. By a canonical fam-
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ily we mean one which corresponds to a = O. It exists only in 
heavens. 

3. INTEGRABILITY CONDITIONS 

The condition (2.13) is of great convenience if one is 
trying to find an explicit form of projective extensions of 
heavens.7 On the other hand, to discuss the place of those 
spaces among all left conformally flat ones, a more covariant 
treatment is needed. The aim of this section is to establish the 
integrability conditions for the existence of that specific 
gauge (2.13). 

It is convenient to change the notation slightly, endow
ing all quantities related to the gauge (2.13) with primes. 
Next, we notice an equivalence between (2.13) and the state
ment that 

TAB = !(a--/SAB)' (3.1) 

One proves this by means of D 'SAB = 0, (2.3), and the defini
tion ofthe step product ....J,3,8 [see also (1.15)], 

Further, from the transformation properties of "heav
enly" connection one-forms r AB ,8 one infers that in an arbi
trary tetradial gauge 

gAB = I Ac'gCB, (lAB)ESL(2,q, (3.2) 

the following relation holds: 

r AB = I --lcAI --IDB'rCD -1--ISBdIAS ' (3.3) 

[One does not lose generality by restricting oneself to "heav
enly" transformations (3.2) only, because the "hellish" ones 
do not effect rAB'S.] Next, taking into account (3.1) and the 
formula 

SAB = I -- ICA I -- ID B'SCD' 

one obtains 

dlAB = {!(a....J5'AC) - rAC j/CB· 

(3.4) 

(3.5) 

We now study the integrability conditions of(3.5), Applying 
the operator of external differentiation d to both sides of 
(3.5), and substituting into the resulting formula the right
hand side of (3.5) in place of dIMN , one obtains 

D (a....J5'AB) + !(a....J5'KB);\ (a....J5'AK) = 2RAB · (3.6) 

Then making use of the formulas (1,7), (1.8), (1.11), and 
(1.15) one arrives at the conditions 

CABCD = 0, 

C AB.. - 1 {t'7IA . aB) . a A . a B. j CD - - 2 v IC D) - IC D)' 

R /3 = VMNaMN + aMNaMN , 

(3,7) 

(3.8) 

(3.9) 

VIA NaB)N = O. (3.10) 

Thus at the first step of the procedure all irreducible 
components of VA caB b but V MICaM b) have been expressed 
in terms of a AB and the curvature quantities. 

Now, letpAB be defined by 

PAB = V MIAaMB) , (3.11) 

Then one easily finds that 

DaBb = - !(VMNaBb~N 

= CBMNbgMN - !aMINaBb)gMN - ~PNbgBN 
+ ~ENb(R /3 - aKtaKt)gBN. (3.12) 
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At the next step one acts on both sides of (3,12) with D. 
This time the calculation requires much more work, and it is 
not presented here. Some of the conditions resulting are ful
filled automatically because of the Bianchi identities; the rest 
are equivalent to the equation 

VABPcb = - 4VASCBCbS + 4aASCSBCb + 3aA(BPCb)' 
(3.13) 

Further integrability conditions are obtained by form
ing DPcb and acting on both sides of the resulting formula 
with D. The amount of work to be done at this stage is even 
greater than before; therefore only the final result is dis
played, 

V MIA VMNCBCb)N + 2pIA NCBCb)N 

- ~PIABPCb) + aMNV M(A CBCb)N 

- 3aM(A VMNCBCb)N + (R /6)CABCb 

- 2aMNaMNCABCb = O. (3.14) 

Subsequent integrability conditions can be obtained 
from (3.14) by action with V PQ on both its sides, and then 
elimination of V PQPcb and V PQaAB by (3,12) and (3.13), re
spectively. Continuation of that process gives rise to a se
quence of algebraic equations which involve Pcb, a AB' and 
curvature quantities only. Let the conditions obtained on the 
Nth step be denoted by (3.14)N' N;;.O [(3.14)0=(3.14)]' We 
claim the following Lemma: 

Lemma 3.1: (i) A left conformally flat space-time ad
mits a generalized canonical family of congruences of null 
strings if and only if the set of the equations (3.12) and (3.13) 
is integrable for P AB = P(AB) and a AB' 

(ii) Let CABCD = O. The set of equations (3.12) and (3.13) 
is integrable in a neighborhood of the point pEM if and only if 
there exists an integer number N, O<,N <,7 such that the equa
tions of the conditions (3.14)0' (3.14)1' ... , (3.14)N are compa
tible in some neighborhood of p and the equations of the 
conditions (3.14)N + I are satisfied because of the former con
ditions. 

If k is the number of independent equations in the first 
(N + 1) conditions, the solution involves 7 - k arbitrary 
constants. k> 3 always and k = 3 for conformally flat spaces. 

Proof Indeed, the integrability of(3.5) is equivalent to 
the integrability of(3.12) and (3.13), and any solution of(3.5) 
which belongs to SL(2,q at some point p remains in SL(2,q 
at all points of its domain, because of the identity: 
d(EABIAcIBD)O. 

The second part of the lemma is a result of a more gen
eral theorem, given in Ref. 9. The lower bound on k can be 
obtained from (3.14)0' Indeed, at least three of five equations 
on PAB and a MN represented by that condition can be solved 
for Pi i ,Pii and Pii (locally). For conformally flat spaces, 
(3.14) reduces tOP(ABPCb) = 0, which constitute three inde
pendent equations: P AB = O. • 
Notice also the following simple lemma. 

Lemma 3.2: (i) Let 052 and ds2 be two conformally relat
ed metrics: 

052 = ,p --2 ds2. 

Then they have in common generalized canonical families of 
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congruences of null strings, and for the corresponding ob
jects the following relations hold: 

a = a + d (In ¢), P AB = P AB' 

In particular, ds2 is conformally related to a "heaven," ifand 
only if there is a generalized canonical family with P AB = 0 
(da=O). 

(ii) A heavenly metric ds2 is conformally related to an
other heavenly one with a nontrivial conformal factor if and 
only if there exists a generalized canonical family such that 

PAB = 0 and aASCsBCb = 0, 

wherea#O. Then either CABcb #0, a AB =aAkB and there
fore C ABcb is of the algebraic type N, or C ABcb = O. 

(iii) Any generalized canonical family in conformally 
flat space has PAiJ = 0 (da = 0). 

Proof Indeed, the first part of (i) is a consequence of 
(2.13) and the fact that ,SAB = ¢ -2SAB. The second part is 
obtained by combining the behavior of a under conformal 
transformations with the properties of heavens, which admit 
canonical families of congruences of null strings (a = 0). 

To prove (ii), suppose at first that d'S2 = ¢ -2 ds2, with 
d'S2 and ds2 being "heavens." Take then the canonical family 
corresponding to d'S2 for which a = 0, PAB = O. Now, from 
(i), (3.13), and Bianchi's identities the assertion (ii) in one 
direction follows. Conversely, suppose that ds2 is a "heaven
ly" metric with a generalized canonical family such that P AB 
= 0 and aASCsBCb = O. Then define ¢ according to the for
mulad (In ¢ ) = - a. One easily infers thatd'S2 = ¢ -2 ds2 isa 
"heavenly" metric structure. The second part of (ii) follows 
from the observation that a AS C S Bcb = O-----+(aMN a MN )C ABcb 
= O. (iii) is a result of (3.14). • 

In fact the assertion (ii) of Lemma 3.2 can be stated 
more explicitly due to an old result of Brinkmann. 10 

Lemma 3.3: The most general "heaven" which admits a 
nontrivial conformal map into another "heaven" is a self
dual plane-fronted wave (in the simplest case a flat space). 

Although it is rather obvious that "projective exten
sions of heavens" are only a subclass of one-side conformally 
flat spaces, it requires usually some work to demonstrate 
that for a given metric structure with the property that 
C ABCD = 0, the appropriate integrability conditio~s ca~not 
be satisfied. An example below illustrates such a sltuatlOn. 

Example: Consider the metric of the form6 

ds2 = 2(e 1 ® e2 + e3 ® e4
), (3.15) 

where 

by 

e1 = du + (!u 2a - uq)dr, e2 = dr, 

e3 = dq, e4 = du + ( - !au2 + ur)dq, 

and a = const. 

The connection one-forms r AB in this tetrad are given 

r ll = 0 = r 22, r 12 = U(au - q)dr + (au - r)dq], 

rji = 0, r ii = Wau - r)dq + (q - au)dr], 

rii = - u dr - u dq. (3.16) 

Next one shows that CABCD = 0 = R as well as that the only 
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nonvanishing components of CABcb and CABCb are 

Ci iii = - 1, Ciiii = u(r - au) + u(q - au), 

Cl2ii = - !a. (3.17) 

Thus the conformal curvature is of the algebraic type 
[ - ] X III, and in the limit a-o the space becomes a "heav-
en." 

Provided a # 0 there does not exist a generalized canoni
cal family of congruences of null strings. For a = 0 there 
exists only that corresponding to a = 0, the canonical one. 

To justify this assertion one observes that (3.14) implies 
immediately thatpii = O. Then from Eqs. (3.13), and some 
of(3.12), one finds thatpii = O. Next employing again (3.13), 
it turns out, provided a#O, that necessarily Pii = - 4. 
When a = 0 there is the second possibility Pii # - 4 and at 
the same time OJ Ai = O. Further, taking into account the re
maining equations of(3.13) and their integrability conditio~s 
one arrives at a contradiction for Pii - 4. The second POSSI
bility amounts to OJ AB = 0 = PAB which corresponds to the 
canonical family of congruences of null strings. 

Examples of "projective extensions of heavens" can be 
found in Ref. 7. We close this section with remarks about 
generalized canonical families of congruences of ?ull stri~gs 
in spaces conformally related to complexified MI~kow~kI 
space-time. It is clear (Lemma 3.2), that they are IdentIcal 
with those for the Minkowski space-time ds2

• Further, the 
same lemma implies that any generalized canonical family 
for ds2 is a canonical one with respect to another metric 
structure d'S2, conformally related to ds2

: &2 = ¢ -2 ds2, 
where ¢ is defined by d (In ¢ ) = - a. It is easy to find the 
general form of ¢. Indeed one has to solve (3.12), where PAB 
= 0, a = - d (In ¢ ), with respect to ¢. Working in the tetra-

dial gauge for ds2 in which 

gAB = d~B, (3.18) 

one infers that ¢ is given by 

(3.19) 

or 

¢ = 1 + 2IMNxMN, (3.20) 

where lAB is any constant, lightlike vector, or ¢ is of the form 
obtained from those above by an arbitrary translation of ~B: 
~B _~B + tAB. Therefore, all congruences related to a 
fixed ¢ are defined only on a part of original Minkowski 
space-time, that without a null cone or a null hy.perplane 
(a= -d¢/¢). 

To obtain an explicit form of the families of congru
ences one has to perform the transformations, which in the 
two essentially different cases are 

. ~B 
?B= . , 

(XMNX MN ) 
(3.19), 

. ~B + lAB (XMNX .) 
XAB = MN • 

1 + 21MNxMN 
(3.20)' 

Then d'S2 = ¢ -2 ds2 = - ~d?BdxAB' .' 
The next observation is that the null tetrads rB: = d?B 

and /rB: = ¢ -\ d~B related to d'S2 are of the same ~rienta
tion if(3.20) holds, and of opposite ones for (3.19). It IS there-
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fore clear that provided (3.20) is satisfied, it is the canonical 
family of self-dual congruences of the null strings for dS2 

which is the generalized canonical family for d~. 
Otherwise, in the case (3.19), one has to consider the 

canonical family of anti-self-dual congruences for ds2
• 

Now let X·'\ yA and XA, yA be defined by 

G: r:} = (XAB) (3.20)" 

in the case (3.20), and 

(i: ~:} = (XAB) for (3.19)'. (3.19)" 

Then the functions 

ZA = ~XA + 1TlyA (3.20)," 

and 

(3.19)," 

where ~ and ~ are arbitrary nonzero constant spinors, de
fine the corresponding families of congruences (compare 
Ref. 4). 

4. GENERALIZED CANONICAL FAMILIES IN HEAVENS 

The left-fiat spaces (heavens) are those characterized by 
the existence of a canonical family of self-dual congruences 
of null strings, e.g., by the existence of a gauge such that 
(2.13) with a = 0 holds. In the simplest case, that of the Min
kowski space (Sec. 3), there is also a large class of generalized 
canonical families; for all of them da = O. 

Below we discuss the problem of generalized canonical 
families for an arbitrary heaven. 

Any heaven can be described expli£itly as follows. II 
There exists a coordinate system I rt, qB I and a tetradial 
gauge gAB such that 

glA = V1fl ,A,Ii dqB, 

~A = \"2dqA 

(4.1) 

(4.2) 

for some function fl, which fulfills additionally the equation 

fl,ABfl,AB = - 2. 

The dual tetrad related to (4.1), (4.2) is of the form 

~ a 
-vW'! ,JJ' , a'1 

a -\"2-.. 
aqA 

Then 

and 

S II = 2 dqi I\dqi, S22 = 2 dqi I\dqi, 

S 12 = fl,AB dr/ 1\ dr/. 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

Now denote by 'gAB the tetradial gauge in which (3.1) is 
supposed to hold. Then there is a SL(2,Q transformation 
(mA B) such that 

(4.8) 
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Then employing (3.5) and (4.6) properly, one obtains 

dmAB = - ~(a-!SBclm -ICA· (4.9) 

An explicit form of this equation is 

mCAaMN(mCB) = - ~(€MAaBN + €MBaAN )· (4.10) 

It can be shown, by simple algebraic arguments, that (4.10) 
possesses a solution a AB for (mA B) fixed if and only if 

Ca N -0 m(A M m ICIB ) - . (4.11) 

Then 

a AB = - ~mCDanB(mCA)' (4.12) 

We shall now study the system of equations given by (4.11). 
It is convenient to introduce the notation 

( flp v): = (mil m
I
2), (4.13) 

a m 2
t m 2

2 

where fl' v, P, and a are subject to the constraint 

fla - vp = 1. (4.14) 

Then employing (4.4) and (4.5) one can rewrite (4.11) in the 
form 

flP,;; - Pfl,N = 0, 

va,N - aV.N = 0, 

(4.15) 

(4.16) 

flax - afl.1i + vP.1i - PV.N + (,uP.M - Pfl.M)fl :If = 0, 
(4.17) 

VP.N - PV.N + fla.N - afl.N + (va.M - av.M)fl :~ = O. 
(4.18) 

There are three cases to be discussed independently. 
Case 1, fl:l= 0:1= v: Then the equations of the system 

(4.15) are integrated immediately, resulting in 

P = -flF, (4.19) 

where F is a function of qA 's only. 

Next from (4.14) a can be calculated: 

a = - vF + l/fl. (4.20) 

Now employing (4.19) and (4.20) in (4.16)-(4.18) one obtains 

(,uV),N = - (,uV)2F,N' (4.21) 

fl ~/fl3 = - l(F . fl ,M) ~ 
,N 2,M ,N' (4.22) 

fl,N/fl = - flVF,N - (l/2fl2)(,uvt~fl :IJ:. (4.23) 

As a consequence of (4.21) it follows that 

flV = l/(F + H), (4.24) 

while (4.22) results in 

fl = (G + F,Mfl ,M)-1/2, (4.25) 

where G is a function of qA 's and H a function of rt 's only. 
From (4.24), (4.19), and (4.20) we infer also that 

(G + F,cfl .C)1I2 
v = ---'---=---

F+H 

P= -F(G+F,cfl·C)-1I2, 

H . 
a = --_- (G + F· fl .C)I12. 

F+H .c 
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Now let the function/be defined by 

G+F· il,M 
f = (F +'~ )2 (4.29) 

It is not difficult to show that (4.23) is equivalent to 

liv//2 = - (ii,Mil ,M)"v. (4.30) 

Thus/= (it + Ji,Mil ,M)-I, where E is a function of t/ 's 
only, and because of (4.29) one arrives at the following con
straint on il: 

(G + F,Mil ,M)(E + Ji,Mil ,M) = (F + Jif (4.31) 

Case 2,1"=10 = v: Then (4.21) becomes an identity. The 
formulas for I" andp preserve their form (4.25) and (4.27), 
respectively, whereas a is determined from (4.20): 

a = (G + F,Mil ,M)I!2. (4.32) 

Equation (4.23) amounts to the following condition on il: 

E(G + F Mil ,M) = 1. (4.33) 

Case 3,1" = 0 and consequently (4.14) v=lO: This case is 
similar to the former one. 

v= G 1/2, 

P = _ G -1/2, 

a=JiG 1/2, 

and the condition on il is of the form 

G (E + Ji Mil ,M) = 1. 

These results are summarized in a lemma below. 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

Lemma 4.1: Let ds2 be a heavenly metric structure. 
There exists a generalized canonical family of self-dual con
gruences of null strings with a =10, if and only iffor a pair of 
canonical congruences of null strings.l' I: t/ = const and .l'2: 

cl = constthere exist four functions F, G, E, and Ji (not all of 
them being constant), the first two of them constant along 
the leaves of .l' I and the remaining constant along the leaves 
of.l'2 such that (4.31) or (4.33) or (4.37) holds. 

F,G,E,Ji = const iff (mA
B ) = const iff d 'SAB = O. 

Further we recall that, given a £air of canonical congru
ences, there is an ambiguity in t/, t/ as well as in il, II which 
does not effect (4.3) and the form of ds2

, 

't/ = 't/(qB), 't/ = 't/(qB), (4.38) 

such that 

a('qi,'q2) a('qi,'q2) 
.. + ... = 1 

a(ql,q2) a(ql,q2) 
(4.39) 

and 

fl = il + K (t/) + I (t/ ). (4.40) 

That permits us to simplify (4.31), (4.33), and (4.37) re
markably. At first, the form ofE and G can be simplified by 
means of (4.40). 
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There are four situations to be considered: 
(i) dF =10, dJi =10, 
(ii) dF =10, dJi = 0, 
(iii) dF = 0, dJi =10, 
(iv) dF = 0, dJi = O. 
The specifications of K and I for the corresponding 
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cases, as wellasa new form of(4.31), (4.33), or(4.37) are given 
below. 

Case 1: ill K and I are determined by the equations K ,M 

F',M = G, I,MJi,li = E, and (4.31) takes the form 

(F,Mfl ,M)(ii,Mfl ,M) = (F + Jif, (4.41) 

(ii)K,MF,M = G. 

E(F,Mfl,M) = (F + Ji)2, 

(iii) (I ,MJi,li) = E. 

G (Ji,l;/ii ,M) = (F + Ji )2. 

(4.42) 

(4.43) 

(iv) (4.31) implies that G and E are constant; thus, this 
situation can be excluded from further discussion (Lemma 
4.1). 

Case 2: The only interesting subcase corresponds to 
dF =I 0 (Lemma 4.1). Then K is chosen according to K ,M F.M 
= G and Eq. (4.33) is reduced to 

E(F,Mfl,M) = 1. (4.44) 

Case 3: The only nontrivial subcase corresponds to 
dJi =I O. Then I is subject to I ,MJi if = E and (4.37) takes the 
form 

(4.45) 

Now, the coordinate freedom (4.38) can be used to sim
plify the form of F and Ji. W ~ shall denote a new coordinate 
system obtained from! t/; rt } by ! x, y, x, y}. Again the 
discussion is split into three cases. In each of them the defini
tions of new coordinates are given. It is to be noticed that at 
most two offour coordinates are specified precisely. The 
remaining are subject to (4.39) only. 

Case 1: (i) x: = F, x: = Ji, and (4.41) are reduced to 

(4.46) 

It is remarkable that (4.46) can be integrated. Indeed the 
substitution of 8: = (x + x) - I fl reduces it to 

(4.47) 

which can be solved by the method of characteristics. 12 The 
solution of (4.46) is described below. 

Let 7 be a function of(g:', x, x) such that 7': = a7/ag:' =10. 
Then 

fl = v'2(x + x)(Y/7' + 7), (4.48) 

where g:' is understood here as a function of (x, y, x, y) deter
mined by the functional equation 

y = y/27'2 + g:'. (4.49) 

Still fl is subject to (4.3), which now is reduced to 

(x + X)(7"7xx - <7;) 
+ 7"(7x + 7x ) + 7'(7; - 7;) = o. (4.50) 

We notice also that the formula for (mA B) [(4.25)-(4.28)] 
takes the form 

(x ~ X)-I( - fly)1/2) 

~ ( _ fly)1/2 ' 
x+x 

(4.51) 
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and a [Eq. (4.12)] is expressed by 

a = (In iiy)x dx + (In iiy)y dy 

- (In ii)x dx - (In iiy}y dY - 2/(x + x) dx.(4.52) 

(ii) If dE = 0, then one arrives at a contradiction with 
(4.3). Assuming, therefore, dE #Oandx: = F + Ii,x: = E,it 
follows from (4.42) that 

- 2 -
fly = - x Ix. (4.53) 

Next taking into account (4.3) and (4.53), one infers that 

ii = - yx21x - x2y;x + w(x,x) + w(x,y). (4.54) 

The metric structure 

dr = 2wx;< dx dx + 2d (x2y)d ( - l/x) 

+ 2d (x2y)d ( - l/x) (4.55) 

is that of the self-dual plane-fronted wave. Indeed, making 
the transformation u = - l/x, ; = - l/x, v = x 2y + W u' 
~ = x2yand denoting h: = - 2wuu one arrives at 
dr = 2(du dv + d; d~) + h (u,; )du2. 

We notice, however, that the self-dual plane-fronted 
wave can be obtained from (4.48) and (4.49) as well. For this 
purpose it suffices to take 7 in the form of 7 = qJ + g(x,x). 

Case 2: Let dE = 0, and introduce x: = F. Then (4.44) 
and (4.3) are contradictory. Suppose therefore that dE #0, 
and define x, x according to x: = F, x: = - E - I. Then from 
(4.44) and (4.3) it follows that 

ii = xy + yx + w(x,x) + w(x,y), (4.56) 

and so the metric structure is again that of a self-dual plane
fronted wave. 

Case 3: From the form of (4.45) it follows that the result 
is exactly the same as in case 2. 

The discussion above together with Lemma 4.1 and 
Lemma 3.3, amounts to a theorem. 

Theorem 4.1: Let dr be a heavenly metric structure. 
(i) It admits a nontrivial (a#O) generalized canonical 

family ofleft congruences of null strings if and only iff or 
some pair of canonical congruences ~ I and ~2 there exists an 
admissible coordinate transformation (4.38), (4.39) and an 
admissible fl-gauge (4.40) such that fl is determined by 
(4.48)-(4.50). 

(ii) There exist generalized canonical families of self
dual congruences of null strings with a # 0 and da = ° if and 
only if ds2 is a metric structure of a self-dual plane-fronted 
wave. 

Remark: Although (ii) is a result of Lemma 3.3 one can 
provide also its independent proof. By forcing the one-form 
a [Eq. (4.52)] to be closed and at the same time ii to be a 
solution of(4.3) and (4.46), one arrives at the required result. 
It can be checked also for ii in the form (4.54) or (4.56), 
directly from (4.12). Below we present some examples. 

Example 1 (self-dual plane-fronted wave): Take ds2 in a 
symmetric form (4.56): ds2 = 2 dt dp + 2 dTJ dq 
+ 2h (t,TJ)dt dTJ· There is a natural choice for a null tetrad 

e l = dp + h dTJ, e2 = dt, e3 = dTJ, e4 = dq. The only non
vanishing component of the curvature is that of the anti-self
dual Weyl spinor Ciiii = hS71 #0 [Eq. (1.11)]. (If this vanish
es we have a flat space.) Assuming da = 0, one can solve 
(3.12) easily. Indeed, from Lemma 3.2 (ii) it follows that a AB 
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= aAkB, wherekB can be taken in the form ofk A = 81, and 
Eq. (3.12) is reduced to daB = (l/v1)aB(a l dTJ + a 2 dt). Let 
ql: = TJ and q2: = t· Then a = - d (In ¢), where ¢ is of the 
form 

(4.57) 

with I A being a constant "spinor" or any other obtained from 
(4.57) by a translation qA -rllA + fA' fA = const (this agrees 
with that in Ref. 10). 

One can check also, that a system of equations (3.12), 
(3.13) does not have solutions such that da # O. 

Example 2: We present now an example of a heavenly 
space admitting a nontrivial generalized canonical family of 
self-dual congruences of null strings such that da#O. 

Take a solution of(4.5) in the form 7 = (v113)<p3/2. Then 
from (4.48) and (4.49) ii can be found: 

ii = v1 (x + x) y2 + 4y + y(y - 4jJ)I/2 (4.58) 
3 [y + (y2 _ 4y)I/2] 1/2 

Next the expression for ds2 follows. 

dr = Y2 {2 dx dY 
[y + (y2 _ 4y)I/2] 1/2 

+ dY[(Y + (y2 _ 4y)I/2)1/2 dx _ x + x dY]}. 
(y2 _ 4y)I/2 

Then working in a null tetrad gauge of the form 

e l = ",-I dx, e2 = ",-I dY, e3 = ~",-I dy, 

e4=.I,-I{[y+(y2_4Y)I/2]dX- x+x dY}, 
'f/ (y2 _ 4y)1I2 

where", is defined by ",2 = (l/v1)[y + (y2 - 4y)1I2]1/2, one 
infers that the only non vanishing components of CABCb are 

C _ 2~ 
1222 - (y2 _ 4y)3/2 

and 
c = 2(x + x) [611 + 5(y2 _ 4y-)1/2].I,2. 

2222 (y2 _ 4y)5/2 'J 'f/ 

Hence the algebraic type of the conformal curvature is 
[ - ] X III. We notice also that a [Eq. (4.52)] is of the form 

a = - d In(x + x) + ~ In[y + (y2 - 4y)I/21,y dy 

_ ~ In[y + (y2 - 4y)I/21,)I dY, 
and soda#O. 

5. CONCLUSIONS 

The "projective extensions of heavens" do not exhaust 
all left conformally flat spaces. In this context it is important 
to have covariant means to distinguish them among all those 
spaces. The integrability conditions as stated in Sec. 3 pro
vide such means. 

What makes the "projective extensions of heavens" 
especially interesting is the fact that they admit generalized 
canonical families of congruences of null strings which are 
"very close" to nonexpanding congruences in "heavens." 
One can think therefore about twistor's constructions as 
those for heavens,4 in which the structure of a projective 
twistor space is determined by the null strings organized into 
congruences of a generalized canonical family. In this re
spect it is interesting to point out that for some heavens, 
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specified in Sec. 4, more than one twistor's construction 
could be available. It is to be noticed also that to describe the 
congruences of a generalized canonical family in a heaven 
one could follow the method used in Ref. 13, where nonex
panding congruences have been investigated. In fact, in Sec. 
4 a null tetrad has been found in which (2.13) holds [formulas 
(4.8) and (4.51)]. Performing then arbitrary, constant heav
enly transformations one could generate all congruences in 
terms oftheir two-forms (.2' = kAkBSAB). 
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Modem proofs of two theorems of Geroch (spinor spacetimes and globally hyperbolic spacetimes 
are parallelizable) and a theorem of Stiefel (orientable 3-manifolds are parallelizable) are given, 
using the computationally efficient obstruction theory of algebraic topology. These techniques 
also easily show that, in fact, Geroch's second theorem is a corollary of Stiefel's theorem. 

PACS numbers: 04.20.Cv, 02.40.Re 

I. INTRODUCTION 

One of the fundamental theorems in the development of 
differential topology is that of Stiefel I: every compact orien
table 3-manifold is parallelizable. In general relativity, Ger
och2 proved two similar theorems: every spinor spacetime 
and every orientable globally hyperbolic spacetime is paral
lelizable. As Geroch pointed out, due to a peculiarity of 4-
manifolds, his first theorem actually shows that every non
compact spin 4-manifold is parallelizable. In this paper, I 
give a unified exposition of these theorems using modem 
obstruction theory, and show that Geroch's second theorem 
is a corollary of Stiefel's theorem, as extended to possibly 
noncompact 3-manifolds. 

That a modem treatment might be desirable was point
ed out to be by several people, including a few physicists, 
who had encountered some difficulties in trying to under
stand the original proofs. Stiefel, in fact, introduced his fam
ous characteristic class to prove his theorem, and did not 
have any obstruction theory available; he was creating it. 
Geroch's proofs use obstruction theory, but the modem 
form of the theory was only beginning to take shape at that 
time. 

The background necessary for this paper consists ofba
sic algebraic topology and some knowledge of classifying 
spaces for vector bundles. At present, there is no one source 
for all this, but the present author and C. T. J. Dodson are 
currently preparing an introductory treatment for physicists 
and other nonspecialists. Our attitude is that one might as 
well have the best available apparatus for computations, 
whether or not one proves all the big theorems. In this spirit, 
Sec. 1 contains the necessary theoretical equipment for mak
ing the computations, which are then carried out in Secs. 2 
and 3. 

Notation and terminology are standard; see Refs. 3-5. 
For example, 1TdX) denotes the k th homotopy group of X 
with respect to the fixed base point (see Sec. 1), and H k (X; 1T) 
denotes the k th cohomology group of X with coefficients in 
the (abelian if k > 1) group 1T. As the notation suggests, our 
coefficients will frequently be homotopy groups. The classi
fying space for the group G is denoted by BG. 

II. SOME OBSTRUCTION THEORY 

All spaces throughout this paper are assumed to be CW 
complexes. We shall also assume that some O-cell has been 
distinguished as the base point. All maps are assumed to be 
base-point preserving. 

Lemma 1.1: Given a space X and an integer n ;;;.0, there 
exists a space X [nl, the nth Postnikov section, tn : X _ X [n l, 

and Pn :X [n l_ X [n - II for n;;;.l, such that 
(1) (x[nl,X) is a relative CW complex with cells in di-

mensions ;;;.n + 2; 
(2) 1Tk(x[nl) = 0 for k;;;.n; 
(3) tn# : 1TdXj-1Tk(x[n l) is an isomorphism for k;;;.n; 
(4)Pn is a fibration with fiber K (1Tn (X), n). 

For a proof, see, for exmaple, Ref. 3. 
Recall that K (1T, n) is the unique (up to homotopy type) 

space with 1Tn(K(1T, n)) = 1T and 1Tk(K(1T, n)) = 0 for k #n. 
The spaces and maps [x[nl,Pn} fittogetherto form the Post
nikov towerofX. It is not difficult to show that X ~ l~ X [n l , 

where ~ denotes homotopy equivalence, so the X [n] can be 
considered as approximations to X. It is convenient to think 
of them as "dual" to the n-skeleta of X. 

There is a generalization of Postnikov towers to fibra
tions, the Moore-Postnikov decomposition, which is used in 
studying the existence of liftings. 

Lemma 1.2: If P : E_ B is a fibration with fiber F and B 
connected, then there exist fibrations Pn : E [n]_ E [n - I] for 
alln;;;'landmapshn :E_E[nlwithPnhn =hn_ 1 suchthat 

(1) E [01 = Band ho = P; 
(2) the fiber ofpn is K (1Tn(F), n); 
(3) hn# : 1Tk (E) _ 1TdE [nl) is an isomorphism for k<n; 
(4) qn : = PI P2 ... Pn : E [n] - B induces isomor-

phisms, 

1Tk (E[n l)-1TdB) for k>n; 
(5) if F[n l is the fiber ofqn' then [hn IF: F _F[n]} de

fines a Postnikov tower of F. 

For a proof, see, for example, Refs. 3 and 6. 
There is also the relation of K (1T, n) to reduced ordinary 

cohomology. 
Lemma 1.3: ifn(x; 1T)~ [X, K(1T, n)] and this isomor

phism is natural. Here [ , ] denotes homotopy classes of 
maps. Recall that if n = H n for n;;;.1 and that rank(if 0) 
= rank(H 0) - 1. 

Now consider the problem: Is/: X _ Yinessential (i.e., 
homotopic to the constant map)? We shall say that/is n
trivial iff tn / : X _ y[n l is inessential. 

Lemma 1.4: If dim X = n < 00, then/is n-trivial iff/is 
inessential. If/ is (n - 1 )-trivial, there is defined tJ n (f) 
~ if niX; 1T n (Y)), the n-dimensional obstruction; / is n-tri
vial iff 0 E tJ n(f). See Ref. 3, p. 165ffor a proof. 

597 J. Math. Phys. 25 (3), March 1984 0022-2488/84/030597-03$02.50 @) 1984 American Institute of Physics 597 



                                                                                                                                    

We shall also need the first Postnikov invariant of a fi
bration. In the Moore-Postnikov decomposition of Lemma 
1.2, let X be a space and consider the map [X, E ] 
- [X, E [nl] induced by hn • It follows from (3) of Lemma 1.2 
that this map is bijective if dim X <,n. Thus in this dimension 
range a map X _ B lifts to X _ E iff it lifts to X _ E [n l • 

Suppose now that the first nonzero homotopy group of F is 
'TTn, (F). By the universal coefficient theorem,s the Kronecker 

index ( , > provides an isomorphism H n'(F, 17") 

- Hom(Hn, (F), 'TT) for abelian 17". Let h:'TTn, (F)-Hn, (F) be 

the Hurewicz isomorphism.3 An element vlEH n'(F;'TTn, (F)) 
such that (VI' > = h -I E Hom('TTn, (F), H n, (F)) is called a 
fundamental class of F. 

To make use of fundamental classes, we shall need the 
transgression l' :D _ H n + I(B; 'TT), where D~ H n(F; 'TT). For 
a complete discussion, see [Ref. 7, p. 132ffj; other than the 
fact that it is a homomorphism as indicated, the only thing 
we shall need is the Serre exact sequence. 

Lemma 1.5: If F - E _ B is a fibration with F and B 
connected, ifii;(F; 'TT) = ° for i<,t, and ififi(B; 'TT) = ° for i<,s, 
then for n <,s + t - 1 the following sequence is exact: 

'" _ H n - I(E; 'TT) 

T 

_Hn-I(F; 'TT) _Hn(B; 'TT) _Hn(E; 'TT) .... 

Here and in what follows we assume that 'TTl (B ) acts trivially 
on H *(F; 'TT) i.e., that the fibration is orientable with respect 
to the coefficients 'TT. This will always be the case in our appli
cations and implies that a fundamental class V is transgres
sive; i.e., lies in D. 

Returning now to a fundamental class 

VI E H n'(F; 'TT nl (F)) as above, define the first Postnikov invar
iant 

k I : = 1'(vd E H n l + I(B; 17"n l (F)). 

Consider kl(f) : = f*(k I) E Hnl + I(X; 'TTnl (F)). 

Lemma 1.6: f lifts toE [nd iffkl(f) = 0. There are high
er order Postnikov invariants k i, and corresponding ki(f) 
which are sets of cohomology classes. One can show that, up 
to sign conventions, k I is the classical obstruction to extend
ing a section to the (nl + I)-skeleton. See Ref. 6 for details. 
All we need is 

Lemma 1.7: If kl(f) = ° and ifO E ki(f) for i>2, thenf 
lifts to E. 

III. SPIN 4-MANIFOLDS AND PARALLELIZABILITY 

Let X be a (smooth, paracompact) 4-manifold. Recall 
that (the isomorphism class of) the tangent bundle TX is 
determined by its classifying map T: X - BO(4), where 
BO(4) is the classifying space for vector bundles of fiber di
mension 4; similarly, there are classifying spaces BSO(4) for 
oriented bundles and BSpin(4) for spin bundles.8 Thus X is 
orientable iff T lifts to BSO(4) and further admits a spin 
structure iff T lifts to BSpin(4). Recall that 
H *(BO(4); Z2) 2!:Z2[WI,W2,W3,W4]' 
H *(BSO(4); Z2) 2!:Z2[W2,W3,W4], and 
H *(BSpin(4); Z2) ~Z2[W4]' where Wi is the ith universal SHe-
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fel-Whitney class and the notation indicates polynomial al
gebras in certain of these classes.4 

Theorem 2.1: A 4-manifold X is orientable iff W I (X) = ° 
and further admits a spin structure iff w2(X) = 0. 

Proof To be orientable, there must be a lifting of T from 
BO(4) to BSO(4). We have a fibration 0(1) _ BSO(4) 
- BO(4). Now 0(1) is aK(Z2'0), and one may check that 
1': if O(O( 1); Z2) _ H I(BO(4); Z2) is an isomorphism so 
k I = WI' Then kl(T) = WI(X), 

If now X is orientable, then we may assume 
T: X _ BSO(4). Recall that we have an exact sequence 
1 - 0(1) - Spin(4) - SO(4) _ 1, which gives rise to a fi
bration BO(l) - BSpin(4) _ BSO(4), and that BO(l) is a 
K (Z2' 1). Now H I(BSpin(4); Z2) = H 2(BSpin(4); Z2) = ° so 
by Lemma 1.5,1': H I(BO(l); Z2) _H2(BSO(4); Z2)isaniso
morphism. Thus k 1= W2 and kl(T) = W2(X), 

In either case, the conclusion now follows via Lemma 
1.7 and the fact that the existence of a lifting implies the 
vanishing of the relevant classes. 

Theorem 2.2: A noncom pact spin 4-manifold is paralle
lizable. 

Proof Let T: X - BSpin(4) be the classifying map as 
before. Recall that the first nonzero homotopy group is 
'TT4(BSpin(4)) ~ Z Ell Z. But X is noncompact so 
H4(X; Z Ell Z) = 0, whence ° E & niT) for 1 <,n<,4 and by 
Lemma 1.4, Tis inessential. Therefore, X is parallelizable. 

Corollary 2.3 (Geroch2
): A noncompact 4-manifold 

which is orientable admits a spin structure iff it is paralleliza
ble. 

Geroch was actually looking at noncom pact Lorent
zian 4-manifolds X which were time and space orientable, so 
that T: X _ L (4), the identity component of the Lorentz 
group. Instead ofSpin(4), one considers SL(2,C) and refers to 
spinor structures rather than spin structures. Here it is also 
true that the first nonzero homotopy group is 
'TT4(BSL(2, C)) 2!: Z, so the argument of Theorem 2.2 still ap
plies. Letting 2!: denote homeomorphism, 
SL(2, C) 2!: Spin(3)XR3 and Spin(4) 2!: Spin(3)XS3. It fol
lows that for noncompact 4-manifolds, there is a bijective 
correspondence between spin and spinor structures, which 
fact was pointed out by Geroch (Ref. 2, p. 1740). 

IV. ORIENTABLE 3-MANIFOLDS AND GLOBALLY 
HYPERBOLIC SPACETIMES 

We shall need the fact that if X is a 3-manifold, then 
w2(X) = wl(Xf For compact X, one may show this using 
Wu's formula (Ref. 4, p. 132). For noncompact X, the same 
argument goes through provided that singular homology 
with finite chains (the usual kind) is replaced by singular 
homology with infinite chains. Since Poincare duality is used 
to establish Wu's formula, it must also be redone. But it is 
easy to check that one need only replace compactly support
ed cohomology with ordinary cohomology and ordinary ho
mology with infinite chain homology in A9 (Ref. 4, p. 278), 
and then "dualize" their proof. 

Theorem 3.1 (Stiefel l): An orientable 3-manifold X is 
parallelizable. 

Proof Since X is orientable, it will suffice to produce a 
globa12-frame; i.e., a section of the bundle with fiber V2(R3

), 
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the set of2-frames in R3. Indeed, this splits TX into an orien
table plane bundle plus a line bundle which is thus also orien
table, hence trivial. 

Let T: X ........ BSO(3) be the classifying map for the tan
gent bundle. Now 1TI(V2(R3

)) ~ Z2 and this diagram com
mutes [recalling V2(R3

) ~ SO(3)], 

;"IBr3); Z,) 

H I( V2(R
3

); Z2) ___ ... H 2(X; Z2) 

so kl(T) = w2(X) = W[(X)2 = O. Since 1T2(V2(R3)) = 0, it fol
lows by Lemma 1.7 that a lifting of lx, or a globaI2-frame, 
exists. 

Corollary 3.2 (Geroch2
): An orientable globally hyper

bolic 4-manifold is parallelizable. 
Proof We know that X ~ RXS, whereSis an orienta-
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ble (since X is) 3-manifold. By Theorem 3.1, Sis paralleliza
ble; hence so is X. 
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Isometries compatible with asymptotic flatness and admitting radiation are studied by using 
Bondi's formalism. In axially symmetric space-times, the only second allowable symmetry that 
does not exclude radiation is boost symmetry. The boost-rotation symmetric solutions describe 
"uniformly accelerated particles" of various kinds. The news function is restricted by a 
differential equation; however, it need not vanish, as has been claimed in the literature. If two 
Killing fields corresponding to null rotations at null infinity are present, then it is shown that the 
vacuum field equations imply a further isometry. The resulting space-time is a plane wave. 

PACS numbers: 04.20.Cv, 04.20.Jb, 04.30. + x 

1. INTRODUCTION AND SUMMARY 

It is ofinterest to know which isometries are compatible 
with asymptotic flatness when radiation is present. 1.2 Berez
divin and Herrera3

,4 claim that "in an axially symmetric as
ymptotically flat vacuum space-time, the existence of an
other isometry causes all possible solutions to be 
non-radiative." Work by Bicak,5 the example of the C-met
ric,6.7 and more general solutions8 are in striking contradic
tion to this claim. The main purpose of this paper is to re
solve this contradiction and to demonstrate that if, in 
addition to the axial symmetry, another isometry is assumed 
in an asymptotically flat space-time, then this has to be a 
boost symmetry in order that radiation may exist. The boost
rotation symmetry is present in all the examples mentioned 
above. What we mean precisely by an "asymptotically flat 
space-time" is explained at the beginning of Sec. 2 [below 
Eqs. (2)-(7)]; our assumptions imply that at least "the piece" 
of the null bondary f+, as defined in Ref. 2, exists. 

Rather than employing quantities defined directly on 
f+, as the authors of Refs. 1 and 2 do, Berezdivin and Her
rera3 analyze the asymptotic form of the Killing equations in 
space-time, extending the original work ofSachs.9 By using 
this method we show in Sec. 2 that in an axially symmetric 
space-time with at least a local f+, another Killing vector 
has to be either a translation-which then (Sec. 3) implies 
that the Bondi news function lO vanishes (i.e., the absence of 
radiation)-or it has to be a boost Killing field. In the case of 
boost symmetry, the news function is only restricted by a 
differential equation,but it need not vanish. The work ofBer
ezdivin and Herrera3

,4 contains errors in the asymptotic ex
pansions of the Killing equations which lead to the incorrect 
conclusion that the news function vanishes in an axially sym
metric space-time when another isometry is present. More
over, Berezdivin and Herrera do not find the solution of the 
Killing equations-even in the leading terms in the expan
sions in powers of a luminosity distance-so that the charac
ter of the additional isometry remained undetermined in 
their work. 

Space-times admitting boost-rotation symmetries are 
described by metrics ll ,5,8 

-) Permanent address: Department of Mathematical Physics, Faculty of 
Mathematics and Physics, Charles University, V. HoleSovickach 2, IS000 
Prague S, Czechoslovakia. 

g = _ e'" dp2 - p2e -I' dcp 2 + (Z2 _ t 2)-1 [(z2e1i- _ t 2e"') dt 2 

- (re'" - t 2e1i-) dz2 + 2zt (e'" - eIi-) dz dt ], (1) 

where f-l(p2 ,z2 - t 2) is a solution of the flat space wave equa
tion and A is determined in terms of f-l by quadrature; in 
Minkowski space, {t,p,z,cp J are cylindrical coordinates. So
lutions exist admitting f+.8 The detailed analysis of boost
rotation symmetric space-times will be given elsewhere; 
some new solutions ofthis type are contained in Ref. 12. 
Here (in Sec. 3) we shall just write down the news function 
which can be inferred from Ref. 5. Although that work was 
motivated by specific boost-rotation symmetric solutions of 
Bonnor and Swaminarayan, 11 the concrete form off unctions 
f-l and A in (1) was not used during the derivation of the news 
function. This news function is shown to satisfy the differen
tial equation implied by the existence of the boost Killing 
vector field. 

If one assumes that Bondi's form of the metric takes 
values for all azimuthal angles cp but only for some interval of 
lattitudes e (i.e., not necessarily on a whole sphere), f+ has 
only a "local" character and it need not even have the topol
ogy S2XR. In Refs. 1 and 2, a general, detailed study of 
symmetries compatible with f+ and radiation is given 
(without the assumption of axial symmetry). Most of theo
rems proved there assume that f + is toplogically S 2 X R. 
Then the Lie algebra .!t' of symmetries is a subalgebra of the 
Bondi-Metzner-Sachs Lie algebra, and .!t' h (where 1" is the 
space of translational Killing fields) must be a Lie subalgebra 
of the Lorentz Lie algebra. 1.2 All three-parameter subgroups 
of the Lorentz group not treated in Refs. 1 and 2 contain an 
abelian two-parameter group of null rotations. 13 In Sec. 4 we 
show that this case leads only to a plane wave. 

The case of a "local f+" with a preferred rotational, 
hypersurface orthogonal Killing vector is exceptional. In 
Bondi et al.'s paperlO it is established, that in this case the 
asymptotic symmetry group is a subgroup of the BMS 
group. This is done purely locally, i.e., the whole S2 is never 
used. The geometrical reason for this possibility is that con
formal rescalings of de 2 + sin2e dcp 2, whichpreserveJ /Jcpas 
a Killing vector, are of the form k (e), where k (e) is deter
mined by a boost. Hence relative to a chosen J /Jcp Killing 
vector, Bondi news and translations have an invariant mean
ing even locally. 

Let us also note that, assuming Bondi's metric and ex
pansions, we exclude the cylindrical case (cf. Ref. 14 for the 
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modifications of Bondi's method for cylindrically symmet
ric metrics). 

The results of Refs. 1 and 2 and of this paper show that 
(1) axisymmetry generated by a hypersurface orthogonal ro
tational Killing vector, (2) existence of at least a piece of f+, 

(3) presence of radiation, and (4) the assumption of a further 
Killing field lead uniquely to the boost-rotation symmetry. 
We conjecture that the same is true also in the case when the 
rotational Killing vector field is not hypersurface orthogo
nal. An example of an exact solution with this property is 
available: the C-metric with rotation. 15 

Iff + has topology S 2 X R, the only remaining case of a 
two-parameter group is a nonabelian group acting on f + as 
a null rotation and a boost. Nothing seems to be known 
about this case. If it turns out to lead to flat space-time (as in 
the case of two null rotations), then the boost-rotation sym
metric solutions will probably long remain as the only exam
ples of exact radiative solutions available for testing both the 
general theory of the asymptotic structure of space-time and 
various approximation methods. 

2. AXIALLY SYMMETRIC SPACE-TIMES WITH 
ANOTHER ISOMETRY 

Consider an axially symmetric space-time with circular 
group orbits; denote the corresponding Killing vector field 
by a la,p. We assume this vector field to be hypersurface or
thogonal. Assuming then that at least the "piece of f+" (as 
defined in Ref. 2) exists, one can introduce Bondi's coordi
nate system 1 u,r,e,,p J =1 X O 

,x1,X2 ,x3J, and the metric satisfy
ing vacuum field equations can be written in the form 10 

dfl = (Vr- I e2/3 - U 2?~Y) du2 + 2e2/3 du dr 

+ 2U?e2y du de - ?(e2Y de 2 + e - 2y sin2e d,p 2).(2) 

Functions entering the metric have the following asymptotic 
forms at r----+oo (commas denote partial derivatives): 

y = c(u,e)r-I + 0(r-3), (3) 

U = - (c. o + 2c cot e )r- 2 + 0 (r- 3
), 

V= r - 2M(u,e) + O(r-I), 

p = - !c2r- 2 + 0 (r- 4
). 

(4) 

(5) 

(6) 

The mass aspect M (u,e ) is connected with the news function 
c.u by the relation 

M.u = - c~u + !(c.oo + 3c.o cot e - 2c).u . (7) 

However, we shall not assufhe that the space-time admits 
f+ with topology S2XR. We assume that Eqs. (2)-(7) are 
valid for all ,pEr 0,21T) but only in some open interval of e, i.e., 
not necessarily on the whole sphere. In particular, the "axis 
of symmetry" (e = 0,1T) may be singular; thus, the regularity 
conditions that 

v, p, U Isin e, ylsin2e (8) 

are regular functions of cos e at cos e = ± I need not be 
satisfied for any retarded time u. If, for example, Eqs. (2)-(7) 
were satisfied for all u and all e except for e = 0,1T, then only 
"local" f+ as defined in Ref. 2 would exist, because two 
generators of f+ would be missing, and f+ therefore 
would not even be topologically S2XR. 
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A simple example of such a space-time is the special 
case of the metric of Bonn or and Swaminarayan II describing 
two "particles," symmetrically located with respect toz = 0, 
and "uniformly accelerated" along the z axis. In general, 
stresses (usually referred to as "conical singularities") ex
tending both to infinity and between the particles exist (Fig. 
1). The metric is of the form (I) with specific functions f..l and 
A; however, these are determined up to additive constants, 
and the above situation arises with a general, arbitrary 
choice of these constants. 

Let us now assume that another Killing vector field 1] 
exists in space-time and forms together with $ = a I a,p a two
parameter group. Consequently, their commutator is of the 
form 

(9) 

where a,b are constants. It is then easy to prove the follow
ing: 

Lemma: Let $ be a vector field with circles as integral 
curves; 1] another vector field such that [1],$] = a1] + b$, a 
and b constants. Then $ and 1] determine an abelian Lie alge
bra. 

Proof If we choose coordinates adapted to $ such that 
5' = (0,0,0,1), then (9) implies 

_1]i.¢ = a1]i for i = 0,1,2 

and 

- 1]3.¢ = a1]3 + b. 

Integrating, we find 

1]i = 1ji(.xJ)e - a¢, 1]3 = 1j3(.xJ)e - a¢ - b la. 

Since we can always consider the Killing vector field 
1]a + (b la)$ a instead of the original1]a, we may put b = ° 
without loss of generality so that 

1]a = 1ja(.xJ)e - a¢. (10) 

However, since axial symmetry requires 
1]a(,p ) = 1]a(,p + 21T), the constant a must be zero. 

Therefore, we assume [1],$] = ° and in Bondi's coordi
nates (which are adapted to $ ) the components 1]a are inde
pendent of ,po 

Introduce the standard null tetrad field 16 

1 ka ,ma ,r ,r J (with bar denoting complex conjugation), 
where 

z 

FIG. I. Two particles, symmetri
cally located with respect to 
z = 0 and uniformly accelerated 
along the z axis. Stresses (conical 
singularities) extending both to 
infinity and between the particles 
exist in general; two generators 
of f+ are then missing. 
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ka = aau, maka = 1, mama = 0. 

The complex vector (subscripts R and I denoting the real and 
imaginary parts) 

t a = t~ + it~ 
satisfies t a'i.x = - 1, t ata = taka = t ama = 0. A conven
ient choice of the tetrad vectors is given by 

ka = [1,0,0,0], k a = [O,e - 2.8,0,0], 

ma [(V /2r)e2P,e2.8,0,0], ma = [1, - V /2r,U,0], 
(11) 

ta = [~( 1 + ijUreY,O, - ~(1 + i)reY, - ~(1 - i)r sin ° e - Y], 

t a = [0,0,!(1 + i)e-Y/r, ~ (1 - i)eY/rsin 0]. 

It can be easily checked that gaP = 2kla mpi - 2Ilatpi' where 
gaP is given by (2). 

Now decompose the Killing vector field ",a into this 
tetrad3 

",a =Ak a + Bma + Cta + CIa; (12) 

here, A,B,C = C R + iC/ are general functions of u,r,O. One 
can write the Killing equations 

L1/gaP = ° (13) 

explicitly by inserting (12) for ",a and using the simple prop
erties of the Lie derivative (Lx + y = Lx + Ly and Laxg!-'v 
= aLxg!-,v + 2x({La.vl ' x andy vector fields, a = a scalar 

function). Defining functions 

I=CR -C/, g=CR +C/, (14) 

one can rewrite the Killing equations (13) as follows: 

O=L1/gaP =ALkgap +BLmgap +2A.la kPI +2B.la mpl 
+ I [(L,gaP)R + (L,gaph] + 2/1a [tRPI + t/pd 
+g[(L,gaP)R -(L,gap)d +2g,(a[tRPI- t/pd· (15) 

All expressionsLk gap, Lmgap , andL,gaP' with gaP given by 
(2), are contained in the Appendix of the paper by Berezdivin 
and Herrera. 3 In our appendix we give corrections to their 
expressions; and in the same appendix we write down expli
citly all the Killing equations (13) because (half of) these 
equations as given in Ref. 3 contain errors. In the Appendix 
we also allow c,b-dependent ",a. However, as consequence of 
our Lemma, we assume here ",'4 = 0. 

Inspecting now the expressions for L1/ gaP given in the 
Appendix, we observe that equations L1/g03 = L1/g 13 

= L1/g23 = ° can be rewritten as 

(geY /r sin ° ).u = (geY /r sin ° ).r = (geY /r sin ° ).8 = ° 
(16) 

so that g = const r sin ° e - Y. Then (11) and (12) imply that 
the contribution of g to the vector field ",a is just ",t/> = const, 
which is a constant multiple of the axial Killing vector a / ac,b. 
Without loss of generality, we may thus put 

g=o. (17) 

Further, we see that L1/g II = ° immediately implies that the 
function B is indepenent of r: 

B =B(u,e). (18) 

The other Killing equations are much more complicated, 
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and we shall solve them asymptotically only by assuming 
that the functions A and I can be expanded in powers of r. 
Denote by A Ik I andfk 1 the coefficients of r - k in the expan
sions. By examining the asymptotic forms offunctions (3)
(6) entering the metric (2) and the Killing equationL1/g12 = ° 
in the terms proportional to ~ with k;;.2, we find out that 
f - k 1 = 0; similarly, the equation L1/g22 = ° then implies 
A 1- kl = ° if k;;.2. Hence, the asymptoticforms of A andlat 
r--..oo are 

A =A 1-I)r+A 10) +A (I)r- I + o (r- 2), 

I = II - I)r + 11o) + /(I)r- I + 0 (r- 2), 

where A Ii) andf'l are functions of u and 0. 

(19) 

Now after substituting these expansions into the left
hand sides of the Killing equations given in the Appendix, 
taking into account (17) and (18) and the expansions ofthe 
metric functions (3)-(6), we find out that, in the leading or
ders in powers of r, the Killing equations lead to constraints 
on the leading terms in A and/but do not restrict any of 
metric functions (3)-(6); in particular, the news function c u 

remains arbitrary. The powers of r appearing in the first no~
vanishing terms on the "left-hand sides" of the Killing equa
tions are different for different equations and are given in the 
brackets. The resulting system of equations has the following 
simple form: 

L1/goo = ° 
L1/go1 = ° 
L1/go2 = ° 
L1/g22 = ° 
L1/g33 = ° 

(rl): A~u-II = 0, 

(rO): B.u + A 1- I) = 0, 

(~): 

(~): 

/
1- 11=0 .u , 

1~8-1) +A (-I) = 0, 

(~): 11- I) cos e + A 1- I) sin e = 0. 

(20) 

(21) 

(22) 

(23) 

(24) 

In the equation L1/g 12 = 0, the first nonzero terms appearing 
at rl cancel out; the other equations are satisfied in all orders 
as a consequence of(17) and (18). Now Eqs. (20) and (21) 
imply that A 1- 1) and II - I) arefunctions of e only. Applying 
a / ae to (24) and using (23), we find a simple differential equa
tion for A 1- I), 

A ~e- II cos e + A (- 1) sin e = 0, 

the solution of which is 

A I-I) = k cos e, k = const. 

Then (23) gives 

II - I) = - k sin e 
and (21) leads to 

B= -kucose +a(e), 

(25) 

(26) 

(27) 

where a is an arbitrary function of e. Therefore, (25)-(27) 
together with (17) and (11), (12), (14) imply that the Killing 
vector field ",U corresponding to another isometry in an ax
ially symmetric space-time has to have an asymptotic form 

",a = [ _ ku cos e + a(e), kr cos e, - k sin e, 0]. (28) 

Now, when k = 0, we obtain the vector field that generates 
supertranslations. 9 As we shall show in the following sec
tion, in the case k = 0, this vector field is in fact the generator 
of translations. The news functions then vanishes, and the 
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space-time is nonradiative. So assume k #0. Then we can 
find a (Bondi) coordinate system in which a = 0. Indeed, 
suppose we make a supertranslation u = u + a(e), r = r, 
fJ = e, ¢ = t/>. This implies rl = rl', 1]8 = 1]0, 1]i> = 1]~, and 

1]" = 1]u + a,01]° = - k cos e (u - a) + a - a,o k sin e. 

If the function a( e ) satisfies the differential equation 

- a,&k sin e + ak cos e = - a, (29) 
then we obtain 1]u = - ku cos e. The solution of Eq. (29) is 

a = k sin e + sin eJ+ de, 
sm e 

so that requiring 1]a to be bounded for all e, i.e., a(e) to be 
bounded, we can find the function a even globally on S2. 

Hence, we put a = ° in (28) and, clearly, without any 
loss of generality one may choose k = 1. We conclude that in 
an axially symmetric space-time admitting another isometry 
(which, as we shall see in the next section, does not exclude 
radiation), the asymptotic form of the Killing vector field 
corresponding to this isometry is determined uniquely to be 

1]a= [-ucose, rcose, -sine,O], (30) 

This is the "boost Killing vector" if, as usual, we adopt the 
terminology from flat space-time: It generates the Lorentz 
transformations along the axis of axial symmetry. Indeed, 
the boost Killing vector generating Lorentz transformations 
along the z axis in Minkowski space-time is 

1]~ = (z,O,t,O) (31) 

in cylindrical coordinates (t,p,z,t/> ). Introducing spherical co
ordinates (r,e,t/> ) by z = r cos e,p = r sin e and retarded time 
u = t - r, we get the vector field 

1]~ = [ - u cos e, r(l + ulr) cos e, - sin e(l + u/r),O], 
(32) 

which goes over to (30) as r-+oo. 
We have thus demonstrated the following. 
Theorem: Suppose that an axially symmetric vacuum 

space-time (with circular group orbits and with a hypersur
face orthogonal Killing vector) admits a "piece" of J+; i.e., 
suppose that the Bondi coordinates can be introduced and 
that the metric is of the form (2)-(6). Suppose that this space
time admits an additional Killing vector forming with the 
axial Killing vector a two-dimensional Lie algebra. Then the 
additional Killing vector has asymptotically the form (28), If 
k = 0, it generates a supertranslation; if k # 0, it is the boost 
Killing field. 

It is of some interest to see what the form of this boost 
Killing vector onJ+ is. Introducing, instead orr, an invert
ed radial coordinate I = r- I (see Ref. 17, where I is used as 
the simplest conformal factor for obtaining the conformal 
Bondi frame on J+), we find t u = - u cos e, 
tl=-/cose 
X(1 + lu), SO = - sin e (1 + lu), ~ = 0, so that onJ+ 
(where I = 0) in {u,l,e,t/> J coordinates one obtains 

1]~f+ = [ - u cos e, 0, - sin e, 0], (33) 

From the form of the boost symmetry group orbits (Fig, 2), it 
is seen that, within the null cone of the origin (i.e., u = 0), the 
boost Killing vector generates only rotation and, in particu-
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FIG. 2. The boost symmetry group orbits. The pointsz = ± tatf+ repre
sent the fixed points. 

lar, thepointsz = ± t (i.e" e = 0) at the null boundary,J+ , 
represent the fixed points of the group orbits. Thus, compo
nents 1]~f+' Z = ± t, should be zero there. This is precisely 
what happens with the expression (33) for u = ° and e = 0, 
Of course, in the case of the boost-rotation symmetric solu
tions (1) the boost Killing vector field also has the asymptotic 
form (32); however, this is not so easy to see since the intro
duction of Bondi's coordinate system is not straightforward 
in this case.5 We shall tum to this question in the next sec
tion. 

3. CONSTRAINTS ON THE NEWS FUNCTION 

Let us now investigate the asymptotic form of the Kill
ing equations in the next orders in r" when in these equations 
the components of the Killing vector field already get mixed 
with the metric functions appearing in (3)-(6). Recall that all 
functions are independent of t/> and that the equations 
L"go3 = L1)g\3 = L1)g23 = ° are satisfied exactly by g = 0. 
Expanding the other Killing equations (as given in the Ap
pendix) to one order in r" beyond that used to derive Eqs. 
(20)-(24), and recalling our previous resultlu- I) 

= A ~u- I) = ° [see (20), (22)], we find the following system of 
equations: 

L1)goo = ° (rO): B,u +A ~~) = 0, (34) 

L1)g02 = ° (rl): I(-I)e,u -l~) +A ~&-I) = 0, (35) 

L1)g12 = ° (rO): _/(-l)c +/(0) +B,& =0, (36) 

L1)g22 = ° (rl): A (0) - JJJ = - JlO) - Be 
.... ,8 ,u' (37) 

L1)g33 = ° (rl): A (0) -!B = 2cjl-l) cot e 

+ c oJ( - I) - 1(0) cot e + Bc . 
, ~ 

(38) 

The equation L1)gol = ° is satisfied automatically for the 
terms proportional to r- I, which is the next order in com
parison with that from which (21) was obtained, If (20)-(24) 
and (34)-(38) are satisfied, then the Killing equations are sat
isfied asymptotically for the first two nontrivial orders of the 
expansions in r" . Now the general solution (25)-(27) of (20)
(24) has not yet been used in (34)-(38). In Sec. 2 we saw that it 
is necessary to distinguish two cases: k = 0, when the Killing 
vector field is asymptotically a supertranslation, and k #0, 
when it is the boost Killing vector. 
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A . Supertranslatlonal Killing field 

If k = 0, then from (25)-(27) we have 

A (-I) =/(-1) = 0, B = a(O), (39) 

where a is an arbitrary function of 0; as we shall see, how
ever, a will be restricted by Killing equations in further or
ders. First notice that (34), (35), and (36) imply 

A (01 =/(01 =0 I(O)=-B 
,u ,u' ,0" (40) 

Taking a lau of either (37) or (38), we see that 

e,uu = o. (41) 

Hence, the radiation field-the leading term ( - r - I) in the 
expansion of the Riemann tensor-vanishes. 10 We shall now 
show that e.u , the news function itself, has to vanish. In order 
to prove this, we have to solve the Killing equations in 
further orders. Assuming (37), (40), (41) and expanding 
L"gJ.lv into the higher orders in r", we find [examining again 
(3)-(6)] the following equations: 

L"goo = 0 (r- I
): A ~~I = 0, (42) 

L"gol = 0 (r- 2): - B,o (e,o + 2e cot 0 ) - Bee,u 

- A (I) - BM = 0, (43) 

L"go2 = 0 (rO): -B e -/(l'+VI +A(OI=O ,8 ,u ,u ,8 ,8 , (44) 

L"g12 = 0 (r- I
): 1(1) - B (e,o + 2e cot 0) = 0, (45) 

L"g22 = 0 (rO): 1(1) - B,oo + A (II + eA (0) - ~e 

+ BM - B (e,o + 2e cotO ),0 = 0, (46) 

L"g33 = 0 (,0): 1(1) cot 0 + B,o(e,o + cot 0) 

- e(A (0) - ~B ) + A (I) + BM 

- B cot 0 (e,o + 2e cot 0) = O. (47) 

Now, the last equation simplifies considerably if we substi
tute for I(I) from (45) and for A (I) + BM from (43). In this 
manner we obtain 

[B,o cot 0 + Be,u + A (0) - VI ] e = O. (48) 

Therefore, either e = 0 or the expression in the square brack
ets has to vanish. Consider first e = O. Then, of course, the 
news function vanishes. Comparing (37) with (38) (with 
jI-l) = e.u = 0), we find 

1(0) = a sin 0, a = const, 

and (40) gives 

B = a cos 0 + b, b = const. 

(49) 

(50) 

Since the general form of the Killing vector field 1]a is [see 
(11), (12), (14), and (17)] 

1]a =[B, Ae- 2
{J -BVI2r, BU+le-rlr, 0], (51) 

we find that, asymptotically, it now reads 

'T}a = (a cos 0 + b, - a cos 0, a sin Olr, 0). (52) 

Hence, the Killing vector field generating supertranslations 
actually only generates translations (with a = 0 the time 
translation, with b = 0 the translation along the z axis). 

Returning to Eq. (48), we next suppose that the expres-
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sion in the square bracket vanishes: 

B,e cot 0 + Be.u + A (0) - VI = O. 

From (39), (40), and (38) it then follows that 

A (0) - ~B = O. 

Equation (37) withf'°l = - B.e [see (40)] gives 

B,ee = Be,u 

(53) 

(54) 

(55) 

and the comparison with (53) and (54) leads to the equation 
for B(O): 

B,eo + B,o cot 0 = O. (56) 

There are two independent solutions. The first one, 
B = const, gives immediately [for example, from (55)] e,u 
= 0; from (51) and (54) we see that the Killing field 1]a is of 

the form (52) with a = 0; i.e., it is a time translation. The 
other independent solution of (56) is 

B = const log(tan (12). (57) 

This solution is irregular on the axis 0 = 0,1T. However, it is 
not even locally the solution of the system (42)-(47). In fact, a 
nonlinear differential equation of the fourth order can be 
derived for function B (0 ) if we apply a/au to (43), express 
M,u from (7), A ~~I = 0 by (42), and express e," in terms of B 
using (55); one finds e," = - cos 0 [sin20 log(tan 0 12W- 1

• It 
can be checked by straightforward calculations that the 
fourth-order equation for B is satisfied by the solution (50) 
but not by (57). Therefore, we have demonstrated the follow
ing. 

Theorem: Ifin an axially symmetric vacuum space-time 
with at least local f + another Killing field exists of the form 
(28) with k = 0 (i.e., it generates a supertranslation), then this 
field must, in fact, be the generator of a translation, and the 
news function must vanish. 

Analogous results were proved in Refs. 1 and 2 using 
concepts defined directly on .f+ and without assuming axi
al symmetry (see Lemma 1.4 in Ref. 1 and Lemma 3.5 in Ref. 
2), Although our derivation is restricted to axial symmetry, 
it is local. Thus, we did not even have to assume that f+ is 
topologically S 2 X R as in Refs. 1 and 2. 

B. The boost Killing vector 

Now consider the case when k #0 in (28). We know 
already that we may put k = 1 and a = 0 without loss of 
generality. The Killing vector field has asymptotically the 
form (30)-it generates the boost along the z axis. Before 
writing down the differential equation which the news func
tion has to satisfy and demonstrating that the news function 
of the boost-rotation symmetric solutions (1) really does sa
tisfy this equation, let us show how the wrong conclusion of 
Berezdivin and Herrera3

,4 (that the news function has to van
ish) was reached. Berezdivin and Herrera do not give the 
solutions (25)-(27) of the Killing equations (in the first orders 
in r) but they apply a 2/au2 to both (37) and (38), and use the 
remaining Eqs. (20)-(24) and (34)-(36). However, their Eq. 
(40d) in Ref. 3 [and Eq. (26) in Ref. 4], corresponding to our 
Eq. (38), is incorrect, since the term 2c/(-11 cot 0 is missing 
there. Performing the same procedure as Berezdivin and 
Herrera3 with the correct Eq. (38), one finds that the equa-
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tions obtained by applying a 21au2 to (37) and (38) are identi
cal, so that their comparison does not give e,uu = 0 (or 
/<-1) = 0) as claimed in Ref. 3. 

Nevertheless, the system (34)-(38) leads to a constraint 
on the news function. Regarding (20)-(24) and (34)-(38), we 
see that only Eqs. (35)-(38) contain the news function. Equa
tion (35) can be obtained by applying a lau to (36) and using 
(21). Now apply a lau to (37) and express/~~) from (35). Do 
the same with (38). The left-hand sides of the equations so 
obtained are identical, and the comparison of the right-hand 
sides gives 

e.u [/<-1) cot e + /~()-I) + 2B.u] + 2j<-l)e,u() 

- A ~()- I) cot e + A ~io I) + 2Be,uu = O. 

Substituting for /( -I), A < -I), and B, the solutions (25)-(27) 
with k = 1 and a = 0, we arrive at the following simple con
straint on the news function: 

(u cot e )e,uu + e,u() + (2 cot e )e,u = o. (58) 

In Ref. 5 the news function was derived for the solutions 
of Bonnor and Swaminarayan, II which have the form (1) 
with specific functions,u and...t. However, the concrete form 
of,u and...t was not used during the derivation. Thus expres
sion (26) in Ref. 5 represents the news function for a general 
boost-rotation symmetric space-time (1) that is asymptoti
cally flat in the sense explained at the beginning of Sec, 2. A 
detailed analysis of the properties of this news function will 
be given in a paper on boost-rotation symmetric space
times l8; for our present purposes, it is sufficient to observe 
that the news function has to be of the form 

(59) 

where Fis a general function of the argument U Isin e and U 
is "flat-space retarded time" defined by U = t - r; the time 
coordinate t enters the metric ( 1), and p,z,¢ in (1) are connect
ed with Bondi's r,e,¢ just by p = r sin e, z = r cos e, ¢ = ¢ at 
large r. (The notation in Ref, 5 is different, however: Bondi's 
retarded time is denoted by ii there and U is denoted by u.) 
The connection between U and Bondi's u and e, i,e., the 
function U (u,e ) (denoted by ihn Ref, 5), is given implicitly by 
the equation [see (25) in Ref. 5] 

u = fexp(...t o . U ) dU + e (e), (60) 
SlD e 

where...to is the leading term in the expansion of the function 
...t [entering (1)] forlargerwith u,e,¢ fixed,...t =...to + 0 (r-I), 
e (e) is an arbitrary function. As with the function Fin (59), 
...to depends only on the combination U Isin e, owing to the 
boost symmetry of the metric (1). [This point was not real
ized in Ref, 5 and will be explained in detail elsewhere, 18 but 
the reader can easily convince himself that the function...to 
(denoted by {3 in Ref. 5) does have this property and that the 
news function, given in (26) in Ref. 5, is of the form (59).] 
From (60) it follows that 

(61) 

where U,u = au lau. Using this and calculatinge,uu ande,u() 
from (59), we arrive at the equation 

(U:u)-I(U cot e - U,())e,uu + e,u() + 2e,u cot e = o. (62) 
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The equation obtained is identical to Eq, (58), which the 
news function has to satisfy as a consequence of the Killing 
equations, because 

u cot e = (U,ul-I(U cot e - U,()). (63) 

The last relation can easily be verified by applying a I au to 
both sides and taking into account (61), where it is again 
important that ...to depends only on the variable U Isin e, A 
possible additive function of e is equal to zero, which corre
sponds to the fact that we choose that system for which the 
boost Killing vector is given by (30) with the additive func
tion a(e) [cf. (28)] equal to zero, 

Indeed, in the case of the boost-rotation symmetric so
lutions (1), the boost Killing vector in coordinates! t,p,z,¢ ) 
has the same form as in flat space-time: 

TJa = (z,O,t,O). (64) 

Introducing "flat-space spherical" coordinates (r,e,¢ ) and 
U = t - r as before, we get 

TJa = [ - U cos e, r(l + U Ir) cos e, 
- sin e (1 + U Ir), 0], 

as in (32). Now since in the leading order Bondi's rand e are 
identical with "flat-space" rand e, whereas Bondi's u is re
lated with Uby U = U(u,e), it follows that TJu = - U 
X cos e = U,U TJu - U,() TJ() = - U,u u cos e + U,() sin e, 
where we have substituted for components, TJu, TJ() in Bondi's 
coordinates from (30). Dividing the last relation by U,U sin e, 
we obtain (63). 

Therefore, we can conclude that the boost Killing vec
tor of the space-times described by the metrics (1) is, asymp
totically, really of the form (30) and the news function satis
fies the differential equation (58). 

4. ABELIAN GROUP OF NULL ROTATIONS 

Since isometries in asymptotically flat space-times with 
f+ with topology S2XR act on f+ in the same way as in 
the Minkowski space-time, one may ask for other two-di
mensional abelian subgroups besides those with the boost 
and the rotation. The only possibility is the group of null 
rotations. In Minkowski space-time a basis of Killing vectors 
is 

a a 
u-+2y-, 

ay au 
a a 

u-+2x-, 
ax au 

where the coordinates are such that 

ds2 = du du - dx2 - dy2 

(65) 

(66) 

is the metric. Coordinates adapted to the Killing fields are ii, 
V, ¢, X, defined by 

u = ii, x = ii¢, y = iiX' u = ii(¢ 2 + X2) + V. (67) 

Then one gets 

ds2 = dii au - ii2 (d¢ 2 + dX2). (68) 

Comparing this with the general form of the metric admit
ting two computing spacelike, hypersurface orthogonal Kill
ing vectors,19 one observes that (68) is a special case of the 
metric. 

ds2 = et dii au - ii2(e - f' d¢ 2 + eft dX2), (69) 
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where A = A (u,ii) and J.l = J.l(u,ii). The metric (69) has the 
property that the gradient of the volume of the group orbits 
is a null vector. The vacuum field equations turn out to be 
(the conventions follow Ref. 20) 

RiJij = - ~(,u,v)2 = 0, 

Rvu = - Jp"uJ.l,v - A,uv = 0, 

Ruu = U,ulu - !(,u,u )2, 
-R t!+I'=R t!~11 

."." X¥ 

=2[U2H __ +ulI -] =0. r-,U() r-,v 

They imply that J.l is independent ofii and that 

(70) 

A = A (u) + B (ii). Rescaling ii, one observes that a liTv is a 
further Killing vector field. Space-times with an abelian 
three-dimensional group acting on a null hypersurface are 
plane waves. 19 Hence, we obtain space-times which do not 
have f + topologically S 2 X R. 

This result also sheds some light on the question posed 
in Ref. 2 in the Summary. It is not known whether space
times with f+ topologically S2 XR exist admitting a three
parameter group acting on f+ different from both the 
three-dimensional rotation group and the three-dimensional 
Lorentz group. All the three remaining groups contain a 
two-parameter group of null rotations. 13 Hence, no exam
ples exist with hypersurface orthogonal Killing vectors. 

It can be shown that a further Killing vector field is still 
implied by the field equations if one generalizes the metric 
(69) to the case when two Killing fields are not hypersurface 
orthogonal but still orthogonally transitive, Nothing is 
known in the fully general case in which Killing fields are not 
even orthogonally transitive. We conjecture that a further 
Killing field will exist in this case, too. 
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APPENDIX 

Assuming that the metric is in the Bondi form (2) and 
the vector field 1Ja is given by (11 )-( 14), the left-hand sides of 
the Killing equations L,.,gaf3 = ° read as follows: 

606 

L g =B(Vr- le2f3 - U 2re2Y) ,., 00 ~ 

+ ifr-Ie - l' + BU)( Vr- le2f3 - U 2re2Y),e 

+ (Ae ~ 2f3 _ ~BVr-l)( Vr- le2f3 - U 2re2Y),r 

+ 2B,u (Vr- le1f3 - U 2re1Y) 

- 2U/reYy,u + 2UreY!u + 2Ure1Y(BU),u 

- e1f3r- I(BV),u + 2A,u - 4Af3,u' 

L,.,gol = e2f3f3,eifr-le - Y + 2BU) + (Be1f3 l,u 

+ UeY(r!r - / - /ry,r) + Ure1YBU,r 

+ (A - ~Vr-le2f3).r' 

L,.,g02 =/r[(UeYl.e + eYy,u] - reY!u 

+ reYU!e + 2BrUe2Yy,u 
+ (Ae - 2f3 - !BVr- l)( Ure2Y),r 
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+ Vr- le2f3B,e - !r- le2f3 (BV).e 

+ 2Ure2YBU,1! + 2BrU2e2YY,e 

+ A,e - 2Af3,e, 

L,.,g03 = A,." - re - l' sin (J (g,u + gy," ) 

+ Ure'i." + ~ Vr- I e2f3 B.d>' 

L - 2f3B ,.,gll-e ,n 

L,.,g 12 = eYif + /ry,r - rfr) 

+ eZf3B,e - rezYBU,n 

L,.,g 13 = e ~ l' sin(J (g + gry,r - rg,r) + e1f3B . .", 

L,.,g22 = - 2reY[!e + rBeYy,u + UreYY.e + BreYU,e 
+ eY(Ae~2f3 - ~Vr-I)(1 + ry,r)], 

L,.,g23 = - re -- l' [g(Y,e sin (J - cos (J) 

+ g,e sin (J + e2Y!." ] , 
L,.,g33 = - 2re - 21' sin2(J [(cot (J - y,e )(rB U + /e ~ 1') 

- rBy,u + (Ae- 2f3 - !BVr-I)(1 - ry,r)] 

- 2re - l' sin (J g,." . 

In Ref. 3, there are errors inL,.,goo, L,.,gWL,.,g23,L,.,go2' 
and L,.,g03' In the Appendix of Ref. 3 [where the Lie deriva
tives of gllv with respect to the Sachs tetrad (11) are given] the 
following errors appear: the second term in L,gol contains 
the factor (1 - i), but it should be (1 + i); L k g 22 has an oppo
site sign; the second term in the brackets in Lmgoo contains 
- U 2re2f3 -that should be - U 2re2Y ; the factor B in 

L m g33 should be omitted and in L m go2 an additional term 
(Ure2y ),e U is omitted. Most of these are misprints; the cru
cial error appeared in the expansion of the Killing equation 
L tl g33 = 0, as explained in the main text. 
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This paper presents an investigation of the geometrical properties of an accelerating black hole 
embedded in a magnetic field. 
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I. INTRODUCTION 

Two most important vacuum solutions of the Einstein 
field equations are the Schwarzschild and Kerr solutions. 
Perhaps another very important vacuum solution is that of a 
uniformly accelerating object. The vacuum C-metric repre
senting this solution was first derived by Levi-Civita 1 and 
was rediscovered over forty years later by Newman and 
Tamburino. 2 The mechanism causing the acceleration of an 
object is an interesting subject of study. Kinnersley and 
Walker3 have pointed out that the two-surface surrounding 
it has a conical singularity at the north or the south pole. 
They have suggested that the nodal singularity appears due 
to the neglect of the force necessary to accelerate an object. 
Transforming the charged C-metric into another exact solu
tion of the Einstein-Maxwell field equations corresponding 
to a massive charged particle accelerated by an electric field, 
Ernst4 has shown that when the appropriate equation of mo
tion is satisfied, the nodal singularity associated with the C
metric disappears. 

Farhoosh and Zimmerman5 are, however, of the view 
that the nodal singularity is a manifestation of the uniform 
acceleration, and is not a direct consequence of the neglect of 
the force necessary to cause acceleration. They suggest5

•
6 

that the acceleration of an object is caused by the reaction of 
the emission of gravitational radiation that it anisotropically 
emits. They back up this suggestion by constructing an inte
rior C-metric. At the boundary of the interior solution, there 
exists a discontinuity in the pressure which is, they claim, 
responsible for the uniform acceleration of the object. 

Much interest is being evinced now in the study of black 
holes under realistic conditions, viz., in the presence of mat
ter or external fields. Recently Wild and Kerns 7 have studied 
the surface geometry of a Schwarzschild black hole in a mag
netic field. This has been followed up by Wild, Kerns, and 
Drish8 in an investigation of the geometry of the event hori
zon of a Kerr black hole embedded in an external magnetic 
field oriented along the axis of symmetry. In view of what 
has been stated in the preceding paragraph, the next problem 
of immediate interest would be the study of an accelerating 
black hole embedded in a magnetic field oriented along the 
axis of symmetry. An investigation of this subject is present
ed in this paper. 

II. MAGNETIZED ACCELERATING BLACK HOLE 

The static vacuum C-metric describing the gravita
tional field of a uniformly accelerating Schwarzschild-like 
object is9 

ds2 = r(F dt 2 - F - 1 dl - G - 1 dp2 - G dt/J 2), (1) 

where 

G (p) = 1 - p2 - 2Amp3 = sin2 fJ, 

F(q) = - 1 + q2 - 2Amq3, 

r = 1!(A (p + q). 

(2) 

(3) 

(4) 

HereA is the acceleration and m is the mass of the object. We 
shall be interested in the range of the coordinate p from Po to 
Prr and that of q from qr to qs' where6 

Po = - (1!6Am)[2 costA /3 + 417'/3) + 1], (5) 

Prr = - (1!6Am)[2 costA /3 + 217'/3) + 1], (6) 

cos A = 1 - 54A 2m2, (7) 

qr = - (1!6Am)[2 cos(8!3 + 417'/3) - 1], (8) 

qs = - (1!6Am)[2 cos(8!3 + 217'/3) - 1], (9) 

cos 8 = - (1 - 54A 2m2). (10) 

For A 2m2 < ft, there are two physically meaningful event ho
rizons. One is analogous to Schwarzschild surface and is 
given by q = qs. The other is called the Rindler surface and 
corresponds to q = q r' 

When embedded in a magnetic field, the metric (1) 
becomes (following a method due to Ernst JO

) 

ds2 = A 2r(F dt 2 _ F -1 dq2 _ G -1 dp2) 

- GrA -2 dt/J 2, (11) 

where 

A=I+!rB~G(p) 

and Bo is the magnetic field parameter. 

III. SCHWARZSCHILD SURFACE 

A. Gaussian curvature 

From (11) we get the two-dimensional Riemannian 
metric intrinsically defining the Schwarzschild event hori-
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TABLE I. Expression for m2K8~ ,,/2 as a function of{J for various choices 
of 54 A 2m2. 

{J ~(j3c = critical 
54A 2m2 m2K8~ ./2 value of (J) 

0 4( (J20.25)( (J2 + 0.25) 
0.25 

(I + 4{J2)4 

0.25 4.3988( (J2 - 0.2497)( (J2 + 0.2147) 
0.2497 

(1 + 4.1586{J2)4 

0.5 4.8658( (J2 - 0.2487)( (J2 + 0.1826) 
0.2487 

(I + 4.3421 (J2)4 

0.75 5.4251({J2 - 0.2468)({J2 + 0.1534) 
0.2468 

(1 + 4.5591 {J2)4 

6.1154( (J 2 - 0.2436)( (J 2 + 0.1268) 
0.2436 

(1 + 4.8231 (J 2)4 

1.25 7.0061({J2 - 0.2385)({J2 + 0.1022) 
0.2385 

(1 + 5.1583{J2)4 

1.5 8.2422( (J2 - 0.2305)( (J2 + 0.0791) 
0.2305 

(1 + 5.6149 {J2)4 

1.75 1O.2305( (J2 - 0.2170)( (J2 + 0.0565) 
0.2170 

(1 + 6.3322 {J2)4 

zon as 

ds2(event horizon) 

= A ~I ~I G -I dp2 + G~I A 01 2 dtjJ 2, 

where 

rOl = l/A (p + q,j, 

AO' = 1 + l ~I G(p)B~. 

(12) 

(13) 

(14) 

The expression for the Gaussian curvature for the surface 
defined by the line element (12) is 

K _ 1 d ( 1 dG*) 
- - 2(E*G*)1/2 dp (E*G*)'12 dp' (15) 

where 

E* =A 2~1 G- 1
, 

G* =A -2~l G. 

(16) 

(17) 

Using (15), (16), and (17) a very complicated expression for 
the Gaussian curvature K is obtained. For the equator this 

TABLE II. Expression for m2 K8 ~ 0 as a function of {J for various choices of 
54A 2m2. 

o 
0.25 
0.5 
0.75 
1 
1.25 
1.5 
1.75 
1.99 
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0.25 + 8 {J2 
0.1447 + 5.6930{J2 
0.1022 + 4.6399 {J 2 
0.0717 + 3.7768{J2 
0.0481 + 3.0000{J2 
0.0296 + 2.2660 {J 2 
0.0154 + 1.5466 {J 2 

0.0052 +0.8138{J2 
0.000 04 + 0.037 99 {J2 
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TABLE III. Expression for m2K8~" asa function of{J for various choices 
of 54 A 2m2. 

o 
0.25 
0.5 
0.75 
o 
1.25 
1.5 
1.75 

0.25 + 8 {J2 
0.3409 + 10.0791 {J2 
0.3676 + 10.8913 {J 2 
0.3808 + 11.4983 {J 2 
0.3849 + 12.0000{J2 
0.3808 + 12.4350{J2 
0.3676 + 12.8230{J2 
0.3409 + 13.1754{J2 

expression reduces to 

m2K(J~7I'/2 

{ fj2}4 
1 + (Amqsf 

(18) 

Here P = mBoI2 is defined to be a dimensionless distortion 
parameter analogous to the quantity used by Smarr 1 1 in his 
discussion of the Kerr solution. 

From Table I we observe that, for a fixed value of Am, 
there is a critical value Pc of the distortion parameter such 
that 

K(J~n/2 >0, if P<Pc> 

=0, ifP=Pc ' 

<0, if P>Pc' 
Thus for a fixed value of Am, the equatorial zone will exhibit 
negative Gaussian curvature if the distortion parameter P 
exceeds the corresponding critical value Pc. As the accelera
tion increases, the critical value Pc gradually decreases. As 
A 2m

2 
---+ -1" Pc approaches 0.172 068. In the absence of the 

TABLE IV. Expression for CE/m as a function of {J for various choices of 
54A 2m2. 

o 

0.25 

0.5 

0.75 

1.25 

1.5 

1.75 

12.5664 

(1 + 4{J2) 

13.0345 

(1 + 4.1586{J2) 

13.5791 

(1 + 4.3421 (J2) 

14.2271 

(1 + 4.5591 (J2) 

15.0222 

(1 + 4.8231 (J2) 

16.0434 

(1 + 5.1583{J2) 

17.4570 

(1 + 5.6149 (J2) 

19.7369 
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TABLE V. Bivariate table showing various numerical values of CE/m. 

f:J--. 0 
54A 2m2 0.1 0.2 

l 

0 12.5664 12.0830 10.8331 
0.25 13.0345 12.5141 11.1755 
0.5 13.5791 13.0141 11.5697 
0.75 14.2271 13.6067 12.0328 
1 15.0222 14.3311 12.5928 
1.25 16.0434 15.2564 13.2993 
1.5 17.457 16.5289 14.2553 
1.75 19.7369 18.5616 15.7481 

netic field ( f3 = 0), the Gaussian curvature is positive in the 
equatorial zone for any value of the acceleration (A 2m2 < t,). 
At the pole () = 0, the Gaussian curvature is given by 

(Am)2[(1 + 6Ampo) - 2Ar02(po + 3Amp~)] 
m 2KIJ = 0 = --~:..---....::....~--:-..:..::..:..:.....::.-----=....::....~ 

(Ar02)2 

+ 8(po + 3Amp~)2f32, (19) 

where 

r02 = l/A (Po + qs)' (20) 

Table II shows that the Gaussian curvature is always 
positive in the vicinity of the pole () = O. As acceleration 
increases the curvature decreases. As A 2m2_ f" m 2K IJ =o 
_ 28.8X 10- 13 f32, that is, KIJ=o- 7.2x 10- 13 B ~ which is 
negligibly small for B ~ < 1013. So an increase of acceleration 
results in the flattening of the polar region () = O. The Gaus
sian curvature at the pole () = 1T is given by 

where 

r03 = l/A (P1T + qs)· (22) 

From Table III we see that the curvature goes on in
creasing as 54A 2m2 varies from 0 to 1 for any value of the 
distortion parameter f3. In the absence of the magnetic field 
( f3 = 0), at first the curvature gradually increases with 
54A 2m2, attains its maximum value 0.3849 (approximately), 
and then decreases symmetrically about this maximum val
ue if the acceleration is further increased. Also for a fixed 
value of Am, K - 00 as f3 -+ 00 and a cusplike singularity 
will develop at the pole () = 1T. 

B. Range of coordinate ¢J 

For A -+ 0, the metric (12) reduces to the form 

ds2 = A ~~ d(} 2 + A 0- 2 sin2 
() ~ d¢J 2, 

where 

Ao = 1 + !B~ ~ sin2
(} and ro = 2m, 

which is the line element describing magnetized Schwarzs
child black hole. For this surface, the range of ¢J is known to 
be 0 < ¢J<.21T. For A = 0, Bo = 0, we get the geometry of a 
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0.3 0.4 0.5 

9.23998 7.6624 6.2832 
9.4847 7.8268 6.3906 
9.7636 8.0125 6.5111 

10.0879 8.2263 6.6489 
10.4752 8.4790 6.8104 
10.9567 8.7893 7.0071 
11.5967 9.1957 7.2625 
12.5721 9.8040 7.6409 

simple sphere. However, for A #,0, Bo#'O, we cannot pre
sume 0 < 4><.21T. Let us identify 0 with 21TF, where F is yet 
unknown. The effect of A and Bo is to distort the Schwarzs
child surface from the spherical shape. For small of A andBo, 
distortion from spherical geometry will be small, and the 
event horizon will be a compact differential manifold ho
meomorphic to a sphere. Hence by the Gauss-Bonnet 
theorem, 

II K·ds=41T 

or 

F(1 +3Am(PO+p1T)](P1T -Po) = 1. 

Using (5) and (6) we get 

F= 4/3 Am/sin jA. 

Thus 0 < 4> <.21TF, where F is given by (24). Using (7) it is 
easily shown that F -+ 1 as A -+ O. 

(23) 

(24) 

It should be pointed out that our choice for the range of 
¢J leads to a nodal singularity at both () = 0 and () = 1T. One 
could, however, adopt the method of Kinnersley and Walk
er3 for picking the range of 4>. But in that method also, a node 
persists at the north or the south pole. As mentioned in the 
introduction of the paper, Ernst4 removed, in the case of the 
charged C-metric, the nodal singularity by the addition of an 
external electric field. 

C. Polar and equatorial circumferences 

To have an idea of the surface geometry of the event 
horizon, we calculate the equatorial and the polar circumfer-

TABLE VI. Expression for C E / m as a function of fJ for various choices of 
54A 2m2. 

Cp/m as function of fJ2 for different values 
54A 2m2 of 54A 2m2 

o 12.566+ 25.133fJ2 
0.25 13.379 + 28.331 fJ2 
0.5 14.387 + 32.470fJ2 
0.75 15.676 + 38.044fJ2 
1 17.432 + 45.983fJ2 
1.25 19.911 + 58.272fJ2 
1.5 24.036 + 80.109 fJ 2 

1.75 32.979 + 131.747 fJ2 
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TABLE VII. Bivariate table showing various numerical values of D. 

fJ---> 0 0.1 
54A'm' 

0.2 

I 

0 0 0.0608 0.2528 
0.25 0.0265 0.0918 0.2986 
0.5 0.0595 0.1305 0.3558 
0.75 0.1018 0.1800 0.4293 
1 0.1604 0.2485 0.5304 
1.25 0.2411 0.3433 0.6724 
1.5 0.3769 0.5026 0.9109 
1.75 0.6710 0.8477 1.4288 

ence. The relative magnitude of these two quantities will give 
us an intuitive idea of the departure of the surface from 
spherical geometry. The equatorial circumference is given 
by 

81T/Jm 
CE = 

qs sin ~ A {1 + p2/(Amqsn . 
(25) 

Equation (25) shows that C E contracts as the magnetic dis
tortion parameter p increases and C E - 0 as p - 00 for any 
value of the acceleration. 

To analyze the effect of acceleration more closely, we 
construct a bivariate table (Table IV) showing various nu
merical values ofCE/m. Along each row, 54A 2m2 is constant 
whilep varies from 0 to 0.5. Along each column, p is con
stant and 54A 2m2 varies from 0 to 1.75. 

In Table V, CE/m increases for each fixed value of pas 
54A 2m2 increases from 0 to 1.75. However, it can be shown 
from Table IV that for sufficiently large values of p, the 
equatorial circumference decreases with the increase of 
54A 2m2. The polar circumference Cp is given by 

Cp = 2a + ~p2, 
m Am (Amf 

(26) 

where 

a= 
(Pu dp 

Jpo (p + qs).JG ' 
(27) 

i
pu .JG 8 = 3 dp. 

Po (p+qs) 
(28) 

The integrand in (27) has singularities at both the end points 
as G (Po) = G (p".) = O. But the integral is convergent for 

TABLE VIII. Expression of S for different choices 54A 2m'. 

o 
0.25 
0.5 
0.75 
I 
1.25 
1.5 
1.75 
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Surface area S 

l61rm2"", 50.26581 m2 

161Tm2
"", 56.011 m2 

161Tm2
"", 63.376 m' 

161Tm2
"", 73.201 m' 

161Tm2
"", 87.062 m2 

I 61Tm2
"", 108.348 m2 

161Tm 2
"", 146. 108 m' 

161Tm2"",237.712 m' 
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0.3 0.4 0.5 

0.6048 1.1648 2.0000 
0.6795 1.2886 2.2020 
0.7729 1.444 2.4564 
0.8934 1.6455 2.7882 
1.0592 1.9236 3.2476 
1.2959 2.3261 3.9205 
1.6944 3.008 5.0672 
2.5664 4.5140 7.6267 

A 2m2 < -f,. The integrand in (28) has singularities in its de
rivatives at both the end points. These two integrals can be 
evaluated numerically by Gauss-Legendre quadrature12 

with proper weight functions. It is obvious from (26) that C p 

increases as p 2 for any fixed value of Am. The effect of an 
increase in the acceleration of the particle on the polar cir
cumference can be seen from Table VI. 

Table VI shows that for any fixed value of the distortion 
parameter p, the polar circumference increases as 54A 2m 2 

increases from 0 to 1.75. AsA 2m2 - -f" Cp ---+ 00 as can 
easily be seen from (5), (9), and (26). We define a dimension
lessquantityDbyD = (Cp - CE)/CE' ThenDwillbeamea
sure of deviation of the event horizon from spherical shape. 
D will depend on the acceleration as well as the magnetic 
distortion parameter p. 

From Table VII it is obvious that D > 0 for any value of 
the magnetic distortion parameter and the acceleration 
(A 2m2 < -f,) ofthe object. So the polar circumference always 
exceeds the equatorial circumference. Table VII shows that 
for any fixed value of p, D gradually increases as 54A 2m2 

increases from 0 to 1.75. AsA 2m2 - -f"D - 00. Again for a 
fixed value of 54A 2m2

, D increase with p. So the effect of 
increasing the acceleration of the object or the distortion 
parameter is to make the event horizon more and more pro
late. For small values of A and p, the event horizon tends to 
assume prolate sphere-like shape. 

D. Surface area 

The surface area of the event horizon is given by 

s = ff(E*G*)I!2dPd</J 

S/J1T [ p". - Po ] 2 

= AmsinjA (Po-qs)(p".+qs) m. 
(29) 

TABLE IX. Expressions for m' K (1T) as a function of fJ ' for different choices 
of 54 A 2m'. 

0.25 
0.75 
1.25 
1.75 

0.00522745 + 10.0791 fJ' 
0.029 6346 + 11.4983 fJ' 
0.0716883 + 12.4351,82 
0.1446961 + 13.1754fJ2 
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TABLE X. Expression for m2 Ku ~ .. /2 for different choices of 54A 2 m2
• 

/3 2( /3c = critical 
54A 2m2 m2Ku~"/2 value of /3) 

0.25 
655.240(/32 - 0.0105)(/32 + 0.000 12) 

0.0105 
(1 + 184.167/3 2) 

0.75 
164.868( /3 2 - 0.0360)( /3 2 + 0.0009) 

0.0360 
(1 + 52.038/3 2) 

1.25 
74.693( /3 2 - 0.0683)( /3 2 + 0.0029) 

0.0683 
(1 + 26.377/3 2) 

1.75 
36.225( /3 2 - 0.1146)( /3 2 + 0.0084) 

0.1146 
(1 + 14.833/32) 

Equation (29) shows that the surface area Sis independent of 
the magnetic field parameter and depends only on the mass 
and the acceleration of the object. 

We observe that the area S increases with the increase of 
the acceleration (see Table VIII). As A 2m

2 
-- f." S -- 00. 

Thus the surface area of an accelerated black-hole in a uni
form magnetic field always exceeds that of magnetized 
Schwarzschild black hole (A = 0, Boi'O). 

IV. RINDLER SURFACE 

For the Rindler surface the Gaussian curvature at the 
pole e = 1T is 

m2K()~ .. = (Am)2 [(1 + 6Amp .. ) 

- 2ArQ4(p .. + 3Amp~)] 
+ 8(p .. + 3Amp~f p2. (30) 

Table IX shows that curvature increases as p 2 for a 
fixed value of Am. For fixed value of p, K increases with 
54A 2m 2

• 
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The Gaussian curvature at the equator is 

(31) 

{ 
P2}4 

1 + (Am qr)2 

We observe that the equatorial zone will exhibit nega
tive Gaussian curvature if the magnetic parameter exceeds 
the corresponding critical value Pc (see Table X). The critical 
value Pc increases as 54A 2m 2 increases from 0.25 to 1.75. 
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The following is a comment on a recent paper by Birss [R. R. Birss, J. Math. Phys. 23,1153 (1982)] 
under the above title. The objective is to supplement the conclusion arrived therein and to 
confront an ensuing conflict between flux quantization and the recently revived hypothesis of 
magnetic charge quantization. 

PACS numbers: 04.40. + c, 03.50.De 

More than half a century ago Kottler, I Cartan,2 and 
van Dantzig3 (KCD) established, independently of one an
other, the premetric (i.e., metric-independent) properties of 
the preconstitutive (i.e., medium-independent) form of the 
Maxwellian laws. The discovery came as an afterthought; 
say, as an addendum to an early history of electromagnetic 
theory, which, until that time, had been firmly imbedded in 
the use of metric concepts pertaining to space as well as to 
space-time. 

The premetric condition, seen in this light, is a neces
sary ingredient to secure a general applicability of the pre
constitutive Maxwell laws to all conceivable media, includ
ing the medium known as free-space with its physical 
properties determined by the metric. Hence what emerged as 
an afterthought should, in retrospect, have been injected as a 
forethought when the theory was being constructed. In fact, 
Maxwell came very close to doing just that! 

Birss makes this exchange of afterthought by fore
thought the basis of his philosophy of approach. In so doing, 
he finds that the Maxwellian laws can be made to be indepen
dent of the spatial metric, but not independent of the space
time metric. Since the KeD argument is not known to be in 
error, the physical origin of this defect in forethought-after
thought symmetry deserves further scrutiny. The following 
examples are believed to help in identifying the underlying 
causes. 

Since counting quanta cannot be expected to depend on 
metric specifics, Birss' observations may be naturally illus
trated by the London-Aharonov-Bohm (LAB) law counting 
magnetic flux quanta h / e: 

1 A = !!... Ink (c i = I - cycle residing in dA = 0) II e k 

(I) 

(A is the three-dimensional I-form defined by the vector po
tential) and Gauss' law of electrostatics counting (stationary) 
charge quanta e: 

A: D = eIsk (cz = 2-cycle residing in dD = 0) (2) 
h2 k 

(D is the three-dimensional 2-form defined by the displace
ment vector). The sums ~nk and ~Sk count the number of 
quanta linked or enclosed by C I and C2' respectively. 

At this point in time, only Eq. (2) stands firm as a law of 
physics. Equation (I) has a nearly firm status; there are ques-

tions though as to when the sum ~nk involves integers or 
rational fractions. As good counting laws, though, Eqs. (I) 
and (2) both confirm Birss' observation on the preconstitu
tive Maxwellian laws' independence from three-dimensional 
metric specifics. 

Yet neither Eq.(I) nor (2) are known to have conspicu
ous space-time counterparts that presently have found ac
ceptance as counting quanta in the dynamic context of 
space-time. Birss' reservations with respect to a space-time 
metric independence of the preconstitutive Maxwellian laws 
reflect exactly this state of affairs. Let us examine the viabil
ity of such space-time extensions. 

A space-time extension of Eq. (I) involves an integra
tion of the electric field in the time direction and in a spatial 
direction. The value of such integrals can manifest a quanti
zation if magnetic charge is locally absent. An example is 
discussed in Birss' Ref. 3, p. 3384. The ac Josephson effect 
can be shown to be a consequence of this type of "electro
flux" quantization.4 Note, however, that this electroflux 
quantization graduates from being a local ad hoc oddity to 
being a global law if magnetic charge is taken to be globally 
absent. In general, one can then speak of flux quantization as 
having magnetic-, electric-, or both components. 

A space-time extension ofEq. (2) requires the counting 
of electrons that are in a collective dynamic state. A Gaus
sian form of Ampere's law is needed to do so; the latter is 
discussed in a recent paper by the present author.5 In this 
manner, one can count the number of charge carriers partici
pating in a current that is circulating in a ring that is being 
kept in a superconducting state. Since this number is an adia
batic invariant, temperature changes within the supercon
ducting interval do not affect its magnitude. It then follows 
that in superconductors, the density of charge carriers in the 
super-current should be inversely proportional to the pene
tration depth of the super-current. A result of this kind is 
known, but obtained by a different rationale. 

A comparison between the spatial and the space-time 
cases of counting quanta illustrates the essence of the metric 
distinction made by Birss. In the spatial cases quanta can 
frequently be directly perceived; say, in terms of discrete 
levels of magnetic flux, which can be recorded regardless of 
the choice of units or the calibration of the instrument, pro
vided the sensitivity is there. In the space-time cases, quanta 
are being perceived indirectly through the intermediary of 
metric measurements; e.g., the ac Josephson effect requires a 
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frequency-plus-voltage measurement to identify a quantum. 
The metric specifics, though, drop out in the end and honor 
the KeD symmetry between space and space-time. 

Let us now confront a major mathematical physical 
question which emerges from the preceding considerations. 
With the presently available abundance of experimental and 
theoretical evidence of an extended type of flux quantiza
tion, how can contemporary physics still tolerate the notion 
of a quantized magnetic charge? I t has been known for a long 
time that the two are globally incompatible! Flux is the peri
od of a I-form A, magnetic charge is the period of2-form, say 
F. SinceFandA are definitely not independent but related by 
F = dA, it follows that F is exact and cannot have nonzero 
periods. 

The simultaneous acceptance of flux and magnetic 
charge quantization is an amazing dichotomy of contempo
rary physics. While there is no rule against physics having its 
own little pet dichotomy, there is a common sense rule 
against not identifying a dichotomy when it has become ap
parent. 

613 J. Math. Phys., Vol. 25, No.3, March 1984 

Proponents of magnetic charge can perhaps think of 
many reasons why the here-presented arguments do not ap
ply. I could think of a few myself. Yet by the same token, I 
can think of reasons why they could apply; for one, the ex
perimental situation of flux versus monopole observations is 
rather eloquent testimony to this effect. It is disturbing that 
monopole proponents rarely acknowledge these matters. In 
fact, I do not know of any instances where they are men
tioned at all, but I will stand corrected if wrong. 

IF. Kottler, Sitzungsber. Akad. Wien IIa 131,119 (1922). 
2E. Cartan, Ann. Ec. Norm. Super. 41,1,12 (1924). 
3D. van Dantzig, Proc. Cambridge Philos. Soc. 30, 421 (1934); Proc. Acad. 
Amsterdam 37,521,526,644,825 (1934). 

·E. J. Post, Phys. Rev. D 9,3379 (1974), see p. 3384. In fact, as shown in 
Phys. Lett. 92, 224 (1982), the Bohr-Sommerfeld conditions are a case of 
electroftux quantization. Here again, the quanta are being perceived 
through the intermediary of metric measurements. 

'E. J. Post, J. Math. Phys. 19, 347 (1978). 
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The generalization of the detailed balance condition is discussed in the framework of algebraic 
quantum statistical mechanics. 

PACS numbers: 05.30. - d, 03.65.Fd 

INTRODUCTION 

A system in nonequilibrium statistical mechanics is not 
truly isolated being subject to usually uncontrollable ran
dom influences from outside. For this reason such models 
are called open systems. One of the ways of treating their 
interaction with the outside is to regard the open system as a 
subsystem of a larger closed system. On this basis one can 
derive various types of master equation describing the dy
namics of the system, e.g., the Pauli equation. One of the 
consequences of such an approach is the fact that evolution is 
described by a dynamical semigroup. In classical statistical 
mechanics, in order to get a certain link between equilibrium 
and nonequilibrium statistical mechanics (the dynamics is 
still described by a classical version of a master equation) it is 
necessary to add an auxiliary condition-usually the de
tailed balance condition. This condition describes the fact 
that a steady state is maintained by "detailed balance." 

In recent works1,2 this pure classical concept was refor
mulated for the quantum mechanical case in terms of corre
lation functions of operators at two different times. The pur
pose of this paper is to give the generalization of Agarwal's 
definition for algebraic quantum statistical mechanics and to 
study its consequences. The main result is that the dynami
cal semigroup on W*-algebra satisfies the detailed balance 
condition with respect to the faithful, normal, time-invariant 
state OJ if there is a one-parameter ,r'a -self-adjoint semigroup 
acting over the Hilbert space of the representation associated 
with OJ and preserving the natural cone and vacuum. Some 
conclusions also are given. Furthermore, we close our paper 
with a model. 

1. DEFINITIONS AND NOTATIONS 

Let m: be a W *-algebra. A dynamical semigroup oft!I is a 
u-weak continuous one-parameter semigroup 1'" t>O, of 
positive identity preserving contractions on t!I with To = I the 
identity map. Let OJ be a faithful normal state on m: which is 
stationary under 1', and denote by (%,Il,{}) the GNS repre
sentation associated with OJ. For simplicity we will denote 
11 (t!I) by tlI lI . As n is cyclic and separating for t!I II there 
exists a modular operator ~ and also a modular conjugation 
/ associated with the pair (t!I II ,n ) by Tomita-Takesaki the
ory. Furthermore, one can define the natural positive (self
dual) cone P in % by the following formula: 

p= ~ 1/4t!Irt{} (t!It = (AEt!IIl' A>Oj). 

a) Postal address: Institute of Theoretical Physics and Astrophysics, Gdansk 
University, Gdansk, Wita Stwosza 57, Poland. 

An operator ,r' on a complex Hilbert space K is called a 
conjugation if it is an involution and Cix,/y) = (y,x) for all 
x,yEK. Clearly, the modular conjugation / fulfills the 
above-given definition. On the other hand, we will deal with 
conjugation/'" such that/"t!It {} kt!It {} (where t!It 
= [AEt!IlI' A>O J). Therefore, to avoid future confusion, we 

emphasize that the conjugation/'a is not the modular conju
gation 1'. 

Following Glazman, 3 a linear operator A with a domain 
of definition D (A) dense in K is said to be/'-self-adjoint if 
/A/' = A * for some conjugation/' on K. 

Let 0' be an antilinear Jordan automorphism on m:, i.e., 0' 

is antilinear, one-to-one, onto, *-preserving map of m: such 
that cr(AB + BA ) = cr(A )cr(B ) + cr(B )cr(A ) for A, BEm: . If, ad
ditionally,OJ(O'{A )O'{B)) = OJ(AB )anda-.a- = I, we say that uis 
a reversing operation for the triple (t!I, 1'" OJ). 

Remark: Arguments similar to those given in the next 
section (compare Lemma I) imply that 0' induces the conju
gation/'(T on % such that/(T~ i:,.o·lT = ~ - i'. Therefore, the 
reversing operation 0' acts on the modular (Hamiltonian) dy
namics of the system (t!I, T" OJ) but does not change the time 
direction of the semigroup T,. 

Finally, let us note that the dynamical semigroup 1', on 
t!I induces in the representation (%, 11, {}) a semigroup T, on 
% which enjoys the properties of dynamical semigroup, i.e., 
T, is the weak continuous one-parameter uniformly bounded 
semigroup over % such that T,n = il for t>O. Its definition 
is given by 

T,Il(A)il = 11 (1',(A ))il 

for all AEt!I, 1'>0. 
Definition: We say the dynamical semigroup 1', on t!I 

satisfies the detailed balance condition with respect to the 
stationary, faithful, normal state OJ on t!I if the following 
equality is satisfied: 

OJ(A *1',(B)) = OJ(O'{B *)1',cr(A )) 

for all A, BEt!I, where a- is a reversing operation such that 
OJ(cr(AB)) = OJ(u(A )cr(B )). 

Remark: The above definition is a generalization of the 
Agarwal's definition of detailed balance for open Markovian 
systems. 1,2 To check this fact, it is enough to restrict the 
algebraic framework to the scheme of the ordinary quantum 
mechanics. 

2. MAIN RESULT 

The aim of this section is to prove: 
Theorem: Let T, be a dynamical semigroup on the W*-
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algebra 2! with normal, stationary, and faithful state cu. 
Further, let (%, ll, fJ) denote the representation associated 
with cu, and let,i", be a conjugation on % such that 

(/"fJ = fJ and,i,,2!J fJ ~2!J fJ. 
If T t satisfies the detailed balance condition with respect 

to cu, then there is(i,,-self-adjoint semigroup r" rtll(A)fJ 
= ll(Tt(A ))!J, such thatrtP r:;;,P,rtfJ = !J,andrcommutes 
strongly with the modular operator .:::1. 

Conversely, for an arbitrary (/,,-self-adjoint dynamical 
semigroup r t on %, leaving invariant the cone P, TtfJ = fJ, 
and, commuting strongly with the modular operator.:::1 for 
t;;.O, there exists a dynamical semigroup T, on 2I satisfying 
the detailed balance condition with respect to cu(.) = (fJ,fJ) 
for the reversing operation u induced by the conjugation/·". 

Remark: The proof will be divided into three lemmas. 
The conclusions and model are given in the next section. 

Lemma 1: Adopt the assumptions of theorem. Further 
let T, satisfy the detailed balance condition. Then the follow
ing statements are valid: 

(i) r, is a/',,-self-semigroup, where 

rll(A)!J = II (T, (A ))!J. 
(ii) r leaves invariant the cone P and strongly commutes 

with the modular operator.:::1 for all t;;.O. 
Proof It is clear that the equality 

/'"ll(A)fJ = ll(ai,A))fJ 

gives the correct definition of antilinear operator on %. Let 
us note 

V"ll (A )fJ,/'"ll (B)fJ) = cu(ai,A *)ai,B)) 
= cu(B *A ) = (ll(B)fJ,ll(A )fJ). 

So one can extend/" to a conjugation on the Hilbert space 
% (for simplicity we will use the same symbol for the exten
sion). Moreover, 

(:;:ll(A )fJ,ll(B)fJ) = cu(A *T,(B)) 

= cu(ai,B *)T,ai,A)) = Li"ll(B )fJ, r,/'"ll(A)!J) 

= V"r,/"ll(A )fJ,ll(B)fJ), 

which proves the statement (i). The above arguments imply 
also that 

:;:2IJ !J~2IJ fJ, t;;'O. 

Since it is clear that, for all t;;'O, r,2IJ fJ r:;;, 2IJ fJ, statement 
(ii) follows directly from Lemmas 2 and 3 of the Bratteli and 
Robinson paper.4 

Now we will study the implications of the assumed 
properties of semigroup r,. 

Lemma 2: Let r t be a dynamical semigroup on the Hil
bert space % such that 

(i) :;:Pr:;;,P for all t;;.O; 
(ii) r, commutes strongly with the modular operator .:::1 

for all t;;.O; 
(iii) r,fJ = fJ, t;;.o. 
Then 1-, induces a dynamical semigroup on 2I. 
Proof Let us note that assumption (i), Langer's 

theorem,5 and the structure of the cone Pimply 

0.;;;(.:::1 1/4bfJ,:;:.:::1 -1/4a!J) = (bfJ,:;:afJ) 

for all aE(2Ih-)+ and all bE2IJ . One then has 
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O.;;;(b!J,:;:afJ) = lim(.:::11/4bfJ..J -1/4aa fJ) 

= lim(fJ,a:'/2ba~,/2fJ ).;;;llb Illim(fJ,aafJ) 

= lib IllfJ,afJ ), 

where in the second step we have used {aa 1 C(2I~)+ such 
that.:::1 -1/4aa fJ ...... :;:.:::1 -1/4afJ, which is possible by assump
tion (i). Hence6 there exists a CtE2Ilt such that Ilct II.;;; lib II and 

(1'tbfJ,a!J) = (ctfJ,a!J ) 

for all aE2I~. Now let us define 

Il(Tt(A))fJ = r,Il(A)fJ (= ctfJ). 

The above equality gives the correct definition oflinear posi
tive maps on 2I since II is the faithful representation. But the 
semigroup properties are evident, weak and strong contin
uity are equivalent for semigroup so the proof of Lemma 2 is 
finished. 

Now we will describe the reversing operation. 
Lemma 3: Let 9C be a von Neumann algebra on a Hil

bert spaceJlt'with acyclic and separating vector fJ. If/'" is a 
conjugation such that/'"fJ = fJ and/'o-9C+fJ ~9C+fJ 
(9C + = {AE9C; A;;.O j), then there exists a unique antilinear 
Jordan automorphism u on 9C such that/'"AfJ = ai,A )fJ for 
all AE9C. 

Proof It is enough to use, with obvious modifications, 
arguments given in the Bratteli-Robinson book.7 

ProofofTheorem: The first statement of theorem fol
lows from Lemma 1. Further, r,P~P for t;;.O implies 
O';;;(x, rtY) = (:;:x, y) for all x,yEP and t;;.O. Hence :;: P~P 
and, to end the proof of theorem, it is enough to show that 
the semigroup T" described by Lemma 2, satisfies the de
tailed balance condition. Let us take the antilinear Jordan 
automorphisms u given by Lemma 3. It is easy to see that 

(fJ,ai,A )ai,B)fJ) = (fJ,ABfJ) = cu(AB) and so we can 
consider u as a reversing operation. Moreover, 

cu(A *T,(B)) = (:;:Il(A )fJ,ll(B)fJ) 

= V"Il(B )!J,1-t/'"Il(A)fJ) = cu(ai,B *)T,ai,A)). 

Hence the detailed balance condition is satisfied, and the 
proof is completed. 

3. CONCLUSIONS AND MODEL 

First, we want to point out that our theorem, giving the 
representation of a dynamical semigroup in terms of a/',,
self-adjoint semigroup on the Hilbert space, is in some sense 
the extension of the similar problem for reversible dynamical 
systems. Namely, each automorphism of a von Neumann 
algebra with cyclic and separating vector can be represented 
by a unitary operator with special properties.8 To get a better 
understanding of the present situation, we want to present 
the following model. 

Model: Let us consider an n-Ievel system S, i.e., the sys
tem whose C *-algbra of observables can be identified to the 
set 2'(jy') of all linear operators on the n-dimensional Hil
bert space, (with n a finite number). Further, let us assume 
that the dynamics is given by a completely positive dynami
cal semigroup T,. In particular, the infinitesimal generator of 
T, has the following general form9

: 

W. A. Majewski 615 



                                                                                                                                    

L: A~L (A ) = - i[h,A ] 
n2 _1 

+ I Cij[ [/;,Afj] + [/;AJn J 
ij~ 1 

for AE2'(Yl}, where h = h *, Tr h = 0, Tr/; = 0, 
TrffJ; = 8ij for i,j= 1,2, ... ,n2 

- 1 and [cij J~:~ is a com
plex positive matrix. 

Let p be a strictly positive density matrix on JY. Then 
w(A ) = Tr pA, AE2'(Yl} defines the faithful (obviously nor
mal) state on 2'(Yl}. In order to define the reversing opera
tor for the dynamical system (2'(Yl},7"W) let us choose a 
conjugation K on JY such that Kp = pK (it is always possi
ble). Then we defineuas follows u(A ) =KAK forAE2'(Yl}. 

The equation defining the detailed balance can be re
written in the terms of infinitesimal generator L of 7,; then 

Tr p[L (B )]*A = Tr pB *o-LOu(A). 

Consequently, if one assumes 
(1) KhK = hand [7,h] = 0, 
(2) uLsu = Ls, 
(3) cij = cji , i,j = 1,2, ... ,n 2 

- 1, and (cij) real, 
(4) w(Ls(B)A ) = w(BLs(A )), 

where Ls denotes the "dissipative" part of the infinitesimal 
generator L, i.e., Ls(A) = !l:7J: fCij[ [/;,Afn 
+ [/;AJj] J, then the detailed balance condition is satis

fied for (2' (Yl}, 7 t ) with respect to w. Condition (1) is the 
restriction on the "Hamiltonian" part of dynamics while 
conditions (2), (3), and (4) are restrictions on the "dissipative" 
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part of dynamics. Let us note that condition (2) is satisfied if, 
for example, K/;K = /; for indices I such that Clk #0, where 
k is an arbitrary index and we have used condition (3). The 
general characterization of operators L s satisfying condition 
(4) was given by Alicki. 10 
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Formulation of an indefinite inner product quantum field theory in terms of so-called Strocchi
Wightman states is investigated. In particular, the reconstruction theorem for such states is 
discussed. We consider also general properties of field theory reconstructed from a Strocchi
Wightman state. 

PACS numbers: 11.10.Cd 

1. INTRODUCTION 

It is known that quantum field theory can be defined by 
the set of Wightman functions [ Wn (x 1, ... ,xn)j.1 From gen
eral physical assumptions concerning field theory, it follows 
that the set Wn (xpo .. ,xn) ought to satisfy: 

(I) Wn(Lxt,. .. ,Lxn) = Wn(xt, ... ,xn),LEP T+; 
(II) Wn(xt,··.,x;. Xi+ t , ... ,xn) = Wn(xt,..·,xi+ t, Xi,···,Xn) 

if(xi+ t _X;)2<0; 
(III) The Fourier transform trn _ t (qt,.··,qn _ t) of 

'Jr"n-t(Yt,···,Yn-t) = Wn(xt,.··,xn)withYi =Xi -x i + t , 

vanishes if qi does not satisfy q~;;'O, (qO)i ;;.0. 
It is also assumed that the set [ Wn (xt, ... ,xn) J satisfies the 
following positive definiteness property: 

(IV) IWn+mif~®lm);;'O, IkES(R4K). (1.1) 
n.m 

(1.1) allows us to introduce the Hilbert space topology in the 
space of states reconstructed from [ Wn(xt,. .. ,xn) J.2 

As was shown by Strocchi, 3 in quantum theory of gauge 
fields, the set [ Wn (x t, ... ,xn) J cannot satisfy (1)-(111) and (IV). 
A promising possibility is to give up positivity (IV) and pre
serve (1)-(111).4 This choice has some advantages. For exam
ple, we can apply the technique of axiomatic field theory 
based on locality, spectrality, and Poincare covariance.5 In 
this context, Morchio and Strocchi6 introduced the follow
ing Hilbert space structure condition to replace (IV): 

(IV/) There exists a set of Hilbert seminorms [Pn J de
fined on S (R 4n) such that 

1 Wn + m if~ ®gm)1 <J7nifn)Pm (gm)' (1.2) 

We propose here another (stronger) Hilbert space structure 
condition. It is called a-positivity of Wn (xt, ... ,xn) (see Sec. 2). 
f Wn (xt,···,xn) J satisfying (1)+(111) and a-positivity, define a 
functional won a Borchers algebra A (S (R 4)) (we will call it a 
Strocchi- Wightman state). This state defines, via GNS con
struction, a representation of A (S (R 4)) on an indefinite inner 
product space. A field theory defined by this representation 
will be called the Strocchi-Wightman quantum field theory. 

In this paper we consider structural properties of the 
Strocchi-Wightman field theory. a-positive functionals on 
A(S(R 4)) are analyzed in detail in Sec. 2. It is shown that 
there exist a-positive functiona1s onA (S (R 4)) and that every 
such functional is continuous. An example of a Strocchi
Wightman state corresponding to free field theory is also 
constructed. Section 3 contains the general theory of the so
called /* representations of a Borchers algebra on an inde-

finite inner product space. As a conclusion, we prove the 
reconstruction theorem for Strocchi-Wightman states. 
Simple structural properties of a field theory reconstructed 
from a Strocchi-Wightman state are collected in Sec. 4. For 
example, the PCT theorem, the spin and statistic theorem for 
scalar fields, and the general version of Haag's theorem are 
discussed. An outline of a theory of indefinite inner product 
spaces is presented in the Appendix. 

2. STROCCHI-WIGHTMAN STATES 

Let A (S (R 4)) be a Borchers algebra.7 By definition, it is 
the set of sequences 

(2.1) 

with properties: 
(l)/oEC, InE SIR 4n); 
(2) only a finite number of In 's are different from zero. 

Let 

a + b = (10 + go'!t + gt,···/" + gn , .. ) (2.2) 

za = (zlo, zit,···, zln,") (2.3) 

ab = (/ogo'/ogt + gtftgo""'i+f= nh(xt, ... ,xi ) 

xgdx i + t ,···,xn ), ... ) (2.4) 

a* = (fo,ft(xt)"''/n(xn"",x 1)",), (2.5) 

The space A (S (R 4)) is a topological*-algebra under the oper
ations (2.2)-(2.4) with involution (2.5) and with topology of 
direct sum of S (R 4n). Let I: S (R 4)~S (R 4) be a continuous 
linear operator, such that 12 = 1 and I =1= 1. Define a *-auto
morphism a/of A (S (R 4)) by 

a/fa) = ifoJft, ... JJn'···)' (2.6) 

where In is the extension by continuity of ® n 1. Let / A be 
the set of all such *-automorphisms of A (S (R 4)). 

Definition 2.1: A continuous linear functional w on 
A (S (R 4)) is a-positive (aE/ A) if, for every a E A (S (R 4)), 
w(a(a*)a);;.O and wOa = w. 

Definition 2.2: A continuous linear functional w on 
A (S (R 4)) is called Strocchi-Wightman state (w E SW) if: 

( 1) w( 1) = 1, 
(2) W0'TL = w for every LE P T+ ' 

(3) w(Itoe) = 0, 
(4) w(Isp) = 0, 
(5) P(w) = laE/A : w is a-positiveJ is not empty, 
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where 1" L is a *-automorphism of A (A (R 4)) representing 
LEP 1+ ,1"L (!,,(xl, ... ,xn)) = !,,(L -lxl,. .. ,L -Ixn ), Iloc is the 
smallest closed two-sided ideal containing all elements ofthe 
form ab-ba (a and b have spacelike separated supports), Isp is 
the smallest closed left ideal containing the set of elements 
Sd;p (x)1"x(a), aEA (S(R 4)) withfo = 0, andp(x)E Fourier 
transform of I/IE SIR 4):/M) = 0, forqEV+ J. Simple prop
erties of (r) E SW are collected in the following: 

Lemma 2.1: If (r) E SW, then: 
(1) (r) is *-Hermitian, 
(2) for every a E P((r)), I(r)(a*b W";;(r)(a(a*)a)(r)(a(b *),b), 
(3) for every a E P ((r)), the set La ((r)) 

= {a E A (S (R 4)):(r)(a(a*)a) = ° J is a closed left ideal in 
A (S(R 4)). 

Proof (1) Let [a,b ]a: = (r)(a(a*)b). ["'1a is a sesquilin
ear positive-definite form on A (S (R 4)). It follows that 

[a,b]a = [b,a]a,so (r)(a(b*)a) = (r)(a(a*)b) and 
(r)(a*) = (r)(a). 

(2) By Cauchy-Schwarz inequality 

I [a,b ]a 12 ,,;; [a,a]a [b,b ]a 

I(r)(a*b W = I(r)(a{(a*)jb W = I [a(a),b ]a I 
,,;; [a(a),a(a)]a [b,b ]a 

= (r)(a(a*)a)(r)(a(b *)b ). 
(3) La ((r)) is a vector space. By (2) it is also a left ideal in 

A (S (R 4)). Let I an J CLa ((r)) be a Cauchy sequence and let 
a = lim an' (r)(a(b *)a) = lim (r)(a(b *)an) = ° and ada ((r)). 
Let us define 

A h.a = I aEA (S (R 4)):a(a*) = a J, 
A+.a =Sa with Sa = laEA(S(R4)): 

a = L alb j)bj ; bjEA (S(R 4))J. 
j 

(2.7) 

(2.8) 

One can easily prove: 
Lemma 2.2: (1) A h.a is a closed subspace of A (S (R 4)). 
(2)A (S(R4)) =Ah.a +iAh.a . 

(3) A h.a =A +.a -A +.a' 

It is known that A (S (R 4)) is a metrizable topological vector 
space.8 A h•a CA (S (R 4)) with induced topology is also metri
zable, so A h•a is bomologica1.9 For bomological vector 
spaces we have: 

PropertylO: Let E be a bomological space and Fa locally 
convex topological space. A linear mapping u:E-+F is con
tinuous iff for every bounded set B C E,u(B ) is bounded in F. 
Every bounded set BCAh.a is of the form 

BCBlnA+.a -BlnA+.a, 

where B I is bounded. Consider the bounded set C CA + .a' 

The a-positive functional (r) is positive on elements from 
A + .a' One can show that (r) is bounded on C. II Thus we have: 

Corollary2. 1: Ifafunctional (r)onA (S (R 4))isa-positive, 
then it is continuous on A (S (R 4)). 

Let us consider now a structure of the set P ((r)) ((r)ESW). We 
see that if aEP((r)), then a L : = 1"£ 0a°1"i: IEP(W). If /3 E P(w) 
and/3=/;a, theneither/3EM(a) = {aL:LEPI+ J or 
M(j3)nM(a) = 0. 
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Lemma2.J:P((r)) = Up Mp, where IMp J denotes the set 
of orbits of a Poincare group P 1+ in fA' 
Now we construct an example of a state (r)E SW. Let (K, < .,.») 
be a Krein space (Appendix). For any fundamental symme
try IEf(K ) the I-inner product turns K into a Hilbert space 
KI · Let PI be a Fock space over KI . Define the sesquilinear 
form 

(2.9) 

where r (I ) is the second quantization of I. (PI' < .,.) F[) is a 
Krein space. 12 Now we construct the field operator 
F(f),JEK. 13 It is easy to check that: 

(1) F(/) is closable in PI' 
(2) Iffn-+fin Kjthen F(fn)X-+F(f)X in PI for any X E 

Po (Po denotes a finite particle subspace). 
(3) ilF = (l,O, ... ,O, ... )EFo is r(I)-cyclic, i.e., 

IFlfIi .. ·F(fn)ilF; n = 1,2, ... J is total in PI' 
(4) F(f)F(g)X - F(g)F(f)X = i 1m (f,g)X, XEFo. 
Suppose that to any LEP 1+ there corresponds a linear 

operator ~ L on K such that: 
(a) <~J,~Lg) = (f,g),j,gEK, 
(b) for every LEP 1+ ' ~ L is bounded on K I • 

Let r (0& L) be the second quantization of ~ L' It may be that 
II ~ L III> 1 so r (~ L) is generally defined only on Po. 14 One 
can easily check that 

r(U&L)F(f)r(~L)-lX=F(~J)X, XEFo. (2.10) 

Consider now the concrete realization of the "one-particle" 
Krein space (K, (.,.»). Let 

K = L 2(Ho,dilo) ® C 4, 
(2.11) 

and 

(f,g) = - l"dilo(p)ll' (p)gI"(p), J.l = 0,1,2,3, (2.12) 

~L:/I'-+eiPxAl'lv(A -Ip), L=(A,x). (2.13) 

Let pI,F,r (~ L) be constructed as above. Define also a con
tinuous mapping 

T:S(4)(R 4)-+L2(Ho,dilo) ® C 4, 

(TI)I'(p) = fejpX~(X) d 4x I Ho, 

where 

S(4)(R 4) = SIR 4) ® C 4. 

(2.14) 

(2.15) 

For fn (xl, ... ,xn) = II (x Ii ® ... ®In (xn) withlk ES(4)(R 4) define 

Wn(fn): = <ilF,F(TII) .. ·F(Tln)flFh[. (2.16) 

(2.16) is a tempered distribution in every Ik, so there exists 
tempered distribution Wn on S (4) (R 4n) which is an extension 
of(2.16). Let 

wF(a): = L Wn(fn)' (2.17) 
n 

Put 
1"Lfl'(y)-+Al'lv(A -I(y -x)), L = (A,x). (2.18) 

1"L can be extended to a continuous *-automorphism of 
A (S (4)(R 4)); moreover, ~ LoT = T°1" L' 
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Let /0 (K ) C /(K) be such that: 
(1) for any IE/o(K ), IS (4)(R 4) C S (4)(R 4); 
(2) for any IE/o(K), IoT= T°l. 

Now we can prove the following: 
Theorem 2.1: W F defined by (2.17) has the following 

properties: 
(l)wFoa/ =WF, IE/o(K); 
(2) wF(a/(a*)a»O, aEA (S(4)(R 4)), IE/o(K); 
(3) WFOTL = wF, LEP '+ ; 

(4) wF(I,oc) = 0, 
(5) wF(Isp ) = 0. 

Hence W FE SW with P (w F) = [a/ :IE/o(K ) J . 
Proof: (1) For fn(x1, ... ,xn) we have 

Wn(Infn) = Wn(If, ® ••• ®Ifn) 
= (fJF,F(Tolfd .. ·F(TOlfn)fJF) 

= (fJF,F(IoTfI) ... F(IoTfn)fJF) 

= (fJF,r(I)F(Tfl) .. ·F(Tfn)fJF) = Wn(fn)· 

(2) wF(a/(a*)a) = L Wn+m(IJ~ ®fm»O. 

(3)-(5) can be pro:~d as in the standard case. 15 

It is, of course, not proved that there exist nontrivial 
Strocchi-Wightman states. The existence problem is as com
plex as in the standard case l6 (probably even more complex). 
However, for a fixed aE/ A' we can always construct many 
a-positive functionals on A(S (R 4)). The construction is the 
following: For every bEA (S (R 4)) there exists a continuous lin
ear functional w~ + I on A (S(R 4)) such that w~ + I(b )#0 and 
w~ + l(a*a»0.17 Fix bEA (S (R 4)) and put 

w( + I(al: = H w~ + I(a(a)) + w~ + I(a)}. (2.19) 

For a E A +,a of the form a = ~j (b j)bj define 

(2.20) 

For the remaining aEA + ,a' w(al is the extension of 

(2.20). If a = L Zkak' Zk EC, akEA +,a' 
k 

w1al(a): = L ZkW(al(ad· 
k 

(2.21) 

(2.21) defines w1al for any a E A (S (R 4)) since, according to 
Lemma 2.2. a = a1 - a2 + ia3 - ia4 with akE A +.a' Such 
defined w1al is linear, continuous and a-positive. Hence: 

Theorem 2.2: For every positive functional won 
A (S (R 4)) and every aE/ A we can construct a-positive func
tional w1al. 

3. RECONSTRUCTION THEOREM 

Now we want to prove that every Strocchi-Wightman 
state w on A (S (R 4)) defines a field theory with an indefinite 
inner product state space. To do this, we have to develop first 
general theory of representations of Borchers algebra on an 
indefinite inner product space. 

Definition 3.1: A pair (R,D R ) is called a /* -representa
tion of A (S (R 4)) if: 

(1) R: A (S (R 4))---+op(D R ) is a mapping of A (S (R 4)) into 
linear operators all defined on a linear space DR with an 
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indefinite, nondegenerate inner product (.,.) R; R is such 
that: 

(la) for any aEA (S(R 4)), RaDR CDR; 
(lb) for every a,b,EA (S (R 4)),W,zEC, kEDR' 

Rabk = RaRbk, Rza+wbk = zRak + WRb k; 

(lc) for every aEA (S (R 4)), k,IEDR, 

(k,Ra l) R = (Ra o k,l ) R . 
(2) There exists a set / R C / A such that: 
(2a) for any aE/ R there is a linear operator 

IR(a):Dr-+DR with properties: IR(a)2 = 1, 

(IR(a)k'/)R = (k,IR(a)l)R' (''')a = (·,IR(a)·)R 

is positive definite, 
(2b) for every aE/ R, aEA (S(R 4)), kEDR' 

Ra1alk = IR (a)RaIR (a)k. 

Remarks: (I) Let Ka = 15 ~lIa [II'II~ = {-,')a] and ("')a 
is the extension of (.,.) R to Ka. (Ka' (.,.) a) is a Krein space. 

(2) For a fixed a E / R ,(R,DR ) can be considered as a 
standard representation of A (S (R 4)), considered as the alge
bra with involution a-+(a)a: = a(a*) in a Hilbert space 

(Ka '(''')a)' 
Definition 3,2: A /*-representation (R,DR) is called a

cyclic (aE/ R ) if there is such a vector koED R that: 
(1) [Rako: aEA (S(R 4))J is dense in Ka. 
(2) IR (a)ko = ko, 

Let (R,DR ) be a-cyclic; then the functional 

wo(a): = (ko,R A ko) R (3.1) 

is a-positive. The following proposition shows that every a
positivefunctionalwonA ((S(R 4)) defines a /*-representa
tion of A (S (R 4)). 

Proposition 3.1: To every a-positive functional won 
A (S (R 4)) there corresponds the /*-representation 
(R ("'I ,DR (W() of A (S(R 4)), It is a-cyclic for any aE/ R(W)' 

Proof Itis easy to show thatL (w) = [aEA (S(R 4)): w(ba) 
= 0; bEA (S (R 4)) J = La (w). Put 

DR (w): =A (S(R 4))/L (W), 

(a""b",) ",: = w(a*b), a""b",EDRiW)' 

R ~"'Ibw: = (ab)." 

IR(w)(a)b",: = (a(b ))w. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Let / R (w( = P (w). Since [R ~"'II",: a E A (S (R 4)) J = DR (w), 

this representation is a-cyclic for any a E / R iw)' 

Definition 3.3: Let (R,DR) and (R,~) be such /·-re
presentations of A (S (R 4)) that / R = / Ii.. Assume that for 
every a E / R these representations are a-cyclic. Such two 
representations are called equivalent ifthere is a linear opera
tor 

V:Dr'+~ 

with properties: 

(1) VDR =~; 

(2) (Vk,Vlh = (k,i)R' k,IEDR; 

(3) for every k EDR, a EA (S(R 4)), VRak = Ra Vk; 

(4) for every a E/R , VIR (a)V* = Iii. (a). 

It is easy to prove the following: 
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Proposition 3.2: Assume that the /*-representation 
(R,DR) is a-cyclic for every a E / R' If there is such an a
positive functional w on A (S (R 4)) that P (w) = / Rand 

(ko,Ra kO)R = O""R~"'ll",)"" (3.6) 

then the /*-representations (R,DR) and (R ("'I,D R (wd are 
equivalent. 

Remark: From the above proposition follows that a
positive functional defines /*-representation up to equiv
alence. 
Now we are prepared to formulate and prove the reconstruc
tion theorem for WE SW. 

Theorem 3.1: To every w E SW and a E P (w) there corre
spond 

((Ka,(, )a),Do,F,f1o, {OJ-(L):LEP!+ j} 

such that 

(1) (Ka'( , )a) is a Krein space. 
(2) DoCKa is a dense subspace. 
(3)F: SIR 4)-op(Do) is a linear mapping into linearoper

ators all defined on Do, with properties: 
(3a) for every /E SIR 4), F(f)DoCDo; 
(3b) a mapping/-(F(f)k,l) a is continuous for every 

k,IEDo; 
(3c) (F(f)k,l)a = (k,F(f)l)a for every k, IE Do; 
(3d) there is an f (a) E / (Ka) such that, for every 

/ES(R4), kEDo, 

F(a(f))k = f(a)F(f)f(a)k; 

(3e)F(fdF(f2)k - F(f2)F(fdk = 0 for/I'}; ES(R 4) 
with spacelike separated supports. 

(4) f10 E Do is such that {F(fI)· .. F(fn )f10: n = 1,2,. .. } is 
total in Ka. 

(5) { OJ- (L ): L E P!+ } is a representation of a Poincare 
group P!+ with properties: 

(5a) OJ-(L )DoCDo for every L E P!+ ; 
(5b) (OJ- (L )k, OJ- (L )1) a = (k,l) a for every k,lE Do; 
(5c) OJ- L: Ka-Ka

L 
and IIOJ- Lk lIaL = Ilk Iia for every 

kEKa; 
(5d) a mapping L_( OJ- (L )k,1) a is continuous for every 

k,IEDo; 
(5e) for every / ES (R 4),kEDo, L E P!+ , 

OJ-(L) F(f)OJ-(L )*k = F(/L)k with/L(y) =/(A -I(y - x)), 
L = (A,x). 

(6) Sp(x)(k, OJ-(x)l) a d 4x = 0 for p E Fourier transform 
of{ /ES(R 4):/(q) = 0 for q E V+}. 

Proof By Proposition 3.1 there is the /*-representa
tion (R ("'I,DR(w)) defined by WE SW. 

(1) and (2) Put Do = DR(w) and Ka = D ~I(I,::). 
(3)PutF(f) = R ~"'Iwitha EAI(S(R 4)). ByAI(S(R 4)) we 

denote the set of elements a E A (S (R 4)) of the form 

a = (O,f(x),O, ... ,O,· .. ). 

(3a)-(3d) follow from Proposition 3.1. 
(3e) Let a, b EAI(S(R 4)) have spacelike separated sup

ports. For every c, d EA (S(R 4) 

(d"" [R ~"'I,R t'1]c",)", = w(d*(ab-ba)c). 

Since ab-ba E floc' w(d *(ab - ba)c) = 0 and [R ~"'I,R ~"'I] C'" 
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E D~(w). DR(w) is dense in Ka; hence D ~(W) = {O}.IS Thus 
[F(J;),F(};)]k = o for/liz E SIR 4) with spacelike separated 
supports and k E Do. 

(4) Put f1o: = 1",. Since the representation (R ("'I,D R (WI) is 
a-cyclic {F(fI) .. ·F(fn )f10; n = 1,2, ... } is total in Ka' 

(5) Since w is P!+ -invariant, there exists a family 

[OJ-(L):LEP!+}; OJ-(L)b",: = (7L(b))",. 

(5a)-(5e) are trivially fulfilled. 
(6) Sp(x)(k, OJ-(x)1) ad4x = w(a* Sd 4x p(x)7x (b)) = 0 

withk = a"" l=b",. 
Remarks: (1) A standard (Wightman) quantum field 

theory is defined by a field operator, a space of states, and a 
representation of the Poincare group. In the case ofStrocchi
Wightman field theory, we must also specify an indefinite 
inner product in a space of states. Thus, in general, to every 
a E P (w) there corresponds the field theory with the space of 
states (Ka'(·")a). 

(2) A representation [ OJ-(L ): L E P!+ } is generally de
fined only on a dense domain Do. It is connected with the fact 
that a does not commute with every *-automorphism from 
[7£: L EP!+ }.19 

4. ELEMENTARY STRUCTURAL PROPERTIES OF 
STROCCHI-WIGHTMAN FIELD THEORY 

In this section we collect some structural properties of 
the field theory defined by Theorem 3.1. Since the theory is 
local and the spectral property is fulfilled, we are able to 
adopt some standard results of axiomatic quantum field the
ory. The main point is that the Wightman functions of this 
theory are also boundary values of analytic functions. 20 

A. Theorem of Reeh and Schlieder21 

Theorem 4.1: Let (3 be an open set in R 4. Vectors of the 
form 

(4.1) 

with supp /t I C (3 are dense in Ka. 
Proof LetL denote the set of vectors (4. I). Ifk E L \ i.e., 

(k,l) a = 0 for every I E K, then k = 0. 22 Since Ka is a Krein 
space, L is dense in Ka (Appendix). 

B. PCT invarlance 

Consider the case of scalar field. By standard argu
ments23 it follows that 

(flo,F(x l )· .. F(xn}f1o)a = (f1o,F( -xn}···F( -x l )f10)a' 
(4.2) 

Define 

8:/n(x w .. ,xn)-ln( -XI'"'' -xn)· 

(4.2) can be expressed as 

w(8(a)) = w(a*). 

Hence we have: 

(4.3) 

(4.4) 

Theorem 4.2: If w E SW, then there is an operator e 
such that: 

(I) e: Do-Do; 

Lech JakObczyk 620 



                                                                                                                                    

(2) (8k,e!) = (U),k,IEDo; 
(3) if b does not commute with a E P (OJ), then 

8: Ka-Kp, 118k lip = Ilk Iia withP = bOaob -I. 

C. Spin and statistics theorem for the scalar Strocchi
Wightman field 

Theorem 4.3: Let F be the scalar field. Suppose that 

F(x)F(y)* + F(y)*F(x) = 0 if (x - y)2 <0. (4.5) 

ThenF(f)noEK~ = [kEKa: (k,k)a =0). 
Proof (4.5) leads to equality24 
(no,F(x)F(y)*no)a + (no,F( - y)*F( - x)no)a = O. 

It is equivalent to 

OJ(aa*) + OJ(b(aa*)) = 0, a = (OJ(x),O, ... ,O, .. ). 

By peT invariance OJ(b(aa*)) = OJ(aa*), so OJ(aa*) = 0 and 
FIf)noEK~. 

Remark: In the Strocchi-Wightman field theory there 
may exist scalar fields which anticommute on spacelike dis
tances, since from F (f)noEK ~ it does not follow that 
F(f)k = 0 for every kE Do. In a formal canonical quanti
zation procedure such fields are called "ghost fields." 

Now we pass to the theorem which may be called the 
"abstract version" of Haag's theorem. 

D. Theorem 4.4 

Let OJ I,OJ2 E SW. Suppose that P (OJ I ) = P (OJ2) and OJ I is 
such that, in the representation of A (S (R 4)) defined by OJ I , 

there is only one invariant state (for some symmetry group 

G). Let (R (wil,D R I"'il) be /*-representations of A (S (R 4)) de

fined by OJ j (i = 1,2). Similarly, let [ OJ-g'(g): gEG ) (i = 1,2) be 
a representation of G. Assume that there is a family 
{ OJ- (jl(t) ),ER (i = 1,2) of operators such that 

kit/jED R IWil· 
Let us define 

R ~wil(t): = OJ-(I'(t)R ~WilOJ-(jl(t )*. 

Suppose that for t = to there is a mapping 

(4.6) 

(4.7) 

(4.8) 

VIto): DRlW,I-DRlw,1 (4.9) 

satisfying 

(V(tO)kl,V(to)/l)w2 = (kl.ll)w" kl,/IEDRlw,,, (4.10) 

V(to)IRlw,>(a)V(to)* = IRlw,l(a), aEP(OJ I), (4.11) 

V(to)R ~W,I(to)V(to)*k2 = R ~w21(to)k2' k 2EDRiw,l. (4.12) 

Then OJ I = OJ2. 
Proof Our argumentation is based on the proof of anal

ogous theorem in the book of Emch. 25 Let 
V(t) = OJ-121(t - to)V(to)OJ-OI(to - t). It is obvious that 

(V(t)kl,V(t)/I),u, = (kl.ll)w, (4.13) 

and 

V(t)IRiw,)(a)V(t)* =IRiw,l(a). (4.14) 

Define V: = VIOl. Of course, R ~w21 = VR ~w,IV*. Let 
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lJ 6 = v*n~, where n ~ denotes a cyclic vector for 
(R IW21,DRiw,d. Let 

(;)I(a)' = (lJ 6,R ~UJ'llJ 6)UJ,. (4.15) 

Since (lJ 6 ,R ~UJ,)lJ 6) UJ, = (n ~ ,R ~UJ21n ~) UJ2' {;)I = OJ2• (;)! is 
G-invariant since OJ2 is G-invariant. If OJ! is the only G-invar
iant state in the representation (R (UJ,),DRiw ,)) then {;)I = OJ!. 
Hence OJ I = OJ2• 

Remark: Let OJ I correspond to the free field theory. It is 
known that there are models of indefinite inner product free 
field theory with non unique vacuum. 26 Thus, the main as
sumption of Theorem 4.4 may not be fulfilled. 
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APPENDIX 

We collect here some facts concerning a theory of inde
finite inner product spaces.27 

1. Indefinite inner product spaces 

Let E be a vector space with an inner product (.,). A 
pair (E, (.,») will be called an inner product space. If the 
quantity (x,x), x E E, may be positive, negative, or zero, (E, 
(.,») is called an indefinite inner product space. (E, (.,.») is 
decomposable and non degenerate if 

E=E+ffjE-, E±={XEE:(x,x)~O). (AI) 

2. Topology on an indefinite inner product space 

Let T be a topology on (E, ( .,»). We say that T is a 
majorant ofthe inner product (.,.) if 

- T is locally convex, 
-(.,) is jointly T-continuous. 
A topology T is said to be admissible if: 
-for any fixedy E E,x-(y,x) is T-continuous, 
-for any T-continous linear form I on E, there is an 

element Yo E E such that I (x) = (yo,x). 
Let FeE be the subspace of E. Define F 1 

= [xEE: (x,y) =O;YEF). 
If T is admissible, the T-closure of any subspace F of E 

coincides with FH. 
A topology T is called a Hilbert majorant if it is defined 

by a Hilbert space norm. A Hilbert majorant topology is 
admissible. 

Let FeE be such that (.,.) is definite on F. The equa-
lity 

Ixl}: = I (x,x) I, xEF, (A2) 

defines the norm on F. Topology induced by 1·1 F is called an 
intrinsic topology on F. If an indefinite inner product space 
(E, (.,.») admits a decomposition of the form E = E + ffj E -, 
whereE + andE - are intrinsically complete, then it is called 
a Krein space. 

LetP ±E=E ±. We set 

I=P+-P- (A3) 
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and say that I is a/undamental symmetry of E. For any 
IE /(E I if (E) denotes the set of all fundamental symme
tries of E] define the I-inner product 

(x,y)/: = (x,ly). (A4) 

A decomposable, nondegenerate, indefinite inner product 
space (E, (.,.») is a Krein space iff, for every I E /(E), the 1-
inner product turns E into a Hilbert space. 
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The problem of constructing states for a Hermitian spin-! quantum field in a nonstatic 
background geometry is considered and the solution corresponding to the extremization of the 
total energy at an initial time is obtained. 

PACS numbers: 11.10.Ef 

INTRODUCTION 

The problem of constructing states of quantum fields in 
a curved nonstatic background geometry has been the sub
ject of much research in the past few years. Many different 
but equivalent formalisms have been developed to deal with 
this problem. These formalisms are, of course, incomplete 
unless a criterion for choosing a preferred vacuum state is 
stated. The most aesthetically pleasing of these criteria 
(though not necessarily with physically acceptable conse
quences) is the requirement that the expectation value of the 
total energy of the field when restricted to an initial hyper
surface should be a minimum with respect to infinitesimal 
variations of the state, or alternatively, that the total energy 
at an initial time should be diagonal when written in terms of 
creation and annihilation operators. I This problem has been 
solved exactly for a scalar field in a general nonstatic back
ground space-time.2 However, it is observed that the states 
thus constructed suffer from the so-called Fulling anomaly, 
i.e., in a generic case, the states not only evolve in a nonuni
tary fashion, they also acquire an infinite amount of renor
malized energy density to the future of the hypersurface on 
which the minimization took place. This pathological be
havior was first pointed out by Parker (Ref. 3, see also Ref. 
4). 

In an attempt to investigate the generality of this result 
we are led to consider the problem of construction of the 
states of a Hermitian spin-! field in a nonstatic background 
geometry using the criterion of energy minimization. In this 
paper we present the most general solution to the latter prob
lem, but postpone an investigation of the evolution of the 
states thus constructed to a future publication. The main 
result is rather simple and shows a great deal in common 
with proofs of the positive mass theorems which have been of 
interest recently. 5 

I. PRELIMINARIES 

We assume throughout that the manifold M in addition 
to being globally hyperbolic is also orientable, i.e., the first 
Steifel-Whitney class of M vanishes.6 Then a spin structure 
can be defined on the whole of M. Equivalently, we may 
require that the second Steifel-Whitney class of M vanish.6 

The Dirac matrices Y' satisfy 

( 1) 

where gltv is the metric on M, and has signature 
( - , + , + , + ). With this signature we may take the Y' to be 
real. 7 Then there exists a real antisymmetric matrix y such 
that 

(2) 

The Y' are related to flat-space Dirac matrices r" by the 
Vierbein Lplt (the summation convention is used through
out): 

Y' = L/r", (3) 

where the indices p and J.l are raised and lowered by means of 
1Jpq (the Minkowski metric) and gltv ' respectively. Under a 
Lorentz transformation 2': the matrices r" become 

ylr = 2'; r", (4) 

leaving the anticommutation relations (1) unchanged. It fol
lows that there exists a real matrix S with the property that 

ylr = S -ItS, 

or equivalently 

r' = 2';S,!,S -I. 

(5) 

(6) 

The spinor field!/J provides a spin representation of the Vier
bein group according to the transformation law8 

!/J'=S!/J. (7) 

The contragradient representation is obtained by taking 

(8) 

which transforms as 

¢' = ¢S-I. (9) 

The covariant derivative of a spinor field in the coordinate 
basis is 

(10) 

where the r;v are the usual Christoffel symbols. In the local 
frame basis we can write the covariant derivative as 

!/J·1t = !/J.1t + !G[pqlr~q!/J, 
where 

(11) 

(12) 

and r;: are determined by the requirement that covariant 
differentiation commute with the conversion of coordinate 
into frame indices8 

(13) 
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Equation (13) has the following solution: 

rpq=lTPV(Lq -Lq )-lLqV(LP -LP) 
J.l ~ V,/-l jJ.,v 2 V,J.L j.J,V 

+ ! L qUL PV(L mv,u - L m u,v)Lmp ' (14) 

Hence 

rv= - !G[pqJr~q = lLpp.vLqPr"fl. (15) 

It is, of course, straightforward to verify that t" and yare 
covariantly constant: 

~-~ + r~u~ - Hy'"[Yp,Yq ]r~q] = 0, (16i) 

Yp-Y,p - iY [Yp,Yq ]r~q - Hyp' Yq] -yr~q = 0. 
( 16ii) 

The action functional for the free, massive, Hermitian fer
mion field tJI ( x) is 7 

S[tJI] =!JM if! (t"tJI.p +mtJI)g1/2d 4x. (17) 

The stationarity of the action with respect to arbitrary 
variations o¢( x) in the form of tJI ( x) lead to the field equa
tions 

S [tJI]~ = 19l 12y(t" tJI." + mtJI) = 0, (I8i) 
{jtJI- ~ 

/tJI S [ tJI] = ig1/2( - if!.p t" + m if!) = 0, (I8ii) 

where the covariant derivative of the adjoint spin or if! is 

if!.p tJI,;Y+ tJI-yrp' (19) 

It is useful to define the intrinsic covariant derivative of 
a spinor restricted to a spacelike hypersurface Y, whose 
metric hpu is defined by 

(20) 

where nP is the unit future-pointing normal to the surface 
Yr' We define this derivative by requiring the covariant der
ivative, in the hypersurface, of the projection of the t" matri
ces into Y r' to vanish. The calculation is performed in Ap
pendix A and here we state the result. Denoting the intrinsic 
derivative by Du we have9 

Du tJl1v, = huPtJI-p + U'upnvt"y"tJI, (2I) 

where Xup is the second fundamental form of Y,. 
The intrinsic spatial covariant Dirac operator on Y, is 

then given by 

DtJl
1 

Y, =t"hp uDu tJI = t"hp utJI.u + knvyvtJI, (22) 

where we have used the symmetry ofXpu and Eq. (I). 

II. QUANTIZATION, THE MINIMIZATION OF THE TOTAL 
ENERGY AND HAMILTONIAN DIAGONALIZATION 

The quantum field theory of tJI ( x) ~ constructed by de
fining the operator-valued distribution tJI ( x) which satisfies 
the field equation and imposing the equal-time anticommu
tation relations 

(23) 

The {j-function on the right-hand side is an invariant 
bispinor density on Y t' for example it transforms like 
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(24) 

The field is expanded in terms of positive and negative 
frequency spinors [ ¢k ( x) J and [¢t( x) J, 

(25) 

where k includes at least one discrete spinor index taking 
four distinct values. 10 The creation and annihilation opera
tors ot and Ok are now required to satisfy the anticommuta
tion relations 

(26i) 

[Ok,Ok,J = [ot,ot,J =0, (26ii) 

which together with the anticommutation relations (23) lead 
to the completeness relations for the positive and negative 
frequency spinors 

L [¢d -!')¢t( -!) + ¢t( -!')¢d -!) J = - nv yVo( -!,-!'). 
k 

(27) 

The equivalent orthonormality relations are7 

f ¢t, t"¢k2 d~p = Ok,k" 
.Y, 

(28i) 

L, ¢k, t"¢k, d~p = 0, 
. , 

(28ii) 

which are independent ofthe hypersurface Y" thanks to the 
field equations. 

The Dirac inner product, unlike the Klein-Gordon in
ner product, is positive both for positive and negative fre
quency solutions. II 

The one-particle Hilbert space H I is taken to be 
H + tali -, whereH + andH - are the Hilbert spaces ofposi
tive frequency and negative frequency solutions of the Dirac 
equation and li - is the dual space to H -. However, the 
Hilbert space of all states is now taken to be the antisymme
tric Fock space constructed from H 1,12 

n 

:FA =CtaHlta .. ·ta ®Hj .. ·. 
j= I 

(29) 

Two sets of positive frequency solutions are related to 
each other by the Bogoliubov transformations l2

,l3 

(30) 

where the Bogoliubov relations differ from those ofthe sca
lar field by an important sign difference l3

: 

L (atk, a kk, + f3 tk,f3kk,) = Ok,k" 
k 

L (akk,f3kk, + f3kk, akk,) = O. 
k 

(3li) 

(31ii) 

The complex structure J 11,14 is defined to be equivalent 
to multiplying by + i when acting on the positive frequency 
solutions and by - i when acting on the negative frequency 
solutions. However, in the context of the procedure of ener
gy minimization, the complex structure J need not be em
ployed as a characterization of the states of the quantum 
field. 
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We consider the energy-density operator defined by 
" p( x)=nJln"TJl" 

= li(W nJln"y W - Wn Y"nJlW ). 4·Jl " " .Jl 
The total energy operator at the instant t is 

E(t) = f p(~)d~, 
)Y, 

where d~ is the invariant volume element on Yp i.e., 
h 1/2(~)d 3~. 

(33) 

(34) 

We can eliminate all the normal derivative terms with 
the aid of the field equations (18) and arrive at 

E(t) =!if ('W.ahJl ayJLW - WyJLhJl aW.a - 2mWW)d~. 
Y, 

(35) 
In order to simplify (35) we prove an integration-by

parts formula. The latter will hold provided we assume the 
usual conditions (such as square integrability) on the func
tions t/!k ( x), or equivalently we may consider smeared field 
operators. Since we shall want to use this formula in connec
tion with a variational problem in which the variations of the 
functions t/!k ( x), i.e., 6t/!k ( x), vanish on the boundary of Y" 
we shall not need the surface terms arising from total diver
gences and shall set them equal to zero in what follows. 

The expression ¢Ih TaYa t/!2 when restricted to the hy
persurface Y, is a vector whose intrinsic covariant diver
gence is 

(¢Ih TaYa t/!2k =(¢Ih "aYat/!2).JlhTJlh" T 

= ¢1.Th TaYa t/!2 + ¢Ih Taya t/!2.T + X¢ln"y"t/!2' 
(36) 

where X is the trace of the second fundamental form of Y,. 15 

Integrating both sides ofEq. (36) over the hypersurface 
Y, and ignoring the boundary term arising from the left
hand side we obtain 

f (¢I.Th TaYa t/!2 + ¢Ih Tayat/!I.T + X¢lnayat/!2)d~ = o. (37) 
Y, 

Using the expression for the intrinsic covariant Dirac opera
tor given in Eq. (22) and the above formula, the expression 
for the total energy operator can be cast in the following 
form: 

E(t)= -!i1 W(JI)+m)Wd~. 
Y, 

(38) 

We substitute the field expansion (28) into the expression 
above to obtain 

E(t) = - !il d~ I [(¢k,(JI) + m)t/!k,lak,ak2 
Y, kl,k2 

625 

+ (~tJl> + m)t/!k,lat,ak2 + (~k, (JI) + m)t/!t2)Qk,at2 

+ (~t, (JI) + m )t/Jr2 )at, at2)· 
(39) 
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Let us also give the expectation value of(39) in the a- vacuum 
state (the total energy), viz., 

(a;vacIE (t )Ia;vac) = - !if d~ I ¢dJl) + m)t/!t· 
Y, k 

(40) 

We are now ready to solve the problem of energy minimiza
tion. The latter requires the choice of initial values for the 
positive frequency spinors so as to minimize Expression (40), 
subject to the constraints implied by (28). In order to solve 
this variational problem we introduce the Lagrange multi
pliers A.kk , and Ilkk, and minimize the expression 

Tr [ - !iljjt(JI) + m)t/!k + A.kk, (¢tn" y"t/!k, - 6kk ,) 

+ Ilkk,(¢kn"Y"t/!k,)] (41) 

with respect to infinitesimal variations of the t/!k. Tr denotes 
an integral over Y, and a sum over the k indices, as well as a 
trace over the spin indices. 

This problem is solved by taking the initial values of the 
positive frequen£y spinors, i.e., t/!k (~), to be the eigenvectors 
of the operator 0 defined as follows: 

(42) 

We shall now verify that the eigenvectors of the spinor-.. 
ial operator 0 (defined entirely in terms of quantities in the 
hypersurface Y,) satisfy the constraint (28). Before we do so 
we point out that these same eigenvectors diagonalize the 
total energy operator ofEq. (39) in the sense thl!t when t/!d~) 
in that equation are chosen as eigenvectors of 0, the coeffi
cients of the operators akak and atat vanish. , , .. 

First we show that the spectrum of 0 is contained in 
lit '\ [ 0 j. Consider the square of 0 

02 
= - n"y"(1l> + m)naya(JI) + m). (43) 

For an arbitrary spinor t/! the quantity n" y" t/! transforms like 
a spinor. Therefore, 

JI) (n" y"t/!)=yJLhJl a(n" y"t/!).a + !rn" y"na yat/! 

It follows that 

= yJLhJl a(n".ay"t/! + n"y"t/!.a) - itt/! 

= yJLXJlayat/! + yJLhJl an"y"t/!'a - itt/! 

= hJl an"yJLy"t/!'a + !xt/!. (44) 

n"y"JI) (nayat/!) = !xnayat/! + hJl "nt;na'lyJLyat/!." 

= !Xnayat/! + hJl "nt;na'l(2g1'a - yayJL)t/!." 

= !Xnayat/! + 0 - !hJl "nt;na ['1,yajyJLt/!." 

= hJl "yJLt/!." + !Xn"y"t/!=JI)t/!. 
(45) 

Thus Eq. (43) becomes 

02 = - (JI) - m)(JI) + m) = - JI) 2 + m2. (46) 

It is known that the square of the intrinsic hypersurface 
Dirac operator JI) is related to the Laplace-Beltrami opera
tor of the hypersurface Y, by a "Weitzenbock formula,,9 

Jl)2 = (31,d + !(3IR, (47) 

where (31,d is the Laplace-Beltrami operator of the hypersur
face Y, and (31R is its Ricci scalar. 
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Here we derive an integration-by-parts formula for the 
operator 1/). It follows from (22) that 

nvyV1/)1/J = nvy',!Phu TI/J'T - !xI/J. 

Taking the spinor adjoint of both sides we obtain 

- ~jnvYV = ~'Thu TYUnvYV - !X~, 
where we have used (2) and defined the adjoint of 1/), 

(48) 

(49) 

j) ==y-'1/) -y. (50) 

Multiplying the two sides of (49) by some spinor ¢ and 
then integrating the trace of both sides over the hypersurface 
Y, we obtain 

-f ~li>r"¢ d.I" = f ~.uhy UYYY'¢ d.I" - ! f X~¢ dli· 
·Y't Y'l Y t 

(51) 

Let us write down the covariant divergence in the hypersur
face of the quantity ~hT UyTnvyV¢IY, whichisa vector in Y, 

(~hv uyvn" Y'¢ )Ia 

= (~hT myT n" Y'¢ ).vhu vhm U 

= ~'UhT UyTnvYV¢ + ~hT UyTnvYV¢.u 

+ ~(n"'VhT U + n"nu'VnT + n"nunT.v)hu VyTY'¢ 

= ~'UhT UyTnvYV¢ + ~hT UyTnvYV¢.u + 0, (52) 

where the symmetry ofX"u and Eq. (1) have been used. Now 
we integrate both sides over Y, and neglect the boundary 
term arising from the total divergence on the left-hand side 
to obtain 

o = L.,(~.uhT UyTnvYV¢ + ~hT UyTnvyV¢.u)dli, (53) 

or equivalently 

fy,~.uhT UyTY'¢ d.I" 

- fy,~hT UyTY'¢.U d.I" 

+ f WhT UyT¢.u d.Iw 
Y, 

(54) 

In the last line we have used 
hu Tn" YUY' = hu Tn" (2gW - Y'YU) = - hu Tn" Y'YU. (55) 

We use Eq. (54) to rewrite the integral on the right-hand side 
ofEq. (51) in the following form: 

- L,~ii>Y'¢ d.I" = L,~Y'(hu TYU¢'T + ! xny yV¢ )d.I" .(56) 

The expression in brackets on the right-hand side of the 
above is precisely 1/)¢. Finally, 

(57) 

which is the formula we were seeking. This equation togeth
er with the positivity of the Dirac inner product is sufficient 
to show that the square of j is positive definite. It follows 
that the square of the operator 0 is positive and hence the 
spectrum of 0 is contained in lR" ( 0 J . 

We note that if I/Jd li) is an eigenvector of 0 with the 

626 J. Math. Phys., Vol. 25, No.3, March 1984 

(real) eigenvalue Ak, then I/JZ( x) is an eigenvector with the 
eigenvalue - Ak • 

Fi~ally we are in a position to verify that the eigenvec
tors of 0 satisfy (28ii). To this end let 

invyV(1/) + m)I/Jk( li) = Ak I/Jd li). (58) 

Taking the spinor adjoint of both sides we obtain 

- i~d li)(ii> + m)ny yV = Ak ~d li), 
or equivalently 

i~d li)(ii> + m) = A k ¢k ( li)nv yV. 

(59) 

(60) 

If we now take the trace of the product of Eqs. (58) and 
(60) (for different k 's) and integrate over the surface Y" we 
obtain 

Ak,Ak2 L,~k' Y'I/Jk2 d.I" 

- L, ~k,(jj + m)Y'(i + m)I/Jk2 d.I" 
. , 

- L ~k\ Y'( -;; 
2 + m 2

)I/Jk2 d.I" 
. , 

(61) 

Equation (28ii) follows from the above and the fact that Ak\ 
and Ak2 are real and have the same sign. 

To determine the initial vacuum state completely we 
need to show which sign of the spectrum of 0 we should 
assign to positive frequency. We note that in Minkowski 
space-time positive frequency spinors are taken to be w 

I/Jdt,li) = (21T)-3/2(~ 2 + m2)-1/2 exp( - ikt + i~'li)I/Jk' 
(62) 

where I/Jk satisfy 

( - ikt' + i~.r. + m)I/Jk = O. (63) 

The latter equation can be put in the form ofEq. (58) 

- it'(i~'r + m)I/Jk = - kI/Jk' (64) 

from which it follows that the positive frequency spinor solu
tions of the Dirac equation, minimizing the total energy at an 
instant Y" have the negative-eigenvalue eigenvectors of the 
spatial operation 0 as their initial data. 

III. DISCUSSION 

To compare the result of Sec. II to the case of a scalar 
field we may obtain an expression for the expectation value 
of the energy-density operator in the state given by Eq. (58), 
when the metric is a Bianchi Type I whose line element 
squared is 

3 

ds2 = - dt 2 + I aJ(t )(dxY (65) 
j~ I 

The vierbein may be chosen as 

L p" = diag( - 1,a ,(t ),a2(t ),a3(t I), (66) 

and using the expressions in Appendix B we find 
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-+ l3 .( a ) 1 3 (0.) ] 0= - it' L aj- It - - r,.! - - L -l.... t' + m . 
=1 ax' 2 j =1 aj 

(67) 

The positive frequency solutions t/Jrd x) can be taken as 

t/Jrl«t~) = t/Jrl«t)eil<'~. (68) 

Eigenvalue Eq. (58) then becomes (at t = to) 

-it'[ijtl :; yj+m]t/Jrl«to) = Ak t/Jr/< (to), (69) 

where the eigenvalues Ak can be obtained by squaring 0 

(70) 

Hence our positive frequency solutions satisfy the following 
equation at t = to: 

[ 

3 k. ] 
- it' il'?;l~ yj + m t/Jrdto) 

= -ltJ:~ r + m2] 1/2t/Jr/«to). 

(71) 

Using the above and Eq. (40) we obtain the following expres
sion for the expectation value of the energy density at to: 

1 _ [ 3 (k)2 ] 
p(to) = - 2 ~t/Jr/«to)t't/J~dto) j~1 a~ + m2

. (72) 

Now the orthonormality relations reduce to 

( )31 ,I,. (_ 'Plot, - i~'I/<, - 1<2) d 3 ala2a3 'l-'rk, r 'l-'s1<2 e ~ 
t=to 

= c5rsc5(~1 - ~2)' 

or equivalently 

~~k( - t')t/Js/< = 4(2'llr3(ala2a3)-Ic5rs' 

(73) 

(74) 

Using the above equation we can perform the sum over the 
spinor index r in Eq. (72) and obtain the following formally 
divergent expression: 

p(to) = 2(217)-3(a la2a3)-3 f d 3~ ltl (~ r + m2] 1/2, 

(75) 
which is precisely twice the result for the conformally cou
pled scalar field. 4 We may employ usual methods of regular
ization and renormalization in Eq. (75) but we shall not pur
sue the matter further here. 

The next and perhaps the most important task is to 
calculate the effects of the evolution of these states, such as 
the renormalized expectation value ofthe energy-density op
erator at some later time t I' It is of great interest to see if the 
pathologies exhibited by the scalar field persist in this case 
also. Work on this subject is under progress and will be re
ported at a later date. 16 
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APPENDIX A 

In this Appendix we show that the intrinsic covariant 
derivative of a spinor restricted to a hypersurface Y, [Eq. 
(21)] can be obtained by requiring that the projection of the 
~ matrices into the hypersurface vanish. Let us assume that 

(AI) 

where KI-' is to be determined from the requirement below: 

Da(hl-' u~t/J)IY, = (Dahl-' U~)t/J + hI-' u~Da t/J = hI-' u~Da t/J. 
(A2) 

Since hI-' u~t/J is a vector-spinor we have 

Da(hl-' u~t/J) = h" uha T(hl-' "~t/J)'T + ha TKT~hl-' ut/J. (A3) 

The left-hand side of (A2) is equal to 

n" uha T(~hl-' "t/J'T + ~(nl-"Tn" + nl-'n"'T)t/J) + ha TKT~hl-' ut/J 

= ~hl-' uha "'t/J'T + ~nl-'hvuha Tnv'Tt/J + ha TKTyI-'hl-' U 

= yl-'hl-' uha T t/J'T + nl-' yl-'x a ut/J + hI-' uha T KT yl-'t/J. (A4) 

Equation (A2) then becomes 

~hl-' Uha"'tP.T + nl-' ~Xa ut/J + hI-' uha TKTyI-'t/J 

= hI-' uyI-'Dat/J = hI-' u~ha rt/J'T + hI-' u~ha TKrt/J. (AS) 

Hence, 

hI-' uha TyI-'KT = hI-' uha TKT~ + nl-' yl-'Xa u, 

or equivalently 

hI-' U ha T[yI-',KT] = nl-'~Xa u. 

The solution to this equation is 

(A6) 

(A7) 

(A8) 

To verify that the above is indeed the solution ofEq. (A 7) we 
substitute (A8) into the left-hand side of (A 7) and obtain 

hI-' U(! yl-'x aT yT n" y" - ! X aT iT n" yV~) 

=! hI-' UXaTn,,(~yTy" - yry"~) 

= ! hI-' UXar n" (yI-'yTy" + yT~y" - 2g1'''yT) 

=! hI-' "XaTn" I yI-',yTjy" - 0 

1 h a 2n1-'T " u" = 2 I-' XaT n" 6 Y = Xa n"y , 
which is precisely the right-hand side of (A 7). 

APPENDIXB 

(A9) 

We use the conventions of Hawking and Ellis. IS For the 
metric ofEq. (65) we find the following Christoffel symbols: 

r;o = oJa; (i = 1,2,3). (Bl) 

The trace of the second fundamental form of t = constant 
hypersurfaces is 

(B2) 
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Using Eq. (15) we find the following spinor connection coef
ficients: 

F,=O, 
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We present the generalization of the method of zeta function regularization for operators with 
continuous spectra where one cannot interchange the order of integration and limit processes. A 
sample calculation is presented. 

PACS numbers: 11.10.Gh 

1. INTRODUCTION 

In recent years zeta function regularization has become 
a popular method for finding the finite part of the one-loop 
correction to the classical action. Unfortunately the stan
dard references, I with the exception ofDeWitt2 describe the 
method for a discrete but not for a continuous spectrum. 
De Witt discusses the case of a continuous spectrum where it 
is valid to interchange orders of integration and limit pro
cesses in defining the determinant, and for such operators 
the definition of the generalized zeta function is the same for 
the discrete as well as the continuous spectrum. In general 
this is not so. We will present the generalization of DeWitt's 
work which is valid when one cannot interchange orders of 
integration and limit processes. 

One way of avoiding this problem is to place the system 
in a "box" by putting boundaries on the manifold to obtain a 
discrete spectrum, and the boundaries can be sent to infinity 
at the end of the calculation. In flat space this is a trivial 
procedure but in curved space the introduction of boundar
ies can lead to problems. 3 Thus it should be useful to develop 
the generalization of the zeta function method for contin
uous spectra directly. 

The paper is organized as follows. In Sec. 2 the method 
for discrete spectra is reviewed and the method for contin
uous spectra is presented and discussed. In Sec. 3 a sample 
calculation is done which illustrates the care that must be 
taken to avoid getting nonsense. 

2. ZETA FUNCTION REGULARIZATION FOR 
CONTINUOUS SPECTRA 

We begin by reviewing, briefly, the method for discrete 
spectra (see Ref. 1 for a more detailed treatment). 

In general what one wants to calculate is the determi
nant of a given differential operator. In a typical loop expan
sion this operator is given by the second variation of the 
action evaluated at the classical solution.4 Here we will con
sider any operator which has a complete orthonormal set of 
eigenfunctions with eigenvalues which may be discrete or 
continuous. We work in N-dimensional flat space. The gen
eralization to curved space should be straightforward. 

If the operator A (a,x) has a discrete spectrum then its 
determinant is given by the product of all the eigenvalues, 

En' 
detA =det[A(a,x)8 N (x,x')] = lIEn =exPLlnEn,(2.1) 

n n 

where n in general ranges over some countably infinite set. 

As might be expected, this yields infinity for the value of the 
determinant and the result must be regularized to obtain a 
finite answer. The zeta function method accomplishes this 
by analytic continuation. Consider the generalized zeta 
function defined by 

(2.2) 

When the eigenvalues En increase without bound it can be 
shown that the sum will converge for Re(z) > 2, and it can be 
analytically continued to a meromorphic function of z which 
is regular at z = 0 and has poles at z = I and 2.1 Noticing 
that 

one defines the determinant to be given by 

det A = exp( - ; '(0)). 

(2.3) 

(2.4) 

To generalize this procedure to the case where the 
eigenvalues E form a continuous spectrum, one must replace 
the sum in (2.2) by an integral. But this requires the multi
plicity or degeneracy of the eigenvalues, i.e., the measure. In 
the discrete case discussed above, it is tacitly assumed that n 
labels the eigenvalues in a one-to-one manner; that is, for 
each n there is only one eigenvalue. Thus, if there is an m
fold multiplicity or degeneracy of the eigenvalues, there are 
m values of n each of which has the same value of En. If 
instead we wished to label only distinct values of E, we would 
of course have to insert the appropriate multiplicity m(E ), so 
that (2.1) would be replaced by 

detA = IJ Em(E) = exp [ ~ m(E)ln(E)]. (2.5) 

and (2.2) would be replaced by 

;(z) = L m(E)E -z, (2.6) 
E 

where the product and the sum run over distinct values of E. 
Equations (2.5) and (2.6) are the appropriate point of depar
ture for generalizing the method to continuous spectra. We 
will see below that this will involve more than just replacing 
the sum in (2.5) and (2.6) by an integral. This is because in 
general one must be careful about orders of integration and 
limit processes. This will lead us to define a zeta function 
which depends on x and x'. 

Consider the case where A (a,x) has a complete set of 
orthonormal eigenfunctions 1](a,x) with continuous eigen
values E (a), i.e., 
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A (a,x)7J(a,x) = E (a)7J(a,x), 

t dNa W(a,x')7J(a,x)7J*(a,x') = 8N(x,x'), 

f dNx W(a',x)7J(a,x)7J*(a',x) = 8N(a,a'), 

(2.7) 

(2.8) 

(2.9) 

where W (a,x) is a combination of the "weight function,,5 and 
normalization factors. Note that we have assumed that there 
will be N parameters aj> i = 1,2, ... ,N needed to label the ei
genfunctions and eigenvalues. Certainly this will be true in 
general. The parameter a j may be continuous or discrete. 
This is the reason for the notation'; in (2.8); it indicates 
summation for the discrete a j and integration for the contin
uous a j • Also 8 N(a,a') is a product of Kronecker 8-functions 
for the discrete a j and Dirac 8-functions for the continuous 
a j • We are of course considering the case where at least one 
of the a j is continuous so that the spectrum is continuous. 

Using (2.8) and the power series for In we get 

In[A (a,x)8N(x,x')] 

00 1 t [n+ I ] L -- dNal···dNan+1 II (I-E(aJ) 
n=on+1 j=1 

x J dNxl,,·dNxn ~fi: [W(a j ,xj)7J(aj,xj _ 1 )7J*(a j ,xJ], 

where Xo = x and xn + I = x'. Using (2.9) we see that the 
d NXj integrations yield a product of 8-functions on the a j 

and thus 

In [A (a,x)8N (x,x')] 

= t dNa W(a,x')7J(a,x)7J*(a,x')ln E(a). (2.10) 

Now since det A = exp tr In A we have 

det A = exp tr t d Na W(a,x')7J(a,x)7J*(a,x')ln E (a). (2.11) 

i.e., 

This calculation has appeared before in the literature. 6 

The symbol tr in the above formula denotes the trace, 

trf(x,x') = J d Nxd Nx'8N(x,x')f(x,x') = J dNxf(x,x). 

(2.12) 

It is tempting to do either of two things; interchange the 
order ofthe dNa integration with the trace and use (2.9) to 
obtain 

detA = exp [ 8N(0) t dNa In E(a)], (2.13) 

or maintain the order of integration but use 8N (x,x') to write 

detA = exp [ f dNx t dNa W(a,x)I7J(a,xW InE(a)]. 

(2.14) 
We will show in the next section by examining a particular 
example that it is not valid in general to use either (2.13) or 
(2.14) to calculate the determinant. 

Following DeWitt, but maintaining the order ofinte
gration and limit processes, let us define 

;:(z,x,x') = tdNa W(a,x')7J(a,x)7J*(a,x')E -Z(a) (2.15) 
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and 

; (z,x) = ;: (z,x,x) = lim; (z,x,x'). (2.16) 
x-x' 

Note that 

; (n,x,x') = G n(x,x') 

= J dNxl,,·dNxn G(x,xtJ,,·G(xn_I,x') (2.17) 

and 

; (n,x) = G n(x,x) = lim G n(x,x'), (2.18) 
x-x' 

where 

G (x,x') = t d Na W(a,x')7J(a,x)7J*(a,x')E -I(a) (2.19) 

is the Green's function for A (a,x). 
If A (a,x) is an elliptic operator, then G (x,x') will be ana

lytic but if A (a,x) is a hyperbolic operator then G (x,x') will be 
given by a generalized function or distribution. 7 Thus as long 
as one is working in the Euclidean sector I where the wave 
equation is elliptic, then;: (n,x,x') will be analytic since it is 
the integrated product of analytic functions as shown in 
(2.17). If we now analytically continue n to z, then;: (z,x,x') 
will be analytic except for branch points since it is essentially 
an analytic function raised to the power z. Note that usually 
these branch points will be at infinity because this is where 
G (x,x') vanishes. 

Thus we define the determinant by 

(2.20) 

This is the most general and in that sense the most COf
rect way of defining the determinant because it does not in
volve interchanging orders of integration and limit pro
cesses. The reason fOf keeping the d NX integration for last is 
that sometimes (az; (z,x))z = 0 is independent of x and thus 
det A is infinite, but (2.20) shows that in this case infinity 
comes from the volume of space-time and is not due to a 
short distance divergence. 

Before ending this section let us examine (2.11) and 
compare it with (2.5). We see from this that one must consid
er W(a,x')7J(a,x)7J*(a,x') as the multiplicity density of the 
eigenvalues. This is as close as one can get to m(E) when the 
orders of integration and limit processes cannot be inter
changed. To see what m(E) would be in terms of 
W (a,x')7J(a,x)7J*(a,x') when we can interchange one order of 
integration with the rest, make the following change of var
iables: a j goes to E, {Ja,a = 1, ... ,N - 1. Then 
dNa = J(E, {J)d N- I{J withJ(E, {J)beingtheJacobianofthe 
transformation. Now assume that we can interchange the dE 
integration with the others to get 

det A = exp f dE [ tr t d N - I{J J ( (J,E ) 

X W ( {J,E,x')i]( (J,E,x)i] * ( (J,E,x') ] In E, 

which shows the quantity in square brackets to be m(E). 
It should be noted that (2.17) indicates that it is not 
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necessary to know the eigenfunctions and eigenvalues in or
der to find -; (z,x,x'); one need only know the Green's func
tion. 
3. AN ILLUSTRATIVE EXAMPLE 

Here we will calculate the one-loop correction to the 
standard <fJ 4 field theory in the presence of a massless plane 
wave background field. The reason for doing this particular 
calculation is that it illustrates very nicely just how careful 
one must be. We will use (2.20) to get the correct answer 
which has been calculated by different methods,8.9 and then 
show how and why (2.13) and (2.14) would yield the wrong 
result. We will follow the steps in Ref. 6 for calculating the 
unrenormalized result. 

Consider the action for the standard <fJ 4 field theory 
where <fJ is a real scalar field, 

S[<fJ] = f d 4x 2'(x) 

= f d4xuap<fJap<fJ-!M2<fJ2-1g<fJ4]. (3.1) 

The one-loop correction to this action in the presence of a 
massless plane wave background <fJc(kpxP) is 

SI = !iln det [(a 2 + M2 + 3M ~(kpxP))o 4(X,x/)] , (3.2) 

where kp is a given constant four-vector with kpk p = o. 
Without loss of generality we can take k I = k2 = 0 and thus 
kpxP = koXo - k3X3 = ko(xo + X3)' Thus it will be useful to 
work in null plane coordinates9

: 

x ± _( lIv1)/(xo ± x3) = (lIv1)(xO + x 3)==.x =F • 

In terms of these coordinates inner products take the form 

ApB p =A+B_ +A_B+ -Ai Bit 

where i is summed over the values 1,2. In the rest of this 
section i,j, ... take the values 1,2 unless otherwise specified. 
The eigenvalue equation we need to solve is 

[2a+a_ -aiai +M2+ 3g<fJ~(k_x+)]17(P,x) 

=E(P)17(P,x), (3.3) 

where a has been replaced withp. 
The eigenfunctions are easily seen to be 

17(P,x) = (21T)-2 exp [ - i PpxP 

__ 1_' f"+ 3g<fJc(k_ y +)dY+] 
2p+ 

with eigenvalues 

E(p)= -2p+p_ +PiPi +M2. 

They can be shown to satisfy 

f-+",'" d 4p 17(P,x)17*(P,x/) = 04(X,x/), 

f_+ ",'" d 4X 17( P,x)17*( p/,x) = 04( p,p'), 

and thus W(p,x) = 1. 
Substituting these results into (2.15) and using 

A -z = (- W ('" s"- I exp(isA )ds, 
F(z) Jo 

we get 
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(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

-; (z,x,x') = ...!...-.-"--- ,l 
(-W+Il"'ds..z- 1 

F(z) 0 

J
+'" 

X _ 00 d~ 17(P,x)17*(p,x/)eisEIP) 

= - 1 ds s" - 3 exp ~ (x _ X')2 + isM 2 ( ')Z + 1 l'" [ . 
F(z)16~ 0 4s 

1 iX+ ] + ---,- / 3g<fJ~(k_y+)dy+ ' 
x+ -x+ "+ 

(3.9) 

and therefore 

; (z,x) = ~ i (M2 + 3g<fJ~(k_x+W-z, (3.10) 
16 (z - l)(z - 2) 

after using (3.8) again. We now have 

(az;(z,x))z=o = 3;~ (M2 + 3g<fJ ~(k_X+))2 

X B -In(M2 + 3g<fJ ~(k_x+))], 

and finally 

Sl = - ~ (M2 + 3g<fJ ~(k_x+W 
6411 

X B-ln(M2+3g<fJ~(k_x+))]. (3.11) 

This result matches those obtained by other methodslO up to 
a finite renormalization. 

Note that if we had tried using (2.14) to define; (z,x) 
rather than (2.16), then in (3.9) we would have 117(P,xW rath
er than 17(P,x)17*(P,x/). But 117(P,xW is completely indepen
dent of <fJc and we would not have obtained the correct an
swer for S I' The reason why we cannot set x = x' before the 
d ~ integration in (3.9) is obvious in this case: 17( P,x)17*( p,x/) 
has an essential singularity at P + = 0 which contributes to 
the integral, setting x = x/ in the integrand eliminates this 
singularity which changes the result for the integral. In gen
eral it would seem that if W(a,x')17(a,x)17*(a,x') has poles 
and/or singularities in the complex a plane and if the poles 
and/or singUlarities are not present in W (a,x) I 17(a,xW, then 
one must do the dNa integration before setting x = x'. If 
there are no poles or singularities which contribute to the 
integral, then one can set x = x' before doing the dNa inte
gration. 

Note next that the eigenvalues (3.5) are the same as the 
eigenvalues for <fJc = 0, and thus had we tried using (2.13) to 
define the determinant (through the zeta function) we would 
have obtained the result one gets in the absence of any back
ground. Furthermore, using (2.13) would imply that all oper
ators with the same spectrum would have the same determi
nant regardless of the form ofthe operator. This is Obviously 
nonsense and is reminiscent of the "joke proof" that the S 
matrix must be unity. II It is well known l2 that the open 
channel elements of the S matrix can be calculated directly 
from det[(Ho + gV)/Ho], where Ho and (Ho + gV) are as
sumed to have the same spectrum. Using (2.13) would then 
give det[(Ho + gV)/H01 = 1 independent of the value of g, 
the coupling constant. This then implies that the S matrix is 
independent of g and thus, for any g, has the same value. 
Since S (g = 0) = 1, then S = 1 for any g, which is obviously 
incorrect. 

G. M. Gallatin 631 



                                                                                                                                    

ACKNOWLEDGMENTS 

The author would like to thank the Lewes Center for 
Physics (where this work was begun) for their hospitality, 
and Alan Chodos and Mike Vaughn for many helpful and 
stimulating discussions. 

'N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cam
bridge V.P., Cambridge, 1982), Chap. 6; S. W. Hawking, Commun. Math. 
Phys. 55, 133 (1977); S. W. Hawking, in General Relativity, An Einstein 
Centenary Survey, edited by S. W. Hawking and W. Israel (Cambridge 
V.P., Cambridge, 1979), p. 746. 

2B. DeWitt, in General Relativity, An Einstein Centenary Survey, edited by 
S. W. Hawking and W. Israel (Cambridge V.P., Cambridge, 1979), p. 680. 

3S. W. Hawking, in General Relativity, An Einstein Centenary Survey, edit-

632 J. Math. Phys., Vol. 25, No.3, March 1984 

ed by S. W. Hawking and W. Israel (Cambridge V.P., Cambridge, 1979). p. 
746. 

'See. for example. R. Jackiw. Phys. Rev. D 9,1686 (1947). 
'See, for example. G. Arfken. Mathematical Methads/or Physicists (Aca
demic. New York. 1970) 2nd ed .• Chap. 9. 

6G. M. Gallatin. Phys. Rev. D 25. 434 (1982). 
7L. Schwartz. Theorie des distributions. Vol. 2. Actualities scientifiques et 
industrieles (Hermann and Cie. Paris. 1950. 1951). pp. 1091. 1122. 

oS. G. Matinyanand G. K. Savvidi. Yad. Fiz. 25. 218 (1977) [Sov. J. Nucl. 
Phys. 25. 118 (1977)]. 

9See• for example, H. Bacry and N. P. Chang, Ann. Phys. (N.Y.) 47, 407 
(1968); or J. B. Kogut and D. E. Soper, Phys. Rev. D 1, 2901 (1970), and 
references therein. 

IOC.ltzykson and J. -B. Zuber, Quantum Field Theory (McGraw-Hill, New 
York, 1980), p. 454. 

"M. Vaughn (private communication). 
'2See, for example, R. G. Newton, Scattering Theory a/Waves and Particles 

(McGraw-Hill, New York, 1966), p. 515. 

G. M. Gallatin 632 



                                                                                                                                    

A possible approach to the construction of the :exp t:d quantum field theory 
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Using a solution of some Euclidean invariant problem of moments, we construct a Euclidean 
realization ( = a Euclidean field) for the Wightman-Jaffe quantum field :exp 'P(X):d' where 'P(x) is 
the free quantum field. With the help of this Euclidean realization we propose a new 
nonperturbative mathematically rigorous approach to the construction of the quantum field 
theory with the exponential interaction in a finite volume of d-dimensional space-time (d>2) and 
without ultraviolet cutoffs. In particular, for pure imaginary values of the coupling constant the 
generating functional for Schwinger functions is constructed. The expansion of the theory which 
is constructed by using this method in powers of the coupling constant gives the renormalized 
perturbation series. 

PACS numbers: lUD.Mn, I1.1D.Gh 

1. INTRODUCTION 

Constructive quantum field theory has by now pro
vided several nontrivial examples of models of quantum field 
theory in two- and three-dimensional space-time satisfying 
all Wightman and/or Haag-Kastler axioms (see, for in
stance, Refs. 1-6 and references therein). 

At the same time the investigation of models for quan
tum fields in four-dimensional space-time is hampered by 
the presence of ultraviolet divergences. The analysis of per
turbation theory makes it more or less clear that every bare 
interaction has to be modified at small distances; in other 
words, it has to involve counterterms (but cf. the paper by 
Petrina and Rebenko.7) 

The structure of counterterms is very complicated and 
allows an evident nonperturbative description for superren
ormalizable theories only. The description of counterterms 
is renormalizable and, moreover, in nonrenormalizable the
ories is very, very complicated. A nonperturbative attempt 
to take into account counterterms in renormalizable theories 
was undertaken by Schrader. 8-10 

In the present paper we undertake a new mathematical
ly rigorous nonperturbative attempt to construct the 
:exp 5:d quantum field theory in a finite volume of d-dimen
sional space-time (d>2) and without ultraviolet cutoffs. Our 
method manifestly takes into account the presence of ultra
violet divergences and counterterms. 

The :exp 5:4 quantum field theory was thoroughly in
vestigated in perturbation theory; see, for instance, Refs. II 
and 12. Using the technique of superpropagators, it was 
shown that the Green functions exist in the sense of pertur
bation theory. These Green functions have a nonpolynomial 
increase in momentum space and are Gel'fand-Shilov-Jaffe
type ultradistributions. Moreover, calculations have been 
made in the chiral quantum field theory of phases of 1T1T 

scattering, of weak decays of mesons, and of the mass differ
ence of K Land Ks mesons. These calculations used the tech
nique of superpropagators and are in fair agreement with 
observation. For the application of models with nonpolyno
mial Lagrangians for the description of real physical phe
nomena, see the monograph by Volkov and Pervushin. 13 

In Refs. 14 and 15 was proved the necessity of an intro
duction of counterterms in order to obtain a nontrivial the
ory with the exponential interaction in four-dimensional 
space-time. 

The main idea of our approach consists in making a 
formal change of variables 5 (x) --+ :exp 5 (X):d + counter
terms and in the mathematically rigorous definition of gen
erated formal expressions. For this purpose we construct a 
Euclidean realization, that is, a Euclidean field (see Sec. 5), 
for the quantum Wightman-Jaffe field :exp 'P(X):d' and 'P(x) 
is the free massive quantum field. To construct the Euclid
ean realization, we formulate some Euclidean invariant 
problem of moments, that is, the problem of the representa
tion of a sequence of ultradistributions as moments of a Eu
clidean invariant complex measure. This problem of mo
ments consists ofthe following. Let 5 (x) be the free Euclidean 
field and Po be the corresponding Gaussian measure. There 
will be found a Euclidean invariant measure p, defined on 
some space of generalized functions and such that the fol
lowing formal equalities are fulfilled: 

J dplP (x \) ® ... ® lP (xn) = J dpo(5) ,.D/ exp 5 (xJ 

for all x,. "#Xj for i"# j and all n. A rigorous definition is given 
in Theorem 2.1. We reduce the solution of this problem of 
moments to the problem of extension of a linear functional 
defined on a subspace and use the Hahn-Banach theorem. 
Then we use the obtained Euclidean realization to construct 
the :exp 5:d quantum field theory. In other words, to con
struct the :exp 5:d theory, we start not from the Euclidean 
realization 5 (x) ( = the Gaussian generalized random pro
cess) of the free quantum field 'P(x), but we construct the 
interacting theory with the help of a Euclidean realization of 
some representative of the Borchers class of the free field, 
namely, with the help of a Euclidean realization lP (x) of the 
quantum Wightman-Jaffe field :exp 'P(X):d' Formally, lP (x) 
is equal to :exp 5 (X):d + counterterms. 

Unlike the noncoincident (i.e., defined at noncoinciding 
points) Schwinger functions of the free field, the noncoinci
dent Schwinger functions of the quantum field :exp 'P(X):d 
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are nonintegrable and for their extension at coinciding 
points one has to consider them as ultradistributions and to 
apply the Hahn-Banach theorem. In addition, Schwinger 
functions only define moments of a measure and, while in the 
case of the free field the measure is uniquely reconstructed 
by their moments, in the general case this is not so. There
fore, in general, a Euclidean field is not given uniquely by its 
Schwinger functions alone. For uniqueness one has to re
quire the fulfilment of some more conditions. The problems 
connected with uniqueness of the construction of a Euclid
ean field require an additional study. 

Using the method proposed in this paper, we construct 
the generating functional for Schwinger functions for pure 
imaginary values ofthe coupling constant of the :exp S:d 
Euclidean theory without an ultraviolet cutoff and with a 
fixed space-time one. The expansion of the theory, which is 
constructed by using this method in powers of the coupling 
constant, gives the renormalized perturbation series. 

This slightly generalized method is also applicable to 
polynomial interactions in d-dimensional space-time, 16 al
though in this case the problem of the connection with the 
usual consideration of the 5 j modeJ2-5 is not clear. 

Analogous arguments are also applicable to the con
struction of Green functions, 17.18 that is, to the construction 
of a Feynman integral. 

We use the opportunity to correct mistakes contained 
in Refs. 17 and 18. In the proof of Theorem 2.118 the equality 
after formula (2.4) is only valid for kl = ... = k n • One 
should exclude the remark after Theorem 2.118 and assume 
that the spaces 1ff~e (R4) (see Sec. 2) with 1 < a < ~ are used in 
Theorem 3.1. 17 In the proof of Theorem 3.118 the assertion 
about the T continuity follows now from Theorem 2.1,18 
from inequality 3.1,18 and from the inequality 

f d 4
x I a( 2

j
/2Bi a~o )J(XO,X) I 

<,cj f d 4
x I P (i a~o )J(X°,x) I, 

where a(.) andp (.) are entire functions of the form [Ref. 17, 
formula (2.1)] with indices a<.~, 1 < P < a, cj 
= f dxo IYj(xO)I, and Yj(xO)ELI(R) is the function with the 

Fourier transform Y7(pO) = P(pO)-la (2 j/2BpO) (the inclu
sion Yj ELI follows from Lemma 1.3 18). In addition in the 
inequality before (1.1)18 ck should be replaced by cdJ). 

However, in the case of a Feynman integral a location of 
this approach as a whole is less clear. In particular, there 
exists no translation invariant measure whose moments are 
equal to the Green functions of the free field. 19 Then, while 
in contrast to the case of the theory in the Euclidean region 
there does not appear a problem of integrability of an un
bounded exponent for the Feynman integral (more precisely, 
it can be avoided), but (for the theory in the infinite volume) a 
problem arises about the Poincare invariance of the obtained 
Green functions. In the two-dimensional case the Poincare 
group is amenable, 20 and, using an invariant mean on the 
two-dimensional Poincare group, one can try to obtain a 
Poincare-invariant (finitely additive) measure, but the mea
sure obtained in such a way has, most likely, no moments 
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and so it cannot be used to obtain an integral representation 
for Green functions. 

Our paper is organized as follows. 
In Sec. 2 we formulate the main results of our paper, 

outline their proofs and give a short discussion. 
In Sec. 3 we investigate linear functionals on the sym

metric tensor algebra S('G') over the Jaffe-type space 1ff, 
which are given by measures on 1ff ~e' 

In Sec. 4 we characterize the topology which is weaker 
than the topology in which linear continuous functionals on 
S(1ff) are given by measures on 1ff ~e' 

In Sec. 5 we formulate sufficient conditions for the solv
ability of a Euclidean invariant problem of moments and 
prove the existence of a Euclidean realization for the quan
tum field :exp ip(X):d' 

By c with or without indices we denote various strictly 
positive constants, possibly depending on unessential varia
bles, (.,.) denotes the action of an ultradistribution on a test 
function. 

2. MAIN RESULTS 

In this section we present the main results of our paper. 
We use (in configuration space) the spaces of test functions 
which coincide with Jaffe-type spaces 'G'a(Rdn) of infinitely 
differentiable complex functions on Rdn for which the fol
lowing equivalent sequences of seminorms are finite (cf. 
Refs. 21-23): 

IIJII~\ = sup!A -Irnllml-Irnllxk a"1(x) I 
rn.X 

(2.1) 

IIJIW1I = sup! la(p)karnJ-(p)1 
p,rn 

x 1m E zdn, m;;;'O,lml<.l; p E Rdnj. 

Here A > 0, k,l E Z, k,/;;;.O, we have used multiindex denota
tions.! - (p) is the Fourier transform of the functionJ(x), and 
alp) is an entire function, 

00 

a(p)= L (r!)- 2a l p I2r, (2.2) 
r=O 

of the order Va, which gives the character of possible singu
larities of ultradistributions. The natural topology on 'G' a 

(Rdn) can be defined by one of equivalent sequences of semi
norms (2.1). 

We note that other types of test functions spaces can 
also be used, for instance, the Gel'fand-Shilov spaces 
sa, .... a,24 

By 1ff~e (Rd
) we denote the (topological) subspace of 

real functions from 'G'a (Rd) with induced topology, 
The denotations 1ffa (Rd

) and 1ff~e (JRd) we shall often 
abbreviate to 1ffa and 'G'~e or to 1ff and 1ff Re' 

We introduce on 1ff ~e the weak topology a( 1ff ~e' 1ff Re) 
and use for integration the theory presented in the Bourba
ki's tractate,25 that is, the measures used by us are Radon 
measures, in other words, they are countably additive inner 
regular (weakly) Borel measures, cf. Ref. 25, Chap. IX, §3, 
no. 2, Theorem 2). We also remark that for the spaces 1ff ~e 
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all the natural definitions of integrals and u-algebras are 
identical. 

Let us denote by fjJ 0 the subspace of polynomial func
tions on 'is'ite of the form 

f( (/» = fo + < (/>'/1) 

00 

+ I < (/> ® ••• ® (/>'/n ), (2.3) 
n=2 

wherefo E C, fl E 'is',fn E 'is' 0 (JRdn) for n;?2 and only a finite 
number of fn is not equal to zero. Here, 'is' g (JRdn) = I f E 'is' a 
(JRdn)IJ kf(xl,. .. ,xn ) = 0 for all multiindices k;?O if some Xi 
= Xj for i #jJ. 'is'g (Rdn) is a closed subspace, and we equip it 

with the induced topology. 
We remark that for a > 1 the subspaces 'is'g(Rdn) are 

nontrivial (see, for instance, Refs. 22 and 23). 
The main idea of our approach consists of constructing 

a Euclidean field (/> (x) corresponding to the normal ordered 
exponent of the free quantum field and of using this Euclid
ean field for the construction of the quantum field theory 
with the exponential interaction. The following assertion 
about the existence of a Euclidean field for the quantum field 
:exp cP (X):d is valid. 

Theorem 2.1: Let 1 < a < d - 1/d - 2. There exists a 
real Euclidean invariant measure f.L on 'is'~~ such that the 
unity and all functions of the form < (/> ® ••• ® (/>,h n >, hn 
E 'is'a(Rdn ), are integrable, and, iffE fjJ 0 and has the form 
2.3) then 

f df.L( <p) (fo + < <P'/I> + nt2 < (/> ® ••• ® (/>/n» 

=Sgfo+ f ddxS?(x)nx) 

+ n~2 f ddnx S~(xI,· .. ,xn)fn(XI"··' xn)· (2.4) 

Here S~, sg = 1, S?(x) = 1, 

S~(XI, ... ,xn)=exp[ I G(Xi-Xj )] forn;?2, 
1< l< }<n 

G(x) = (21T)-d f ddp (p2+m2)-lexp(ipx), m>O, 

are the noncoincident n-point Schwinger functions of the 
strictly localizable Wightman-Jaffe quantum field 
:exp cP (X):d' where cp(x) is the d-dimensional free scalar mas
sive quantum field and double colons: : denote the Wick 
ordering. 

Theorem 2.1 will be proved in Sec. 5. 
With the help of the measure f.L, whose existence is 

proved in Theorem 2.1, one may represent the partition 
function of the theory with the exponential interaction and 
with a space-time cutoff A in the following form: 

ZA = f df.L( (/» exp( - g( (/>,A »), (2.5) 
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where g is the coupling constant. For A E 'is' ~e' a < d - 1/ 
d - 2, the integrand is a f.L-measurable unbounded function. 
Unfortunately, we are not able to prove f.L-integrability of 
this function and so, a priori, (2.5) is only defined for pure 
imaginary values of the coupling constant. 

With the help of the measure f.L one may also write the 
expression for the generating functional of Schwinger func
tions of the quantum field theory with the exponential inter
action. Indeed, with the help of the Wick theorem26 the for
mal expression 

f df.Lo(5') exp [ - g f d dX :exp 5' (x):A (x) 

+ f ddX 5'(X)f(x)] 

for the unnormalized generating functional of Schwinger 
functions of the :exp 5':d theory can be represented in the 
form of a formal continual integral 

exp [ - ~(fGf)] f df.Lo(5') 

xexp[ - g f ddX :exp 5'(X):Af (X)], (2.6) 

whose integrand contains 5' (x) in the form :exp 5' (x): only. 
Here f.Lo is the Gaussian measure, corresponding to the free 
Euclidean 5' (x), (fGf) = f ddxddyf(x)G(x - y)f(y),Af(x) 
= A (x) exp[f d dy fIx - y)G (y)]. 

If one tries to define (2.6) as a limit of the corresponding 
expressions with ultraviolet cutoffs, then these expressions 
tend to the corresponding expressions for the free theory 
when the ultraviolet cutoffs are removed. 14,15 On the other 
hand, in the integrand (2.6) 5' (x) is involved in the form 
:exp 5' (x): only, and so it is natural to use Theorem 2.1 and to 
try to define the unnormalized generating functional for 
Schwinger functions as 

The measurability of the integrand in (2.7) follows from: 
Lemma 2.2: Letf(x), g(x) E 'is'a, a;? 1; then 

g(x) exp[f(x)] E 'is'a. 
Proof Let J i be the partial derivative with respect to the 

ith coordinate. We prove by induction on n that 

for every A> 0 and some c depending onA. Sincef(x) E 'is'a, 

(2.9) 

for every A> 0 and some c depending on A, and, thus, for 
n = 1 assumption (2.8) is fulfilled. Assuming that it is ful
filled for n, we have for n + 1 
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1

m, md ml! .. ·md! 

= ;,~o ... ;d~O il!(ml - il)! •.. id!(md - id)! 

X (f..' ••• if; f(xt a,(,' - ;, .•• a;d -;d fix) I 
<[by the induction hypothesis and (2.9)] 

d 

en + I II (A mi m;!a2n + mil 
i= 1 

Since a> 1 and the expression in square brackets is an in
teger, summing over il, ... ,id, we obtain the estimate 

that is, the induction hypothesis for n + 1. Thus, (2.8) is 
proved. (2.8) implies that 

xs~rd I CDI a;n) exp[f(x)] I 

\~o n!-I xs~rd I CDI a;n)f(Xr I 

d 

= exp(e2d) II (A mim;!a2mi) 
;=1 

for every A > 0 and some e depending on A. This estimate 
and the statement of the Gel'fand and Shilov's book [Ref. 20, 
Chap. IV, §4.2b, §9) imply that g(x) exp[ fix)] E C(Ja. 

Lemma 2.2 is proved. 
Lemma 2.2 implies that for A,JE C(Jie' l<a <d - 1/ 

d - 2, the function exp( - g( <P,Af») is,u-measurable and 
for pure imaginary values of the coupling constant g is 
bounded. Therefore, (2.5) and (2.7) are defined correctly for 
pure imaginary values of the coupling constant. 

By definition we set that the (unnormalized) generating 
functional for Schwinger functions of the :exp $:d quantum 
field theory with the space-time cutoff A is given by (2.7). 
Thus, we obtain an integral representation in the region of 
pure imaginary values of the coupling constant g. 

Unfortunately, we are not able to prove that the func
tion exp( - g( <P,A f) ) is ,u-integrable for positive values of 
the coupling constant g. We also are not able to give a rigor
ous meaning as a change of variables to the transition from 
the free field $ (x) to the field <P (x). Formally, these fields are 
connected with each other by a relation <P (x) = :exp $ (x): 
+ eounterterms. In order to interpret this relation literally 

as a change of variables, one has to overcome great difficul
ties of both combinatorial and analytical nature. 

Analogous constructions can be performed for a poly-
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nomial interaction as well. The difference is that, for the 
polynomial interaction in the integral representation of the 
generating functional of Schwinger functions corresponding 
to (2.7), an integral arises over several fields <Pdx), corre
sponding to :$ (X)k : + eounterterms. 

We note that the arising Euclidean field <P (x) [in the 
polynomial case several fields <Pk (x)] is a Euclidean field for 
the quantum field :exp ({J (X):d belonging to the Borchers 
class of equivalence of the free field. 

Our construction is analogous to that of the renormal
ized Hilbert space for the $ ~ theory, where the Hamiltonian 
is a densely defined symmetric operator. The integrability of 
exp( - ( <P,A f) ) corresponds to the boundedness from be
low of the renormalized Hamiltonian and is an open prob
lem. 

The proof of Theorem 2.1 is based on the Hahn-Banach 
theorem. We present here a sketch of the proof of Theorem 
2.1. 

Let Y be the set of functions on C(J ~e of the form 
<P f--+ g(a l( <P ), ... ,an ( <P )), where the g are polynomially 
bounded continuous functions, 

00 

a;(<P)=(a;)o+ I (<P ® ... ® <P,(a;)k)' 
k= I k 

and only a finite number of (a; k (depending on a;) are non
zero. 

Using the noncoincident Schwinger functions of the 
quantum field :exp ({J (X):d one can define a linear functional 
,u":?o on the subspace 9 0 c Y. For this purpose forfE 9 0 
we set,uy?o (f) = rhs (2.4). Then,u!7o is correctly defined and 
gives a linear functional on 9 o. 

N ow let us choose a topology on the space of functions 
Y such that the dual space would be given by measures 
( = would be given by linear functionals which are defined 
by measures), then, for the linear functional,u.cj'o to be ex
tended to a measure on C(J ~e' it is sufficient by the Hahn
Banach theorem that it satisfy some continuity conditions. 
Namely, it should be continuous in the topology which is 
induced by the above topology (that is, in the topology in 
which the dual to Y is given by measures). Sufficient condi
tions are formulated in Theorem 5.1 Thereby we prove the 
existence of a measure satisfying equalities (2.4). 

Further, we prove the existence of a measure with Eu
clidean invariant estimates and use an invariant mean on the 
amenable group of Euclidean transformations20 to construct 
a Euclidean invariant measure, satisfying equality (2.4). 

In general, the measure whose existence is asserted in 
Theorem 2.1 is both non positive and nonunique. This non
uniqueness reflects both the nonuniqueness of renormaliza
tion and the non uniqueness of the reconstruction of the the
ory by its perturbation series. 

From the general point of view, the measure corre
sponding to the physical theory has to be complex due to the 
breaking of time-reversal symmetry.27.28 Further, on the one 
hand, the nonpositivity of the measure corresponds to the 
old idea of an introduction into the theory of states with 
negative probabilities in order to remove ultraviolet diver-
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gences (these negative probabilities do not mean an introduc
tion of negative probabilities into the physical space of 
states). On the other hand, the condition of (enlarged) phys
ical positivity of the measure ( = the Osterwalder-Schrader 
positivity condition for bounded functions) and the invar
iance of the measure under temporal translations imply posi
tivity of the measure itself (see Refs. 29 and 30). Are there 
among measures of Theorem 2.1 measures satisfying such 
enlarged physical positivity conditions? Moreover, expres
sion (2.7) corresponds to the generating functional, i.e., to 
the Laplace transformation of the measure corresponding to 
the interacting theory, and the connection of its properties 
with those of the measure from Theorem 2.1 requires further 
investigation. 

To construct the theory for real (positive) values of the 
coupling constant, it would be sufficient to prove that the 
function exp( - g( cJ>,Af») ELI ('6' ~e' I Ill). Properly 
speaking, it would be sufficient to prove that the generating 
functional J A (f) is analytic in g in the region Re g > O. We 
note that, due to the fast increase of the noncoincident 
Schwinger functions of the field :exp qJ (X):d with the in
crease of n, one is to expect that the generating functional 
J A (f) is nonanalytic in g at zero. 

The effective construction of approximations of mea
sures from Theorem 2.1 would advance a further investiga
tion of the theory with the exponential interaction in our 
approach. 

It would be interesting to investigate Markov proper
ties I of measures from Theorem 2.1. 

If one compares our approach with the usual one, then, 
first of all, in the free case the measure constructed by using 
our approach (and integrable Schwinger functions) gives the 
usual Gaussian measure. 

For the exponential interaction in two-dimensional 
space-time I 

VA ( S) = J d 2X :exp As (xJ:z A (x), A E ( - J41i,..j"41i), 

one can easily show that there exists the positive Euclidean 
invariant measure,u defined on Y Re(JR2)' (Y Re (JRn) 
(Y(JRn

)) is the Schwartz space of rapidly decreasing infinite-
ly differentiable real (complex) valued functions on JRn) satis
fying the Osterwalder-Schrader positivity conditions for 
bounded functions and such that forfE Y Re(JR2), nonnega
tive g, and nonnegative A E L 00 (JR)2 n LI(JR2

), 

J d,uo(s)exp[(S,J) - gVA(S)] 

= exp[ - ~(fGf)] J d,u( cJ» exp( - g( cJ>,Af»)' 

exp( - g( cJ>,Af») ELI(Y Re(JR2)',Il). 

It should be noted that since VA ( S ) E£ Lp (Y Re (JR2)', Ilo) 
for sufficiently large p, the measure Il has moments only of 
the order not larger than some Po [and coinciding with the 
corresponding (integrable) Schwinger functions of the quan
tum field :exp AqJ (X):I + d. Thus, this measure Il is not a 
Euclidean realization of the field :exp AqJ (X):I + I in the 
sense of the definition of Sec. 5, where the existence of all 
moments is needed. 
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In the case of the zero-dimensional field theory, the 
method proposed in the paper is reduced to the solvability of 
the problem of moments in a class of complex countably 
additive measures on JR, for which all polynomials are inte
grable31 (see also Sec. 4). Such a problem of moments is al
ways solvable, and its solution is based on the fact that any 
(real) sequence may be represented as a difference of two 
positively definite sequences growing sufficiently fast (see 
Lemma 4.3). 

3. MEASURES ON Crff Re AS CONTINUOUS 
FUNCTIONALS ON A FUNCTION ALGEBRA 

Let us introduce some definitions, see also Ref. 17. 
The symmetric tensor algebra over '6' is the direct sum 

00 

S('6') = E9 Sn('6'), 
n=O 

where So('6') = C and Sn ('6') is the completed n-fold sym
metric tensor power of '6' equipped with the topology in
duced by 'if(JRdn

). S('if) is a commutative .-algebra where 
the *-operation is defined as complex conjugation. We intro
duce on S('if) the direct sum topology and denote it by r. 

The dual space S( '6')' consists of all sequences 
T = (To, T I , ••• ) with To E C, Tn E '6' (JRdny and such that Tn is 
invariant under permutations of arguments. 

The algebra S( 'if) may also be considered as the algebra 
of polynomial functions on '6' ~e' The isomorphism of these 
algebras is defined by the relation a - X <I> (a)=a( cJ> ), where 
a = (ao,a l , ... ) E S ('6'), X <I> is a continuous real character on 
S('if) defined by X <I> = (1, cJ>, cJ> ® cJ>, ... ) E S('if)', cJ> E 'if ~e' 

X <I> (a) =a(cJ» =ao+l::=1 (¢ ® ••• ® ¢,an).Thefact 
n 

thatX<I> is a character means thatX<I>(ab) = X<I>(a)X<I>(b), a, 
b E S( '6'). The correspondence a ++ X <I> (a) = a( cJ> ) is bijec
tive, which follows from a general polarization identity (Ref. 
32, Lemma 1.5.4). 

In this section we consider the following question: 
When a functional T = (To, ... ,Tn' ... ) E S( '6')' has a repre
sentation of the form 

T(a)=T 000 + ntl (Tn,an) = f dll( cJ» a(cJ», 

where Il is a complex measure on '6' ~e (cf. Ref. 33). 
For this purpose, following Ref. 33, we introduce a 

space .Y offunctions on 'if ~e of the form 
f( cJ» = g(a l ,( cJ> ), ... ,an ( cJ>)), where a j E S('6') and g are po
lynomially bounded continuous functions on en (naturally, 
a j and n depend onf). 

Following Ref. 33, wedefinethetopology~on.Ybythe 
collection of seminorms of the form 

IlfllFp = sup{ If( cJ»lFp( cJ»-1 IcJ>E '6'~e j, (3.1) 

where each Fp is a function '6' ~e --->- [0,00) of the form 

Fp(cJ»=sup{la(cJ»llp(a)<l}, (3.2) 

a E S ('if) and p is a seminorm on S( '6' ) continuous in the 
direct sum topology r. We note that Fp( cJ> ):>cp > O. 

The bipolar theorem (Ref. 34, Chap. II, no. 4, Theorem 
4, Corollary 1) implies that for each continuous on S('6') se-
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minormp we have 

p(a)=sup[IT(a)lpO(T)-IITES('G')" Ti0}, (3.3) 

where pOrT) = sup[ I T(a)1 I p(a)..;; 1 J. 
Indeed, the set [a I p(a)..;; 1 J is closed and convex and its 

polar is the set {T I pO(T)..;; 1 J. The bipolar theorem implies 
that the set {al p(a)..;; 1 J is the polar of the set {T I pO(T)..;; 1 J. 
Equality (3.3) follows from Ref. 34, Chap. I, no. 4, Lemma 2. 

SinceFp( <1» = p°lt</», this and equality (3.3) imply 
that Ilail F ..;; pta). Thus, the topology induced on S('G') by the 

p~ 

topology T is weaker than the topology T. This equality also 
implies that (3.1) are really seminorms on Y (that is, II YIIF 

p 

< (0). 
The topology; is Hausdorff; this easily follows from 

Lemma 4.4(a). 
For the space Y the following assertions are valid. 
Theorem 3.1: Let Tbe a linear functional on Y contin

uous with respect to the seminorm II·IIF of the form (3.1). 
p 

Then 

T(f) = f df-l( <1> )f( <1», fE Y, 

where f-l is a unique complex measure on CC; ~e such that 
every fEY is integrable and 

(3.4) 

By the Hahn-Banach theorem, Theorem 3.1 has the 
following corollary: 

Theorem 3.2: For a linear functional T defined on some 
subspace M C S( 'G') having a representation 

T(a) = J df-l(<1»a(<1», aEMCS('G') CY, 

with a complex measure f-l for which all a( <1> ) E Yare inte
grable, it would be sufficient that Tbe continuous in the 
topology on M induced by the topology;. In addition, if 
IT(a)l..;; Ilail F foraEMandaseminorm II·IIF of the form 

p p 

(3.1), then there exists a measure f-l, representing Ton M, 
such that for f E .r 

Remark. We note without a proof that assumptions of 
the theorem are also necessary. 

ProofofTheorem 3.1: Let Y Re be the set of real func
tions from Y. Since Y Re is a Riesz space [with respect to the 
naturalorderf..;; g q f( <1»..;; g( <1»] (Ref. 25, Chap. II, § 1, no. 
1, Definition 1) and I fl..;; I gl implies II filF ..;; II gliF , so a lin-

p p 

ear functional T defined on Y and continuous with respect 
to the seminorm II·IIF can be written as 

p 

T = T[ - T2 + i(T3 - T4 ) with linear and positive function-
als T;, continuous with respect to II·IIF [Ref. 25, Chap. II, §2, 

p 

no. 2, Theorem 1 and Formula (1)]. 
Let us consider, therefore, a positive functional T. In 

this case T(exp(i( <1>,h »)) defines a positive definite function 
on CC; Re' We have 

636 J. Math. Phys., Vol. 25, No.3, March 1964 

IT(exp(i( <1>,h l »)) - T(exp(i( <1>,h2 »))1 

= IT(exp(i( <1>,h 1») - exp(i( <1>,h 2 »)) I 

..;;c lIexp(i(<1>,h 1») - exp(i( <1>,h 2»)IIF 
p 

..;;cll( <1>,h 1 - h2 )IIF ";;Cp(hl - h2 ) 
p 

for the r-continuous seminorm p on S('G'). Since the restrict
tion ofthe seminormp on C{; is a continuous seminorm on C{;, 

this estimate implies that T(exp(i( <1>,h »)) defines a contin
uous positively definite function on C{; Re' Since C{; Re is bar
reled (Ref. 34, Chap. IV, no. 1, Theorem 2) and nuclear, 2 1 by 
the Minlos theorem (Ref. 5, Chap. IX, §6, no. 12, Corollary) 
there exists a unique positive measure on C{; ~e such that 

T(exp(i( <1>,h »)) = J df-l( <1» exp(i( <1>,h »). 

Let us show that every fEY is f-l-integrable and 

T(f) = J df-l( <1> )f(<1»· (3.5) 

To prove equality (3.5), we show that the linear combi
nations of exponents, exp(i ( <1>,h »), h E 'G' Re' are dense in Y 
both in the topology defined by II·IIF and in the topology of 

p 

L I (C{; ~e' f-l). It is sufficient to prove that they are dense in the 
set of bounded functions from .'/. Let a bounded function 
fE .'7, thenf( <1» = f(a l ( <1> ),oo.,am( <1> I). We setfL( <1» 
= f( <1» xd~7'~ 1 la;( <1> )1), where XL (x) = X(x/L), 

xIx) E fIR), 0..;; X(x)..;; 1, X (x) = 1 for x E [0,1] and = ° for 
XEt[ - 1,2]. We also introducefLM( <1» = fLM(a l ( </J ),'00, 
am( <1>)), wherefLM(x) = f d m yfL(X - y)aM(y) and aM(y) 
= Mma(y/M), a(y) E fIRm), a(y);;;.O, f dmy aryl = I, 
suppa(y) C [-1,1]. 

Since Sn (C{;) is a Frechet space and the completed n-fold 
symmetric tensor product of spaces C{; and the set 
{TE S('G')'I pO(T)..;;K < 00 j, where a seminormpis r-contin
uous, is equicontinuous, so every a( <1> )= X </>(a) is the point 
limit of a sequence of cylinder (and measurable) functions 
aNt <1» as N -+ 00 and the convergence aNt <1» --+ a( <1» is 
uniform on any set KFp'K = { <1> E C{; ~e IFp ( <1> )= pOt X</» 
<X J. Thus, for every fLM ( <1> ) the sequence of cylinder func
tionsfLMN( <1» = fLM(a 1N ( <1> ),oo.,amN ( <1») converges as 
N --+ 00 tOfLM( <1» uniformly on any KFp'K' Denoting 
fLMN( <1» = g( <1» = g( <1>,b l ),oo.,( <1>,b k »), b; E 'G' Re' and 
gL'( <1» = gL'( <1>,b l ), .. ·,( <1>,bk ») = g( <1> )XL'(1.7~ I 

I ( <1>,b;) I), we have that gL' (x) E f(Rk) and its Fourier 
transform also belongs to f(R k

). Hence gL' (x), and there
fore gL' ( <1> ), is the uniform limit of linear combinations of 
exponents. 

Since 

IIf - fL IIFp = 11(1 - XL)fllf'r> 

..;;L-111 ;tlla;(</J)lfIIFp 

and 

one can easily see that the linear hull of exponents is dense in 
.¥ in the topology defined by II·IIF . Its density in the topol-

p 
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ogy of L I (CfJ ~. , "') follows from the Lebesgue dominated and 
montone convergence theorems. 

This proves the existence of a measure. Uniqueness of 
the measure follows, for example, from Ref. 25, Chap. IX, 
§6, no. 12, Corollary, and from simple arguments. Estimate 
(3.4) follows from the existence and properties of the abso
lute value of a complex (Radon) measure [cf. Ref. 25, Chap. 
III, §1, no. 6; see also Chap. II, §2, no. 2, Theorem 1 and 
formula (1)]. Theorem 3.1 is proved. 

4. THE TOPOLOGY ; ON THE SUBSPACE OF 
POLYNOMIAL FUNCTIONS 

In this section we describe the topology which is weaker 
than that induced by ; on the subspace S( CfJ), and this topol
ogy is used in the following (in Sec. 5) to solve a Euclidean
invariant problem of moments. 

Let us denote by PI ® £ P2 the (bi-) equicontinuous ten
sor product of seminorms PI' P2· 34

•
35 

Theorem 4.1: Let 

p'(a) = colaol + C 1 p(ad 
00 

+ I cn(p ® £ ••• ® £ p)(an)' a E S(CfJ), (4.1) 
n=2 

where p is a continuous Euclidean invariant seminorm on CfJ 
(that is, invariant under transformations of CfJ generated by 
translations and Euclidean rotations of Rd

) and 
p(f) = p(f*). Then 

p'(a),;;; sup la(cJ»lFp·(cJ»-I, aES(CfJ), 
r:J>E C(;'Re 

for a Euclidean invariant function Fp. ( cJ» of the form (3.2) 
given by a Euclidean-invariant r-continuous seminormp" 
on S(,1t'), 

p"(a)=suPn max(chlaol,c;p(ad, c~p ®£ ••• ®£p(an))· 
(4.2) 

Remark: Is the assertion of Theorem 4.1 valid for other 
Euclidean-invariant seminorms? We note that in Ref. 18 we 
have considered an analogous topology [with the projective 
tensor product of seminorms and with a Euclidean-nonin
variant function Fp. ( cJ»]. 

To prove Theorem 4.1, we first formulate a number of 
lemmas. First we consider an analogous problem for the 
symmetric tensor algebra over a one-dimensional space. 
Such an algebra is the same as the algebra P (R) of complex 
polynomials of one real variable. The analog of the topology 
r is defined by the seminorms 

N 

(1Plllenl = I Cn Ian I, 
n=O 

where PIx) = l:~ = ° anxn and I Cn J is an arbitrary sequence 
with O,;;;cn < 00. The analog of the topology; is given by the 
seminorms 

liP IIF = supIP(x)IF(x)-I, 
xER 

whereF(x) = l:;:,=o dn Ixl n with some constants O<dn ,;;; 00. 

Since F (x) is a function which grows faster than any polyno
mial, IIP(R)IIF < 00. 

We shall show that both sets of seminorms define the 
same topology on P(R). 
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Lemma 4.233: Both sets of semi norms, 11·llfcnl and II·IIF' 
define the same topology on P(R). 

The proof of Lemma 4.2 is based on Lemma 4.3. 
A sequence I "'n J is called positive definite if 

n 

I "'i + Pi aj>O 
i.j=O 

for each finite number of complex ao, ... ,an (here aj denotes 
the complex conjugate of a j ). 

Lemma 4.3: Let a sequence {cn J, O';;;Cn < 00, be given. 
Then there exists a sequence I c~ J such that, for every se
quence {bn J, Ibn I.;;;cn, there exists a decomposition bn = An 
- "'n +i(vn - Sn),wheresequences IAnJ, l"'nJ, {vnJ, 
{Sn J are positive definite and IAn I + I "'n I + IVn I + I ;n I 
,;;;c~. 

Proof The proof of the lemma is in fact a slightly stron
ger version of the Boas' proof 31 (cf. also Ref. 33). 

We use the following notation: 

..1.0' AI' ... , An 

det(A bn = 
AI' ..1.2, ... ,An + I 

An' An + I' '" , A2n 
It is sufficient to consider real sequences Ibn J. 
For positive definiteness of a sequence I An J it is suffi

cient that all consequent principal minors det(A bn of the 
matrix Ai + j are strictly positive (Ref. 36, Chap. X, §4, 
Theorem 3). 

Let a sequence Ibn J, Ibn I ';;;Cn, be given. We define the 
sequences {An J, { fLn J, {C~} by induction. Let 
..1.0 = bo + Co + l,fLo = Co + 1, ch = 3co + 2. Then 
..1.0 - "'0 = bo and 1..1.0 I + I flo I ,;;;ch, and ch only depends on 

We suppose that Ak - fLk = bk for k,;;;2n - 2, that de
terminants det(A b > 1, detfJLbk > 1 for k';;;n - 1, and that 
IAk I + I "'k I.;;;c~, k,;;;2n - 2, where the sequence (ch, 
"',c;n _ 2) depends only on (CO""'C2n _ 2)' 

Let A2n _ I = b2n _ I , "'2n _ I = 0, and c;n _ I = C2n - I • 

We write (with so far undetermined A2n ) 

det(A lIn = A2n det(A bn _ 2 + P (A ), 

where P (A ) is a polynomial in AO, ... ,A.2n _ I , and the corre
sponding relation for det( '" bn' 

det( '" bn = fL2n det( '" bn - 2 + P ( ",). 

We denote P = supllP(A )11 IAk I.;;;c~, k,;;;2n - 1 J and 
choose A2n = b2n + C2n + 1 + P, fL2n = C2n + 1 + P, c;n 
= 3c2n + 2 + 2P; then we obtain that A2n - "'2n = b2n , 

det(A lIn> 1, det( ",bn > 1, and IA2n I + I fL2n I,;;;c;n' where c;n 
depends only on (CO, ... ,c2n ). This completes the induction and 
the proof of Lemma 4.3 

Proof of Lemma 4.2 (cf. Ref. 33): Let a sequence! Cn J, 
O,;;;cn < 00, be given. Lemma 4.3 implies that there exists a 
sequence I c~ J such that each T E P(R)' with I T (P ) I,;;; II P III C

n 
I 

can be represented in the form T = TI - T2 + i( T3 - T4 ) 

with positive functionals Ti (i.e., they are positive on positive 
polynomials) such that l:i= I I Ti(P)I,;;; liP IIfe~J' Now if Tis 

such that IT (P) I,;;; liP III en I ' then the above arguments and the 

Edward P. Osipov 639 



                                                                                                                                    

theorem (Ref. 37, XII.S.I) about the Hamburger moment 
problem imply that, for some measure f-t on R, such that 
S dl f-tl(x) Ixnl.;;;c~, T(P) = S df-t(x) PIx). With dn = 2 - n -! 
(c~ + 1)-1 and F(x) = I.:=o dn Ixl n, we have 

IT(P)I.;;;f d I f-tIIP(x)I.;;;IIPIiF f d I f-tl F(x).;;;IIP IIF 

[the integrability of F(x) follows from the Lebesgue mono
tone convergence theorem]. 

This inequality means that liP Illenl 

= sup { IT(P)IIT(P)I.;;;IIP IIlenl .;;;IIP IIF' Theconverseinequa
lity, 11·IIF.;;;II·lllcnl' for some sequence {cn } is obvious. 
Lemma 4.2 is proved. 

Now we consider the algebra S('6'). 
Lemma 4.4: Seminorms of the form 

IlfllF= sup If(<P)IF(<P)-I, fEY, 
tPE'6'Re 

with the functions F of one of the following two types: 
00 

(a) Fp( <P) = I P On ( <p)n = sup la( <P )1, 
n = 0 Pia),,! 

p(a)=supmax(laol,Pn ®E'" ®EPn(an)) 
n 

00 

(b) F(<P)= II [1+pOn(<P))' 
n=1 

form a basis of the topology~. Here { Pn} is any sequence of 
continuous seminorms on C(i and P on ( <P ) 
= sup{ I ( <P,f) I IPn (f).;;; I,fE'G') is the dual Minkowski 

functional of the seminormp. 
Proof One can easily see that the seminorms of the form 

p~(an)= Pn ®E'" ®EPn(an),wherepn are continuous 
seminorms on C(i, define the topology of C(i (Rdn) and the 

seminorms ofthep(a) = supn p~(an)' wherepb(ao) = laol, 
pi (a l ) = PI(a l ), define the topology r. Thus, the seminorms 
of the form (3.1) with functions F, corresponding to the semi
norms P, define the topology ~. Calculating a value of the 
dual Minkowski functional pO

(.) of the seminorm P for X</> 
= (1, <P, ... ,<P ® ... ® <P, ... ) E S(C(i)', <P E C(i ie' we obtain 

00 

F( <P) = pO(x</» = I pOol <pr. 
n=O 

Indeed, 

sup lao+ i (<P ® ••• ® <P,an) 1 

Pia),,! n = 0 

00 

.;;; sup laol + I sup I( <P ® ... ® <P,an)l, 
p(a),,! n = ! Pia)" I 

sup I ( <P ® '" ® <P,an) I 
Pia),,! 

sup I ( <P ® ... ® <P,an) I 
Pn ® E'·' Oil> EPn(a,.,)< 1 

The last inequality follows from the definition of the €-tensor 
product, 
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Pn ®E'" ®EPn(an)=sup{I(<PI ® ••• ® <Pn,an)1 

I <PI"'" <Pn E 'tiie>p °n( <Pi)';;;I}. 

So, 

00 

F(<P).;;; I pOn(<Pr· 
n=O 

On the other hand, if all P On ( <P ) < 00, then we choose 
a = (aO,al, ... ,an, ... ), ao = 1, an = bn ® ... ® bn for I.;;;n.;;;N 
and an = 0 for n >Nand choose bn such thatpn (bn).;;;I, 

P on ( <p)n - 2 - n€.;;; ( <P ® ••• ® <P,an) 

= (<p,bn)n';;;pOn( <pr· 

Note that pta) = supn max(I, Pn (bn)"J';;; 1. Then, we obtain 

F( <P» 11 + n~! (<P ® ••• ® <P,an) I 
00 

>-€+IpOn(<Pr 
n=O 

for each €> 0 and naturalN. This implies thatF( <P »I.: = 0 

P °n( <P )n, that is, F( <P) = I.:=o P °n( <P r. 
If P on ( <P) = 00 for some n, then analogously we obtain 

that F( <P) = 00, too. 
Thus, case (a) of Lemma 4.4 is proved. 
Functions of the type (b) are not in general functions of 

the form (3.2). 
We assume without loss of generality that P n .;;; P n + ! , 

which implies P on ( <P »P on +! (<P). 
It is obvious that seminorms with functions from (a) 

dominate seminorms with functions from (b). 
On the other hand, 

00 = 2m 

I pOn(<pr> I 2- m I pOn(<Pr 
n=O m=l n=O 

00 

> I 2 - m I P ° 2m ( <P r 
m = 1 n =0 

> i 2- m[1 +2- mp02m (<p)]2m. (4.3) 
m=l 

We have used the inequality for binomial coefficients c;z. 
= N!ln!(N - n)!.;;;N n for N = 2m. 

Using the inequality 

InC~!2-mXm» m~!2-mlnxm, xm>I, 

which simply follows from the convexity and continuity of 
the logarithm, we obtain that (4.3) is larger than 

00 00 

II [1+2- mp02m(<P)] = II [1+qOm(<P)) 
m= 1 n= 1 

with qm = 2mp2m. 

This proves that seminorms with functions from (b) 
dominate seminorms with functions from (a). Lemma 4.4 is 
proved. 

00 

Lemma 4.5: Let F( <P) = I p °n( <P )n, wherepn is a 
n=O 

sequence of continuous seminorms on 'ti and P °0 ( <P )0 = 1. 
Let a = (ao, ... ,an, ... ) E S('ti), then for any sequence (cn J, 
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00 

L Cn /Ian I/F< I/al/r, 
n=O 

where F'( <1» = !.: = 0 q on ( <1> t, qn = C~ Pn for some se
quence ic~ j, O<c~ < 00. 

Proof: Lemma 4.2 implies that for any sequence (c n j 
there exists afunctionH (x) = !.:=o dn IxlnwithO<dn < 00, 

such that 

for all terminating sequences {an}. Hence, 

i: Cn Ilan IIF<SUP 2n 
+ ICn Ilan IIF 

n=O n 

= sup sup 2n + ICn 1(<1> ® ••• ® <1>,a,,) IF( <1> )-1 
<I> n 

I 
00 (<1> ® ". ® <1>,a" )x" I 

<sup sup L -------
<I> x n=O F( <1>)H(x) 

1

00 (<1>® ••• ®<1>,an)x"l 
<sup sup L -------

<P x n=O F'(x<1» 

=sup 1 i: (<1> ® •• : ® <1>,an) I, 
<I> n=O F(<1» 

whereF'( <1» = !.: = 0 dn P on ( <1>)" and we have used the re
lations p on (x<1» = IxlP on ( <1» and F( <1»H (x»!.: = 0 dn 
p On (x <1> t = F'(x<1». 

Hence, it follows that the assertion of the lemma is ful
filled for F'( <1» = !.: = 0 q on ( <1> In, qn = d n- 1/n Pn. Lemma 
4.5 is proved. 

Lemma 4.6: Let ! P k } be a sequence of continuous se
minorms on Crfj. Then 

I( <1> ® •• , ® <1>,an) I 
sup 

<PE'C Re pOI( <1» ••• pOn( <1» 

<lIanIlH , an ESn('G'), 

for a seminorm IlfliH = suplf( <1> )IH( <1> )-I,JE Y, with 
<P 

H(<1» = "k= 1 [1 + q \( <1>)] with qk = 2k+2 Pk· 
Proof: Again without restriction, we assume that p on 

>p on + 1 anddefineH( <1» = "k= 1 [l + q \( <1>)], whereqk 
= 2K + 2Pk , that is, q \( <1» = 2 - k - 2p °d <1». Then, denot
ing an ( <1» = ( <1> ® ••• ® <1>,an), we have 

x:ft [1 +q\(<1»qOn(<1»-I]-1 
k=1 

=suplan(<1»1 IT [q\(<1»+q",.(<1»]-1 
<P k = 1 

00 

X IT [1 +q\ (<1»qOn(<1»-I]-1 
k=n+l 

n 

>suplan(<1»1 IT [2q°d<1»]-1 
<I> k= 1 

X IT (1 + 2 - (k - ni)-I 

k=n+1 

= sup \a,,( <1»i( pO I ( <1» ••• P on ( <1> ))-1 
<P 

x2n(n+3)/2 IT (1 + 2 -k)-I 
k=1 

since 2n(n + 3)I2"k= I (1 + 2 -k)-1>2n(n+ 3)/2 exp( - !.k= I 

2 - k» 1 for n> 1. Lemma 4.6 is proved. 
Proof of Theorem 4.1: To prove Theorem 4.1, it is suffi

cient to prove that 

, I ( <1> ® ••• ® <1>,an) I 
(p ® € '" ® .. p)(an)<cn sup , 

<PE 'C Re pOt <1> t 
aE~Crfj~ ~~ 

where pOt <1> ) is the dual Minkowski functional of the semi
normp. Indeed, if (4.4) is valid, then 

\~O c;;lIan IIH (H( <1» = J~I [1 + 2 - n - 2pO( <1»], Lemma 4.6) 

\~o c;;IIan IIF(F( <1» = n~o 2 - n
2 

- 2n pOl <1>)" )<lla lir (F'( <1» = ,,~o C~' pOt <1> In, Lemma 4.5). 
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Lemma 4.4(a) now implies that this is an estimate of 
Theorem 4.1 with Euclidean-invariant functions F'( l/» de
fined by the seminorm of the form (4.2). 

The proof of inequality (4.4) is the following. For every 
0>0,0" ESn('Iff) 

(p ®. '" ®.p)(an) 

= sup I(l/>l ® '" ® l/>n,an) 1 

<1>;, pOI <1>;)< 1 

<1< iPf ® ... ® l/>~,an)1 +0 

<2n
l ( l/> ~ ® ... ® l/> ~ ,an) 1 + 0 

fi ;i,.15;i,.ti 0 71 ° (;i,.15) 1 d;i,.15 ;i,.15 U" orsome'l'p .. ·,'I'nE""p '1'1 < ,an 'l'1, ... ,'I'nEwRe' 

pOt l/> 1) < 1. 
The general polarization identity (Ref. 32, Lemma 

1.5.4) implies that 

I l/>~l) ® ... ® l/>~n) 
1TE Pn 

is a linear combination of terms ofthe form l/> ~ ® ... ® l/> ~, 
where Pn is the set of all permutations of n elements and l/> ~ 
= 1:7 ~ 1 {Ii l/> 1 with {Ii equal to ° or 1. Using the general 

polarization identity and taking into account that an is sym
metric, we obtain 

\ ( l/> ~ ® '" ® cP ~ ,an) \ 

= n!-ll L (CP~I) ® ... ® l/>~nl'an) I 
1TE Pn 

<2nn!-1 max I(l/>~ ® ... ® l/>~,an)1 
tJ, .. ·tJn~O.1 

for some t?-' = (t?-;, ... , t?- ~). Then we have pO(l/>~, )<n max 
j 

pO(l/>Jl<n and 

I ( l/> 1 ® ... ® cP ~ ,a") I 
<2nnnn!-11 ( CP~, ® ... ® l/>~, ,an) II pOt l/>~, In. 

Thus, 

(p ® .'" ® .. p)(an ) 

<4nnnn!-1 sup [I(l/> ® ... ®l/>,a")l/pO(l/»"+oJ. 
<l>E 'C Re 

Since 0 is arbitrarily small, this implies inequality (4.4). 
Theorem 4.1 is proved. 

5. EXISTENCE OF A EUCLIDEAN REALIZATION FOR 
THE QUANTUM FIELD :exp rp(x) :d 

Definition: By a Euclidean realization ( = a Euclidean 
field) for a d-dimensional quantum Wightman-Jaffe field we 
mean a 2-tuple ('Iff~~, ,u), where 'Iff~~ is some space of real 
ultradistributions of a Jaffe type with a > 1 and,u is a Euclid
ean-invariant complex measure on 'lffR~ having all moments 
and such that its moments at noncoinciding points are equal 
to the Schwinger functions S" of the considered quantum 
field, that is, for f E q; ° and having the form (2.3). 
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J d,u( cP 1 ( fo + ( l/>,JI) + n ~2 ( cP ® .. , ® l/>,Jn») 

= Sofa + f ddX SI (X)}; (X) 

+ n~2J dd",. Sn(x1, .. ·,xn)fn(x1,,,,,x"), 

In this section we prove Theorem 2.1, that is, we prove 
the existence of a Euclidean realization on a space CC R~ with 
1 < a < (d - l)(d - 2)-1 for the quantum Wightman-Jaffe 
field :exp ,p(X):d' where ,pIx) is the free massive Hermitian 
scalar quantum field and double colons denote normal or
dering. 

The proof of the existence of a Euclidean realization is 
based on the following theorem. 

Theorem 5.1: Let T= (To,T!> .. ·), To E rC,1 Tl E 'Iff', Tn 
E 'Iff a (Rdn)' for n;;;'2, be a sequence of symmetric Euclidean

invariant ultradistributions, defined on CC o(Rdn
) and 

I(Tn,Jn)l<cn(p ® .'" ® .. p)(fn), 

(5.1) 

for some Euclidean-invariant continuous seminormp on CC; 

such that p(f) = p(f*). Then there exists a Euclidean-invar
iant complex measure on CC ~e such that every f E ff is inte
grable and for fE q; a and having the form (2.3): 

J d,u( cP 1 (fo + ( CP,Jl) + n~2 (l/> ® ... ® l/>,J"») 

00 

= Tofo + L (Tn,Jn)' (5.2) 
n=l 

Proof of Theorem 5.1: Theorem 4.1 and 3.2 imply the 
existence of a measure,u, such that every f E ff is integrable 
and satisfying inequalities (5.2) and an estimate 

j J d,u(l/»f(l/»j<J dl,ul(l/» If(l/»I<cllfllr-.. (5.3) 

with a Euclidean-invariant function Fp ' ( l/> ), defined by a 
Euclidean-invariant r-continuous seminorm p', 

p'(a) = sup max(cb laol, c; p(ad, c~(p ® € ... ® € p)(an)), 
n>2 

an ESn('Iff)· 

Let,u = ,ul - ,uz + i(,u3 - ,u4), be the Hahn-Jordan 
decomposition of a measure,u,,u I = (Re,u) + ,,uz = (Re,u) - , 
,u3 = (Im,u)+,,u4 = (Im,u)- [Ref. 25, Chap. II, §2, no. 2, 
Theorem 1 and formula (1); see also Chap. III, §1, no. 6, 
Theorem 3]. Positive measures,uj satisfy estimate (5.3). 

Let 10 (d ) be the inhomogeneous Euclidean group, i.e., 
the group of translations and rotations of the Euclidean 
space Rd. One defines naturally the representation of the 
group 10 (d ) into the group of automorphisms of 'Iff Re' For 
(a,R ) E fO (d ), a E Rd, REO (d ), we define the map 
l/> ,......l/>(a,R) as follows: 

( l/>(a,R ph ) = ( l/>,h(a,R)' 

l/> E ~ ~e' h E ~ (Rd
), 

h(a,R) = h(a,R) (x) = h (R -1(X - a)). 

Let CB(10 (d )) be the space of bounded continuous 
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functions on 10 (d). We assert that for g E Y 

f dJ-lj( <P) g( <P(a.R I) E CB(lO (d )). 

Estimate (5.3) with a Euclidean-invariant function 
Fp ' ( <P) implies that the function S dJ-lj( <P) g( <P(a.R I) is 
bounded. 

To prove the continuity of this function, we use the fact, 
as in the proof of Theorem 3.1, that the linear hull of the 
exponents is dense in Y with respect to the seminorm 11·IIF

p
" 

For every c> ° 
f dJ-lj ( <P) I g( <P1a.R I) - g( <p(a' ,R 'I ) I 

<c + I lajillexp(i( <P(a,Rph)) 
jEJ 

- exp(i( <p(a',R'ph) )IIFp. 

<c + I laj I II (<P(a.R 1 - <P(a',R 'I ,hj ) IIFp' 
jE J 

<c + I laj I p'(hj,(a,R 1 - hj,(a',R'I) (5.4) 
jEJ 

for some J, a j , hj (depending on c). Since the restriction of the 
seminorm p' on C{i is the continuous seminorm p, so, using 
Euclidean invariance of the seminormp, we have 

p'(hj,(U,R 1 - hj,la',R 'I) = p(hj,(a,R 1 - hj(a',R'I) 

= p(hj - hj,(b,QI)' (5.5) 

where b = R -la' - R -la, Q = R -IR'. 
The seminorm p is dominated by a seminorm q from 

(2.1). We denote the Fourier transform of h by h ; the compo
nents of the matrix Q - I by Q ;; I, and the Kronecker symbol 
by oij' So we write 

h j- -hj(b,QI = [h j- -hjlO,Qd 

+ [1 - exp(ibp)]h jlO,QI' 

h j- - h jio,QI = (ds I (Oij - Q;; I)pj aih -Ips!, Jo i,j 
Ps = Q -Ip +s(p _ Q --Ip ), 

1-exp(ibp)= -ibp fdSeXP[i(l-S)bP]' 

and we have that (5.5) is bounded by 

where bj are components of the vector b. Since I Ps I 
;;.1 pi - 111 - Q - 11\ I pi, where III - Q - III is the norm of the 
operator given by the matrix oij - Qij -I in the Euclidean 
space Rd

, so I pi <21 Ps I for 111 - Q -III < ~. The explicitform 
ofthe seminorm q and the inclusion h E C{i imply easily that 
sups q( Pj aih -( Ps)) is bounded uniformly in (b,Q) for (b,Q) 
sufficiently close to the unity of the group 10 (d). Now, the 
obtained estimates and estimate (5.4) imply that for g E Y 

f dJ-lj( <P) g( <P(a,R)) E CBIIO (d )). 
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The inhomogeneous Euclidean group 10 (d )isamenable 
[since it is a semidirect product of two amenable groups, of 
the commutative group Rd and the compact group of rota
tions 0 (d ) (see Ref. 20, Theorems 2.3.3 and 3.6.2 and Ref, 37, 
Theorem XI, 1.1)]. So there exists an invariant mean for this 
group. 

Let m be an invariant mean on CBIIO (d)). Then 

m( f dJ-lj( <P) g( <P(a,R I)) 
is correctly defined and gives a linear positive functional on 
Y continuous with respect to the seminorm II·IIF' 

p 

By Theorem 3.1 there exists a (positive) measure J-lj. 
such that every gE Y is integrable and 

m(f dJ-lj( <P) g( <P(a,R I)) = f dJ-lj. ( <P) g( <P). 

One can easily see that the measure J-lj. is Euclidean
invariant. Let now J-l. = J-li. - J-l2. + i(p.3. - J-l4.); then 
J-l. is a Euclidean-invariant measure such that every g E Y is 
integrable and 

m(f dJ-l( <P) g( <P(a,R I)) = f dJ-l. ( <P) g( <P), g E Y. 

ForfE C{i o(Rdn ) 

(Tn,f) = (Tn,J;a,RI) = m(Tn,f(a,RI») 

= m(f dJ-l( <P) ( <P1a,R 1 ® ••• ® <P(a,R i'f») 
= f dJ-l.( <P) (<P ® ... ® (}),f), 

that is, the measure J-l. satisfies the conditions of Theorem 
5.1. Theorem 5.1 is proved. 

Let us now proceed to obtaining estimates of the form 
(5.1) for the Schwinger functions of the quantum field 
:exp q?(X):d' These estimates allow us to prove Theorem 2.1. 

The expression :exp q?(X):d is correctly defined as a 
Wightman-Jaffe quantum field. Its Schwinger functions S~ 
can easily be calculated, and their explicit forms are given in 
the formulation of Theorem 2.1. Moreover, at noncoincid
ing points, naturally, 

S~(XI,,,,,Xn) = li,!D f dJ-lo(s) iDl :expso(x;):, 

where (J is an ultraviolet cutoff and J-lo is the Gaussian mea
sure with covariance G (x - y) and defined on the Schwartz 
space of tempered distributions. 

The following estimates are valid: 
Theorem 5.2: 

If ddnx S~(XI"",xn)fn(XI"",Xn) I 
<en sup la(pI!'" a(Pn)f;;(PI,· .. ,Pn)l, 

PI "'Pn ERd 

fn E C{ig(Rdn)nSn(C{i), a(·) is an entire function ofthe form 
(2.2) where 1 <a < (d - 2)(d - 1)-1. 

First of all we show that the estimate of Theorem 5.2 is 
that of the form (5.1). 

Lemma 5.3: Let q(f) = suppERdla(p)f- (p)I,fE C{ia; 
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then 

(q ® E'" ® E q)(fn) 

= sup la(p!l ... a(Pn)f;(PI, ... ,Pn)l, 
PI ... PnE Rd 

(5.6) 

Proof This equality may be proved as follows. Since the 
image of the space 'If (JRdn ) under the Fourier transformation 
is dense in the space of continuous functions with compact 
supports and with the topology of the inductive limit, which 
is described in Ref. 25, (Chap. III, § 1, no. 1), the Fourier 
transform of the set { f.l E 'If' I qO( f.l) < 00 I consists of Radon 
measures on JRd. Here qO is the dual Minkowski functional of 
the seminorm q. The proposition (Ref. 25, Chap. IV, §4, no. 
7, Proposition 12) implies that 

= J d loi f.l)1 (p), 
alp) 

where oi f.l) is the measure corresponding to the Fourier 
transform of the ultradistribution f.l. 

Hence, for fn = ~j fjl ® ••• ® Jln 

(q ® E'" ®E q)(fn) 

= ,sup j~iI Jdoif.li)(Pi)f/(Pi)j 
q I /l;I< I J I = I 

<sup ···sup ja(PI)'" a(Pn)Lf~ (P!l ... f/(Pn)! 
~ h j 

= sup la(p!l···a(Pn)f;(PI>···,Pn)1 . 
Pl""P" 

On the other hand, choosing doi f.li) (p') = a( Pi )o(P' - Pi) 
Xddp', we have qO(f.li)<l and 

(q ® < ••• ®< q)(fn»la(pj)··.a(Pn)f;(PI,.··,Pn)l· 

Taking into account that 'If (JRdn ) is the completed tensor pro
duct of 'If and q ® E'" ® < q is a continuous seminorm on 
'G'(Rdn) we obtain equality (5.6). Lemma 5.3 is proved. 

Now we proceed to the proof of Theorem 5.2. 
Let us recall the definition of truncated functions; see, 

for example, Ref. 38, Ch. III, S.C. Let a finite ordered set of 
indices be given. We identify this set with an interval of natu-

n 

ral numbers { l, ... ,n}. Let il = U ilk' where ilk is the set 
k=1 

of all partitions ofthe ordered set { 1 , ... ,n I on k nonempty 
and nonintersecting subsets f I'" .,h , and in each subset lj the 
indices I

J
•. , • •• ,i,' E f

J
. are naturally ordered (I,'. < I,'. < ... ). 

I \Ijl I 2 

Here Ilj I is the number of elements of lj. The subsets lj we 
call parts of the corresponding partition. 

Truncated Schwinger functions Tn are defined in terms 
of Schwinger functions by the following recurrence formula: 
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n k 

Sn(X1""'Xn )= L L IIT111(x;""Xi ). 
k=lllj]E"ki=1 J J, JI/;I 

One can easily see that symmetry and Euclidean invar
iance of Schwinger functions imply symmetry and Euclid
ean in variance of truncated Schwinger functions. For Eu
clidean in variance this easily follows by induction, and for 
symmetry this follows from simple arguments. Indeed, using 
induction on the number of arguments, it is sufficient to con
sider a permutation of neighboring arguments Xi and Xi +- I . 

If indices of these arguments belong to the same part f, be
longing to a partition p E II, then the symmetry of this term 
follows from the induction hypothesis. If these indices be
long to different parts f' and f", i j E 1', i2 E f", of a given 
partitionp, then letp' be the partition obtained by permuting 
i ~ i + 1 from the partition p. If p' = p then the term corre
sponding to p is symmetric under the permutation Xi 
~ Xi+- I' Ifp' of p, then the sum of terms corresponding top 
and p' is symmetric. 

Let T~ be the truncated Schwinger functions of the 
quantum field :exp ip(X):d (defined at non coinciding points). 

Lemma 5.4: 

IT~(xl>""xn)l<en exp(-me~ max IXi -xjl) 
I,J 

xmaxexp[e~ G(e;'(xi -Xj))] (5.7) 
i#j 

x L exp[e~ G(e~'(xi -Xj))]' (5.8) 
i< j 

where en' e~, e;' are strictly positive constants, m is the mass 
appearing in the two-point function G (x). 

Proof of Lemma 5.4: Let us define J ost vectors. Let 
XI,oo"X k be noncoinciding points and (xI,oo.,xd 
= (R (fl' u!l - a, R (f2, u2) - a, ... ), where R E O(d), a E ]Rd, 

Ui E ]Rd ~ 1, and 0< t17j11 <t17j21 .. ·<t17jk 1 for some permutation 
1T. Then for any Wightman-Jaffe field A one can naturally 
define a Jost vector J (xI,oo.,X k ) [more precisely, the Jost vec
tor Ja,R (x l'OO.,X k ) with respect to the coordinate system with 
the origin at the point a and with a temporal direction 
R (1,0)), 

J(XI,oo.,xd = exp( - f17j11 H)A (O,u17jll) 
xexp[(t17j11 - f17j2dH]A (O,U17j2))oo.n, 

belonging to the Hilbert space of the field A. Here H is the 
Hamiltonian and n is the vacuum of the Wightman-Jaffe 
field A. The correctness of this definition follows from the 
smoothness of Schwinger functions at noncoinciding points 
(cf. also formulas 11.27-11.28 in Simon's bookl). 

Before proceeding to the proof of Lemma 5.4, we for
mulate a statement we need. 

Lemma 5.5 (Ruelle): Let X' be a subset of indices 
(l,oo.,n) and all the indices are naturally ordered. Let 
X" = (l,oo.,n)'\X' be the complement of X 'and again indices 
are naturally ordered. For each configuration (Xj,oo.,xn ), Xi 
E ]Rd, there is such a decomposition X ',x" and such a hyper-
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plane that 

j'EX~}?EX.lXi' - Xi" I>(n - 1)-I~,~xlxj - xjl (5.9) 

and the sets {Xi' Ii' E X' I and {Xi" Ii" EX" J lie at a distance 
> (2n - 2)-lmaxj.J IXj - Xj I from the hyperplane in differ
ent half-spaces of this hyperplane. 

Proo![seeJost's book (Ref. 38, Chap. VL §5, Lemma 1)}: 
Let.::i = IXk -xII =maxj,jlxj -Xjl·(xl,· .. ,xn)arepointsin 
the d-dimensional Euclidean space. Hyperplanes containing 
the point Xk or Xl and orthogonal to the vector Xk - Xl are 
supporting hyperplanes of the convex set generated by 
points (xl, ... ,xn)' Hence, hyperplanes orthogonal to Xk - Xl 
and containing points Xj intersect the segment Xk 
+ S(XI - x k ), a..; S..; 1, and decompose it in at most n - 1 
intervals, with the total length .::i, The length of at least one of 
the intervals must be no less than.::i In - 1. Then the hyper
plane intersecting the middle point of this interval and or
thogonal to X k - X I gives a decomposition X' ,x" and a hy
perplane satisfying the condition of the lemma. Lemma 5.5 is 
proved. 

Now we proceed to estimate the truncated functions 
T~ and to obtain bounds(5.7)and(5.8). SinceG (x) = G ( - x) 
and 

n 

maxlxj -xjl>(n _1)-1 I IXj -Xj-II, 
l" i= 2 

bound (5.8) follows from bound (5.7). 
We prove bound (5.7) by induction. 
For given (xl, ... ,xn), let.::i = maxj,j IX j - Xj I = IXk 

- XII, X' and X " = (1, ... ,n)\X' be a decomposition satisfy
ing (5.9), and 0 be the poin t of the intersection of the segment 
Xk + S(XI - xd, O";s..; 1, and the hyperplane such that {Xj I 
i' EX' J and {x j• Ii" EX" J lie at a distance >.::i 12(n - 1), re
spectively, in the positive and negative half-space of the hy
perplane (the existence of such a hyperplane is proved in 
Lemma 5.5). 

The definition of truncated Schwinger functions and 
their symmetry imply that 

T~(X\I,,,,Xn) 

= S~(XI""Xn) - S~'(XI' ,···,xk' )S~. (XI' ,···,xk·) 

-I'IITII), l', ... ,k'EX',l", ... ,k" EX", (5.10) 

where the summation 1:' runs over all partitions fl', which 
cannot be represented as a union of partitions of sets X' and 
X", that is, in other words, the summation 1:' runs over all 
partitions fl' such that for each partitionp E fl' there exists a 
part 1', which is contained in the partition p such that 
InX' =/=0, InX" =/=0. 

Using the Osterwalder-Schrader reconstruction 
theorem,39.4o,21 symmetry and Euclidean invariance of 
Schwinger functions, the expression for S~ (xl, ... ,xn) can be 
represented as the inner product ofJost vectorsJ(x l, , ... ,xk')' 
J (x I' , .. ·,xk· ) with respect to the coordinate system with the 
origin at the point 0 and with the vector Xk - Xl as a tempo
ral direction. 
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S~ (xl, ... ,xn) = (J(itXI"'''' flx.,), J(XI' ,· .. ,xk· )), 

where t1 is the reflection of the direction given by the vector 
Xk - Xl with respect to the point O. and where the inner 
product is taken in the Hilbert space corresponding, by the 
reconstruction theorem. to the quantum field :exp tp(X):d' 
that is, in the subspace of the Fock space of the free quantum 
field tp(x), generated by smoothed polynomials in the field 
:exp tp(X):d' 

Let E ~ be the projection on the subspace orthogonal to 
the vacuum. Then 

S~ (xl.· .. ,xn) - S~.(XI,· .. ,xk·)S~· (XI' .... ,xk·) 

= (J(itx 1·, ... ,t1xk·), E~ J(XI' , ... ,xk'))' (5.11) 

Since the Hamiltonian of the field :exp tp(X):d coincides 
with the free one (more precisely, with the restriction of the 
free Hamiltonian on the corresponding subspace), so it has a 
mass gap >m at the bottom part of the spectrum and (5.11) is 
estimated by the spectral theorem by 

exp[ - m.::i 12(n - 1)]11 J(it(XI' + y), ... ,fl(Xk· + y))11 

(5.12) 

where y = (Xk - xd (n - 4) - \ that is, the vector of a length 
.::i 1(4n - 4) in the directionxk - Xl' and 11·11 is the norm in 
the F ock space. Since for ii' i 2 EX' 

W(X j, + y) - (x j, + y)I>.::i 12n - 2>(2n - 2)-lminlxj -Xjl, 
j"'j 

and, analogously, for ii' i2 EX" 

W(X j, - y) - (X j, - y)I>(2n - 2)-lminlxj -Xjl, 
j",j 

so expressing norms of J ost vectors in (5.12) in terms of func
tions S~ and taking into account the explicit expression for 
S~, the positivity and monotone dependence of G (x) on X 

which follow from the representation 

G(X) = (217V- d J dp [2ltJ(p)]-lexp[ -Ixlw(p)], 

w( p) = (p2 + m 2)1/2, (5.13) 

we obtain the following bound: 

II J(it(XI' + Y)""'t1(Xk' + y))1111 J(XI' - y,· .. ,xk· - ylll 

(5.14) 

In items contained in the sum 1:' in (5.10) each factor 
Til I in the product is dominated by the induction hypothesis 
by 

elll exp( -melll maxlxj -Xjl) 
'.J 

x Illax exp [ e[~ I G (c[71 (Xj - Xj ))] . 
~.J E I 
j",j 

For each partition p over which the summation 1:' runs in 
(5.10), there exists a part I' entering thepartitionp such that 
InX'=/= o and InX" = 0.Duetothechoice ofX',X", 
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max IXi -xjl> min IXi -Xjl 
i,jEi iElnX' 

jElnX" 

>(n _1)-1 max IXi -xjl. 
I.j 

The obtained bounds imply the existence of such strict
ly positive constants en' e~, e;, e;' that inequalities (5.7) are 
fulfilled. Lemma 5.4 is proved. 

Now we proceed to obtaining bounds of Theorem 5.2. 
We first remark that Lemma 5.4 and Ref. 21, Lemma 7 

(or arguments given below) imply that for In E 'G'g (Rdn), 
a<;(d - l)(d - 2)-1, the expression 

<T~,Jn) = f ddnx T~(XI,,,,,xn)ln(XI,,,,,Xn) 
is well defined. 

Let us introduce relative coordinates SI = XI' Si = Xi 
- Xi _ I for 2<;i<;n. 

Since T~ (xl, ... ,xn ) is translation invariant, there exists 
such a function t ~ (S2, ... ,Sn) that at noncoinciding points, Xi 
=l=Xj for i =1= j, 

T~(XI"",Xn) = t~(S2"'" Sn)' 

Hence, 

I (T~,Jn) I <;i~/~I) f ddn-dsexp( - e~) it2 ISil) 

xexp(e~) G(e~4) ± Sk)) 
k=l+ I 

Expanding the exponent and using an estimate 

where E = 0 for d> 2 and E> 0 for d = 2, and which follows 
from representation (5.13), we obtain 

00 cl5 )1 

exp(e~)G (e~4)x))\~o i! Ix 1-- I (d - 2 +E)/I, 

where by ((d - 2 + E)l J we denote the smallest integer 
which is larger or equal to (d - 2 + E) I. 

Using the Taylor expansion we write for In E 'G' o(Rdn ) 

If ddstln( SI"",SI + ... + Si"",SI + ... + Si + Y'''',SI + ... + Sn)1 

--- ~ IYII/, .. ·IYdl
ld 

Ifddt- ai, aid I' (t- t- I """ sup !:ol j, .. , jdJn !:ol""'!:ol + ... + Sn) 
1,+·,,+ld = (d-2+<)/1 ll! .. ·ld! S 

where aji is the partial derivative with respect to the ith com
ponent of the variable xj • 

Using the obtained bounds and continuing bound 
(5.15), we obtain 

x 

Further, 

sup 
S 

I, + ... + Id= I(d- 2 +<)/1 

= (21T) - din - 2)/2 ii, + ... + Id 
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where 1;;- (p 1"'" P n ) denotes the Fourier transform of the 
functionln (XW",xn) and the positive dUn (p) = d dn P 

xo(.I7= I Pi)' 
Hence, 

If dd SI aJ: ... a;; In ( SI"'" SI + ... + Sn)1 

<;f dun(p) I pl' + ... + Idl/;;-(PI, ... ,Pn)l· 

Using estimate (5.16), we obtain 

f 
00 e(6)l1 P I lid - 2 + .)/1 

I (T~,Jn) I <;~ e~6) dUn(PI/~o I ~((/_ 2 + E)l J!' 

(5.16) 

If;;-(PI, .. ·,Pn)1 <; 2:. e~) f dun(p) (3(e~) pj)I/;;-(PI,···,Pnll 
,< j 

for an entire function (3 H ofform (2.2) and of order equal to 
(d - 2 + E)(d - 1 + E) -I. 

Thus, taking into account that the measure dUn (p) is 
symmetric, we have forln E 'G' o(Rdn)nSn('G') 
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1 (T~./n > 1 < ~c~) f dan(p)/3(e~) pj)I/;(PI,. .. ,Pn)1 
.< } 

= ~ n(n - l)e~6) f dan(ilf3(e~)Pn)I/;(PI, .. ·,Pn)1 

<e~) s~p I i'!\ /3 (e~) Pi) 1;;( PI"'" Pn) I, 
where e~) =! n(n - 1) e~) S dan(p) II7':/ /3(e~) Pi)-I < 00. 

Since/3 (e~) p)<e~la(p), where alp) is an entire function 
of the form (2.2) and of the order larger than 
(d - 2 + E)(d - 1 + E) - I, then, choosing an appropriate E, 

we finally have the bound 

I(T~./n>l<en s~p I ill a(pd 1;(PI, ... ,Pn)l, 

In E ~ o(JRdn)nSn(~)' (5.17) 

for an entire function of the form (2.2) and of the order larger 
than (d - 2)(d - 1)-1. 

We use the bound (5.17) to obtain bounds for S~ (XI' 
... ,xn). For this purpose we do the following. Let Tn be an 
extension on ~ (JRdn) of the linear functional T~, given on the 
subspace ~ o(JRdn)nSn (~), which satisfies an estimate 

I(Tn./n>l<en s~p I ill a(Pi) 1;(PI, ... ,Pn)l, 

(5.18) 

By the Hahn-Banach theorem such extensions exist. Let 
n k 

Sn = L L IT Tll)d' 
k~lll)EPkj~1 

then S n as a sum of direct products of ultradistributions Til) 

is a well-defined ultradistribution and its restriction on 
~ o(JRdn)nSn (~) coincides with S~. 

For the Fourier transform S; we have 
nook 

S; = L ') IT TIi;I' 
k~ I IlJ~Pk j~ I 

The Fourier image of the space ~ (JRdn) is dense in the 
space of continuous functions with compact supports and 
the topology of the inductive limit described in Ref. 25, 
Chap. III, §1, no. 1. Thus, this density, bound (5.18) and the 
proposition (Ref. 25, Chap. IV, §4, no. 7, Proposition 12) 

imply that Tll)1 are given by Radon measures a( T Iljl ) on JRd 11;1 

such that 

f 
II) 

d Ia(Tlljl)1 (p) ig a(Pi)-1 < 00. 

Since S ; is a sum of direct products of T Ii) , that is, a sum of 
tensor products of the corresponding measures, the Fubini 
theorem (Ref. 25, Chap. III, §4, no. 1, Theorem 2) and bound 
(5.18) imply that 

I CUI Tlljl./;) I 

= If j!l da(Tlljl )/;(PI,. .. ,Pn) I 
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<s~p lill ell) Il a(Pi) 1;(PI,. .. ,Pn) I 

<en s~p I ill a(Pi) 1;(PI,. .. ,Pn)\. 

This implies also that 

I(S;'/;>I<e~ s~p liiIl a(pl 1;(PI,. .. ,n)!. 

Thus, for In E ~ 0 (JRdn)n Sn (~), 

I(S~./n>1 = 1 (Sn./n> 1 

<e~ s~p liiIl a(Pi) 1;(Pw",Pn)\' 

The obtained bound proves Theorem 5.2. 
Proolol Theorem 2.1: Theorem 2.1 follows now from 

Theorems 5.1, 5.2, and Lemma 5.3. The assertion that a 
measure can be chosen to be real follows from the reality of 
the Schwinger functions S~. Theorem 2.1 is proved. 
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Separable systems for the Dirac equation in curved space-times 
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In this paper, the consequences of the existence of a Killing-Y ano tensor for the separability of the 
general relativistic Dirac equation in an exterior electromagnetic field are investigated. Those 
properties of Killing-Yano tensors, which are relevant for the subject of this work, are reviewed; it 
is then shown that for any class of metrics admitting this type of tensor the Dirac equation can be 
separated at least once. Furthermore, all separable systems which are obtained in this way are 
stated explicitly. Finally, for the special case of the Kerr solution, the formalism of the present 
paper is compared with Chandrasekhar's work on the separability of the Dirac equation. 

PACS numbers: 11.10.Qr 

I. INTRODUCTION 

The solution of wave equations by separation-of-varia
bles methods in a curved background has played an impor
tant role in the analysis of the Kerr geometry. Carterl

•
2 has 

shown that the existence of his fourth constant of the motion 
of test particles also leads to a separation of the Klein-Gor
don equation. This result has been extended to the massless 
spin-l and spin-2 equations and later to the massless spino! 
equation by Teukolski3.4 and Unruh.5 Using a different 
method, Chandrasekhar6 resolved the remaining problem of 
separating the Dirac equation in a Kerr background. His 
work was generalized to a class of type-D vacuum space
times by Guven,? and to the charged case by ToopS and 
Page.9 

The Killing tensor 10 of the Kerr metric has the peculiar 
property that it can be written as the square of a skew tensor 
/a*i,:Kab =/aV*\, Tensors of this type have been called 
Killing-Y ano tensors. Carter and McLenaghan II discov
ered the remarkable fact that the separation of the Dirac 
equation in a curved background is connected to this quanti
ty rather than to the Killing tensor itself. They succeeded in 
constructing an operator, commuting with the Dirac opera
tor, with the property that the Chandrasekhar separation 
constants are interpretable as eigenvalues of this operator. In 
connection with this work, McLenaghan and Spindel l2 de
termined the general self-adjoint first-order differential op
erator which commutes with the Dirac operator. They found 
that this operator can be constructed from Killing-Yano 
tensors of different valences (in the nomenclature of Dietz 
and Riidiger,13.14 referred to henceforth as DR I and DR II). 

Therefore, it appears to be an interesting problem to 
investigate the separability of the Dirac equation under the 
sole assumption that the underlying space-time geometry 
admits one Killing-Yano tensor. To do this, one has to con
struct a coordinate system and a set of operators which to
gether guarantee the separability. For a Killing vector field 
the corresponding problem is trivial: with respect to a coor
dinate system with one of the coordinates adapted to the 

-) Permanent address: Hochschulrechenzentrum, Universitilt Essen·GHS, 
Schiitzenbahn 70, 4300 Essen I, Federal RepUblic of Gennany. 

Killing vector field, one can always separate one factor of the 
wave function; the corresponding operator is the Lie deriva
tive. A corresponding statement for a single irreducible Kill
ing tensor seems not to exist for any type of wave equation. 
General relations between the existence of Killing tensors 
and the separability of the Klein-Gordon equation have 
been investigated by many authors; see the review article by 
Benenti and Francaviglia. 15 The corresponding problem 
concerning Killing-Yano tensors and the Dirac equation, 
however, can be solved because these tensors have been clas
sified, and canonical line elements for each type are avail
able. 13.14 

So, in this paper, the sole assumption concerning the 
background geometry will be that there exists a Killing
Yano tensor. In particular, there will be no explicit restric
tions on the Ricci tensor and no explicit assumptions on the 
existence of isometries. We shall investigate the conse
quences of this assumption for the separability of the Dirac 
equation along the lines of the Chandrasekhar procedure. 

The case of a Killing-Y ano tensor of valence 3 will not 
be treated in this paper because the corresponding canonical 
metric is ofthe form of the Robertson-Walker metric, but 
with an arbitrary 3-metric. The way in which the Dirac 
equation can be separated in this type of metric has already 
been known for a long time. 16 Killing-Yano tensors of va
lence 1 and valence 4 are trivial. Therefore, in this paper, we 
restrict ourselves to the valence 2 case. 

In the case of an algebraically general Killing-Yano 
tensor of valence 2, the relevant operators will be construct
ed in such a way that they possess a definite GHP type. I? In 
particular, the procedure of this paper is invariant under the 
GHP operation prime in contrast to the formalisms of Chan
drasekhar6 and Guven.? It turns out that for all types of 
KilIing-Yano tensors of valence 2, the Dirac equation can be 
decoupled into at least two pairs of coupled equations for 
two spinor components. The details of this separation de
pend on the type of the Killing-Y ano tensor. According to 
the classification of these tensors, as given in DR I and DR 
II, which will be summarized as far as it is relevant for this 
paper in Sec. 2, there are 3, 2, 2, and 1 separation constants 
for the types (4, I), (4, II), (4, III), and (4, IV), respectively (see 
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Table I), one of which is nontrivial, i.e., does not belong to a 
Killing vector field. In cases (2, I), (2, II), and (2, III) there 
exists at least one separation constant. In the last case (of an 
algebraically special Killing-Yano tensor), this is trivial. 

The separation procedure of this paper is strictly local. 
There exist important and more difficult open questions con
cerning the global nature of the functions obtained by this 
separation procedure, in particular, the question whether or 
under what conditions these functions form a complete set. 
These questions are beyond the scope of this paper. 

II. KILLlNG-YANO TENSORS OF VALENCE 2 

In this section, we summarize some of those results of 
DR I and DR II on Killing-Yano tensors of valence 2 which 
will be needed in the following sections. The defining equa
tion of this type of quantity is 

Vlaf*b)c=O, (2.1) 

where the skew tensor f * ab can be translated into spinor 
language by 

f*ab =i(E"ABXA'B' -E"A'B'XAB)' 

Written in terms of the symmetric spinor X AB' Eq. (2.1) is 
equivalent to the two spinor equations 

VA'IAXBCI = 0, VA,RXRA = - VAR'iA'R" (2.2) 

If X AB is algebraically general, it can be written in the form 

XAB = t/J0IA lBI 

or, equivalently, 

f* ab = 1m t/JDab + Re t/JD :b' 

(2.3) 

where Dab = 2k[anbJ and {ka,na,ma,ma J is the canonical 
null tetrad connected with the dyad 0A' lA' The normaliza
tion OKlK = I implies that the right-hand side ofEq. (2.3) is 
unique up to transformations of the form ° A -+A.o A , 
LA -+A. -ItA' t/J-+t/J or OA-~A.tA' lA-+ - A. -lOA' t/J-+ - t/J, 
where A.EC. Equations (2.2) written in the GHP formalism 
take the form 

K=U=O, 

llt/J= -pt/J, 

dt/J= -rt/J, 

pt/J=p'¢, 

rt/J= -r',¢, 

(2.4) 

together with the primed versions of these equations. Note 
that the amplitude t/J of the Killing-Y ano tensor is of type 
(0,0) and that t/J' = - t/J. The corresponding equations in the 
algebraically special case will not be needed here. 

Table I summarizes the relevant results on Killing
Yano tensors. By definition, the parameter v of column 5 
takes the values - I, 0, or + I if d (Re t/J) is timelike, null, or 
spacelike, respectively. So, in cases (4, III) and (4, IV), vis not 
defined. In DR I, an arbitrary parameter (called e) has been 
introduced in these cases to obtain line elements which are 
formally symmetric to those of the other cases. To simplify 
some of the equations, this parameter has been set to zero in 
the present paper. Table I and the following list also incorpo
rate some further slight modifications and simplifications of 
the results of DR I and DR II, which simplify some of the 
final equations of this paper. 

The directional derivatives D,D' = ..1,8,8' =;5 will be 
needed in Sec. IV. We list these because they have not been 

TABLE I. Classification of Killing-Y ano tensors and properties of canonical metrics. 

Type Defining Formof¢ Arbitrary Value Killing 
property functions in ofv vector fields 
of type canonical a, ay metric 

(4,1) dIRe ¢)/\d(lm ¢)'IO ¢=u+ix A (u),B(x) -I spacelike spacelike 
0 spacelike spacelike 

+1 . b 

1 s~ike 

:! 4,11) 
dIRe ¢)'IO 

¢=u+i1 
C (x,y),D (x,y) 0 null 

>. 

~ 
d(lm¢)=O A(u) +1 tlmellke 

~ 
'2 01 (4,III) d(Re¢)=O ¢=k+ix C (u,v),D (u,v) undef. spacelike 
.&> .. d(lm ¢)'IO B(x) ~~ < ~ (4,IV) d(Re¢) =0 I¢I= I E (u,v),F(t,t) undef. 

d(lm ¢) =0 Re¢lm¢'I0 

f· ab ¢(u,v) A (u,v),F(t,t) 
(2,1) spacelike real, >0 

arbitrary 
N 

l f·ab ¢(t,t)!i C (u,v),G (t,t) 
(2,11) timelike real, >0 

arbitrary 
- P(u,x) 
~3 

(2,III) f· ab 
null ¢=1 H(u,x,y) null 

~lt n(u,x,y) 
-< '" 

a Spacelike if A 2 _ B 2 < 0, timelike if A 2 _ B 2 > 0, null if A 2 = B 2. 

b Spacelike if B 2U' - A 2X' > 0, timelike if B 2U' - A 2X' < 0, null if B 2U' - A 2X' = O. 
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given explicitly in DR I and DR II. 
Type (4,1): 

D = 2- 1/2Itfl- 11 -Aau + vu2A -Iav + vA -lay J, 

D' = 2-1/2Itfl-l{vAau + 2u2(1 + v)-IA -Iau 
+ 2(1 + v)-IA -lay L 

D = 2-1/2Itfl-llix2B -Iau +Bax - iB -lay J. 
Type (4,11): 

D = r 1/2Itfl-11 - Aau + vltfl 2A -Iau J, 
D' =2-1/2Itfl-l{vAau +2(1 +v)-lltfI2A -lauJ, 

D = 2-1/2Itfl-l(axC)-1/2{2ilCDau 

+ D -lax - way J. 
Type (4,111): 

D = - 2-1/2Itfl-l(auC)-1/2D -Iau, 

D' = 2-1/2Itfl-l(auC)-1/2IDav + 4kCDay J, 
D = 2- 1I2 Itfl- I{Bax + iltfl2B -lay J. 

Type (4,IV): 

D= -2-1/2E-lau, 

D'=2-1/2E-Iau, 

D = 2- 1I2F- la;. 

Type (2,1): 

D = - 2- 1/2A -Iau , 

D' = 2- 1/2A -Iau , 

D = 2-1/2(tfF)-la;. 

Type (2,11): 
D = - 2- 1/2(Ctf/i)-lau' 

D' = r I/2(ctf/i)-lau' 

D = 2- 1/2G -Ia;. 

Type (2,111): 

D=au, 

D'=p-2{au -Hav + (a;fl)a;- + (a;-fl)a;J. 

D= -p-Ia;;. 

III. SEPARATION OF THE DIRAC EQUATION 

According to Table I the canonical metrics of an alge
braically special Killing-Yano tensor [Type (2,111)] possess a 
null Killing vector field. Apart from the trivial separability 
no further separation is possible, in general, because the 
function fl depends on all of the remaining three coordi
nates. This case will not be considered further. 

The Weyl tensors of all space-times admitting an alge
braically general Killing-Yano tensor of valence 2 are of 
type D. Therefore, it is most convenient to work in the GHP 
formalism. The following equations, (3.1), together with 
their primed versions, constitute the Dirac equation in an 
exterior electromagnetic field (for tP = 0, see Giiven 7) 

(iJ - ietP2)f + i(3' + ietP ~)!' = iILeg, 
(3.1) 
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Here the tP a are the components of the electromagnetic four
potential: tPl_= tP; = 4»'8, tP3 = tP ~ = - 4».ffi, and the oper
ators I» and <,\18,19 are defined by 

iJ1] = (I» + pp + qp)1], 

31] = (<'\ + pr - qr')1], 

where 1] is a scalar of type (p,q). The components!,!'. g, g' of 
the Dirac spinor are of types ( - 1,0), (1,0), (0,1), (0, - 1), 
respectively. 

To separate the Dirac equation under the assumption 
that a Killing-Yano tensor exists, we introduce the follow
ing operator 

(3.2) 
where 2m is the matrix rank of the Killing-Yano tensor. It is 
easy to see that Y is a derivation. Applying the Sachs sym
metry operation ( )* to this operator and the operation ( )' to 
the resulting two operators, we obtain another three opera
tors, the explicit forms of which are 

Y'T] = ItflliJ'T] + (l/m)(pp' + qp')T]J, 

!.!'T] = Itfll 3T] - (l/m)(pr - qr')T] J, 
!.!"T] = I tfll S'T] + (l/m)( pr' - qr)T] J. 

(3.3) 

By use of the Killing-Yano tensor equations (2.4), it 
turns out that the operators iJ, 3 and their primed versions 
take a very condensed form if they are expressed in terms of 
the new operators Y, Y', !.!', and!.!". This is the key point 
for the following formalism. The result is 

iJT] = I tfl-Itf plm if;qlm Y(tf - plm if; - qlm T]), (3.4) 

iJ'T] = Itfl-Itf - plm if; - qlm Y'(tfPlm if;qlm T]), (3.5) 

3T] = Itfl-ltf Plm if; - qlm !.!'(tf - pi", if;qlm T]), (3.6) 

3'T] = Itfl-Itf-Plmif;qlm !.!"(tfPlmif;-qlmT]). (3.7) 

Obviously, Eqs. (3.5) and (3.7) are obtained from (3.4) and 
(3.6) under the operation prime. Henceforth, all equations 
have to be supplemented by their primed versions, which 
will not be written out explicitly. Inserting these expressions 
into the Dirac equation (3.1), we obtain 

(Y - ieltfltP2Htfl/mf) + i(!.!" + ieltfltP ~)(tfl/m!') 

= ill. Itfltfllm g, (3.8) 

(Y - ieltfltP2)(if;l/m g') + i(!.!' + ieltfltP4)(if;l/m g) 

= 1ft. Itflif;l/m f 
The form of these equations suggests a separation an

satz for the functions tf llm!, tf l/m!" if; I 1m g, and if;lIm g'. Al
though this ansatz can be made internally consistent, it leads 
to some inconvenient formal complications in the case 
m = 2 because of the transformation property of tf under the 
prime operation. In particular, there is no natural way to 
assign one of the two branches oftfl/2 and tf,I/2 to each other 
because the operation prime is a discrete transformation. Al
though these difficulties could be circumvented by some ad
ditional conventions, the final equations become consider
ably simpler if one proceeds as follows. Select one special 
decomposition X AB = tf(O)O(A (O)L B) (0). Then, according to Sec. 
II, any decomposition satisfies either tf = tf(O), D = D (0) or 
.1, (0) ab ab 
'f/ = - tf ,Dab = - Dab (0). Now suppose that, by defini-
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tion, the operation prime acts on all quantities without the 
superscript (0) as usual, whereas the quantities with the su
perscript are invariant. Geometrically, this means that on 
the two-surface elements spanned by Dab an orientation has 
been defined which is invariant under the prime operation, 
whereas the orientation induced by the four-dimensional 
orientation changes its sign under this operation. (The four
dimensional orientation itself is, of course, invariant.) The 
way in which this orientation is defined is arbitrary because a 
change of orientation results in a change of a common factor 
of the four functions which, of course, is irrelevant. Obvious
ly, in any of the Eqs. (2.4) and (3.8), one has the choice to 
write t/J or t/J(O). 

Equations (3.8) can now be separated as follows. We 
write 

(t/J(O))lImj = eiK ZW, 

(3.9) 
(ft.(0)) 11m g = aeiK ZW/, 

where, for m = 2 and m = 1, with t/J real we put a = i, and 
for m = 1, with t/J imaginary we put a = 1. Here, the func
tion K is an arbitrary linear combination with constant coeffi
cients of the ignorable coordinates which are adapted to the 
Killing vector fields according to Table I. The ansatz (3.9) 
necessarily implies that the types of the functions Z and W 
are ( - ~,!) and ( - !, - !,) respectively. Note that the trans
formation property of Z / and W/ is given by Z" = Z and 
W" = - W, respectively. 

Furthermore, the functions Z,Z /, W, and W/ are sup
posed to satisfy 

YZ= Y/Z= 0, 2"W= 2"/W=O. (3.10) 

In Sec. IV we shall show that, with respect to the gauge and 
the canonical coordinates of DR I and DR II, these differen
tial equations are trivial in the sense that they can be fulfilled 
for arbitrary functions provided these depend on at most two 
of the coordinates. The details depend on the type of the 
Killing-Yano tensor and will be given in Sec. IV. 

The conditions (3.10) allow the Dirac equation (3.8) to 
be separated. The electromagnetic field has to satisfy the 
condition that the components 1t/J1<p l' 1t/J1<p; and 1t/J1<p3' 
1t/J1<p i depend on the same coordinates as the functions W, 
W/ and Z, Z /, respectively. Henceforth, the superscript(O) in 
the amplitude t/J will be omitted. Similarly to Chandrasek
har's work,6 the four separation constants reduce to one sin
gle constant, called A. The resulting equations, which are 
valid for any type of Killing-Yano tensor of valence 2, are 

(Y - ielt/JI<p2)W - i(A + iJ.le Re t/J)W/ = 0, 

(2' + ielt/JI<p4)Z - (A - J.le 1m t/J)Z / = 0, (3.11) 

A'= -A. 

Here, the operators Y and 2' are defined by 

Y = e -- iK YeiK and 2' = e - iK 2" eiK . 

The GHP types of all quantities introduced in this paper are 
summarized in Table II. 

No complete decoupling of these equations is possible, 
in general, i.e., under the sole assumption that a Killing
Yano tensor exists, except in case (4,1), which contains the 
types ofmetrics treated by Chandrasekhar6 and Guven.? 
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TABLE II. Summary ofGHP types. 

»p 

-J o 

IV. EXPLICIT FORM OF THE OPERATORS:T, :T/, Y, 
Y/. THE SEPARABLE SYSTEMS 

In this section we shall demonstrate the way in which 
the differential equations (3.10) can be integrated explicitly. 
Furthermore, the operators will be constructed in terms of 
the canonical coordinates. The subsequent calculations are 
greatly simplified by the following observation. If one intro
duces the boost weight n = (p + q)/2 and the spin weight 
s = (p - q)/2instead ofpandq, thenEqs. (3.2) and (3.3) take 
the following forms: 

:y = It/JIID - 2n Re(E' - (1 - m-I)p) - 2is 
X Im(E - (1 - m-I)p)J, 

2" = It/Jllo - nIP - P/ - (1 - m-I)(T -1'/)) (4.1) 

- s( P + P / - (1 - m -I)(T + T')) J. 
It turns out that the integrability conditions of the Killing
Yano tensor equations (2.4), together with the gauge condi
tions used in DR I and DR II, imply that the coefficients of s 
in Y (and Y/) and the coefficients of n in 2" (and 2"/) van
ish. For m = 2, the relevant equations are Eqs. (5.4) and (5.9) 
in DR I; for m = 1, the corresponding equations have been 
stated in Sec. 2 of DR II. Therefore, by use of the fact that the 
spin weight of Wand W/ and the boost weight of Z and Z / 
vanish, we deduce that Eqs. (3.10) reduce to 

DZ=DZ'=O, oW=oW/=O. 

From the explicit form of the directional derivatives as given 
in Sec. II, and the following list of the functions W, W /, Z, Z /, 
it can be easily checked that these conditions are fulfilled. 

Moreover, from Eqs. (4.1) the explicit form of the opera
tors Y, Y/, 2", 2" / will be obtained straightforwardly using 
the N.P. coefficients as given in DR 1 and DR II, which will 
not be repeated here. On inserting the operators in their sub
sequent explicit coordinate forms into Eqs. (3.11), one ob
tains the Dirac equation in its separated forms. In the follow-
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ing list, the quantities Ky and Kv are the separation constants 
associated with the Killing vector fields. Note that not all of 
the gauge conditions in DR I which have proven to be most 
convenient for constructing the coordinate systems are 
prime invariant. (However, the combination of conditions 
used to simplify the Expressions (4.1) are invariant under the 
prime.) Therefore, in the following, all of the operators Y, 
Y', if, if' will be stated explicitly. 

Type (4,1) [W = W(u), W' = W'(u), Z = Z (x), Z' = Z '(x)): 

Y = 2- 1/2 ! _ Aau + ivA -IKy + ivu2A -IKv + n dA Idu], 

Y' = 2- 1/2 ! vA au + 2i(1 + v)-IA -IKy 

+2i(1 +V)-IU
2A -IKv +nvdAldu], 

g=2- 1/2 !Bax +B-IKy -x2B-IKv -sdBldxj, 

g' = 2- 1/2 !Bax - B -IKy + x2B -IKv + s dB Idxj. 

Type(4,II)[W= W(u), W'= W'(u),Z = Z (x, y), 
Z' = Z'(x,y)]: 

Y=2- 1/2 ! -Aau +ivltPl2A -IKv +ndAlduj, 

Y' = 2- 1/2 !vAau + 2i(1 + v)-lltPI2A -IKv + nvdA Iduj, 

.Y = 2- 1/2(axC)-1/2!D -lax - iDay - 21CDKv 
- s(ax C)-1/2[ax ((ax C)1/2D -I) - iay(D (ax C)1/2)]j, 

g' = 2- 1/2(axC)-1/2!D -lax + iDay + 21CDKv 
+ s(ax C )-1/2[ax ((ax C)1/2D -I) + iay (D (ax C )1/2)] J. 

Type(4,III)[W= W(u,v), W'= W'(u,v),Z=Z(x), 
Z' = Z'(x)]: 

Y=2- 112(auC)-1/2! -D-Ia
u 

+ n(au C)- 1/2au ((au C)1I2D -I)], 

Y' = 2-1/2(auC)-1/2!Dav + 4ikCDKy 
+ n(au C )- 1/2av (D (au C)1/2)], 

g = 2- 1/2 !Bax -ltPl2B -IKy -sdBldxJ, 

.Y'=2-1I2 !Bax + ItPI 2B- IKy +sdBldxj. 

Type (4,IV) [W = W(u,v), w' = W'(u,v), Z = Z (;,;), 
Z' =Z'(;,;)]: 

Y = 2- 1/2E -I! - au + nE -lauE j, 

Y'=2-1/2E-I!av +nE-IavEj, 

if = 2- 1/2F- 1!a; -sF-la;FJ, 

if' = 2- 1I2F- 1!a;- + sF-Ia;-Fj. 

Type (2,1) [W= W(u,v), w' = W'(u,v),Z=Z(;,;), 
Z' =Z'(;,;)]: 

Y = 2-1/2tPA -I! - au + nA -lauA j, 

Y'=2-1/2tPA -I!av +nA -lavA j, 

if = 2- 1I2F- I !a; -sF-Ia;F], 

if' = 2- 1/2F- I !a;- + sF-Ia;-Fj. 

Type (2,II)[W= W(u,v), W'= W'(u,v),Z=Z(;,;), 
Z' = Z'(;';)]: 

Y=2- 1/2C- I ! -au -nC-IavCj, 

Y'=2- 1I2C- I !av -nC-IauCj, 

if = 2- 1/2(tP/i)G -I! a; - sG -la;G J, 
if' = 2-1/2(tPli)G -I!a;- + sG -Ia;-G J. 
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V. CONCLUSION 

It is instructive to compare the present formalism with 
the original work ofChandrasekhar.6 The type D vacuum 
space-times considered by Giiven 7 and, in particular, the 
Kerr metric, belong to the type (4,1) metrics of Sec. II. In 
Boyer-Lindquist coordinates, the Kerr metric will be ob
tained by the following definitions: u = r, v = - t + af/J, 
x = - a cos B,y = - a-If/J, A = - v..:1, where 
..:1 = r 2 + a2 

- 2Mr, B = a sin B, and v = + 1. In this way, 
however, one does not obtain the Kinnersley tetrad,20 which 
has been used by Chandrasekhar and which, in fact, destroys 
the prime invariance. Therefore, we shall apply the follow
ing spin transformation: 

OA ~A = (21..:1 )1/4tPI/20A, 

lA_LA = (..:1 /2)1/4tP -1/2l A, 

which yields the new spin or components 

1= (.<3 12)1/4tP -1I2j, 

I' = (21..:1 )1/4tP1I2j', 

g = (21..:1 ) 11 4'if1 12g, 

g' = (..:1 12)1/4"¢-1/2g'. 

Applying the Chandrasekhar separation ansatz in his nota
tion to these new quantities according to 

~ -I /= tP R_1/2S_1/2' 

I' = - iR+1/2S+1/2' 

g = R+ 1/2S_1/2, 

g' = - i"¢-IR_1/2S+1/2' 

we find, apart from a common constant factor, the following 
relations between his functions R ± 112 ,S ± 112 , and our func
tions W, W', Z, Z': 

R+1/2 = 2- 1/4i(2I..:1 )1/4W', 

R_1/2 = 2- 1/4(..:1 12)1/4W, 

S+1/2 = - 21/4Z', 

S-1/2 = - 2114z. 

Now it is straightforward to show that on inserting these 
relations into the differential equations (3.11), with f/J = 0 
when specialized to the Kerr metric, Chandrasekhar's6 
equations (40) and (41) are reproduced. 

To conclude, we mention two ways of possible general
izations of the foregoing formalism which might be of inter-
est. 

(i) The formalism appears to be sufficiently compact so 
that a generalization to massive fields with a spin different 
from! might be worth considering. 

(ii) In the U4 theory of gravitation, 21 the Dirac equation 
plays a role analogous to the equation of geodesics in general 
relativity. So, one could speculate that an exterior field 
which allows the Dirac equation to be separated in this the
ory might be as interesting as the corresponding fields which 
allow the equation of geodesics in general relativity to be 
separated. The present paper could be considered as a pre
liminary step towards this end. 
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The Weyl or similitude group of space-time is studied in order to get invariant (free) wave 
equations for massless particles. We deduce the extended Wigner little groups of the Weyl group 
and define new operators related to the generators of these little groups in order to get wave 
equations for arbitrary (but nonzero) helicity particles. The Maxwell theory is also discussed 
through the action of our operators on electromagnetic tensors. 

PACS numbers: lUO.Qr, 02.20. + b 

1. INTRODUCTION 

Scale transformations (or dilatations) combined with 
inhomogeneous restricted Lorentz (or Poincare) transforma
tions form a well-known structure-the so-called Weyl 
group or similitude group SIM(3, 1) of space-time-which is 
very often regarded as a (maximal) subgroup of the confor
mal group of space-time. Mathematically the subgroup or 
subalgebraic contents of SIM(3, 1) has been studied by Pa
tera, Winternitz, and Zassenhaus1 and, physically, such a 
group spans an important part of the description of free 
massless particles due to the impact of scale transformations. 
In fact, we recently discussed2 "extended Wigner little 
groups" of the Weyl group. We also proposed2 exploiting 
such considerations with the aim of deriving wave equations 
for massless particles and, in this way, relating recent works 
which start from different points of view. 3-6 This last point is 
the purpose of our paper. First we want to recall (Sec. 2) some 
basic features about the Weyl group and its algebra and to 
add a few points about transformation laws (under the Weyl 
group) of second-rank tensors. Then the discussion of "ex
tended little groups" will lead to interesting new operators 
(Sec. 3) related to physical quantities like four-momenta and 
helicity for example. In Sec. 4, we will get simple wave equa
tions for massless particles and will establish the connection 
between our group theoretical point of view and the results 
obtained by Bacry,3 Stepanovskii,4 and Bracken and Jessup.6 
Finally, we will exploit the action of the new operators on 
electromagnetic tensors (Sec. 5) in order to get a necessary 
and sufficient condition in connection with the Maxwell the
ory. 

2. THE WEYL GROUP, ITS LIE ALGEBRA, AND SOME 
TRANSFORMATION LAWS 

In Minkowski space-time characterized by the metric 
tensor GM=[gI'v (p" v = 0,1,2,3)} = diag(l, - 1, - 1, - 1), 
theeventsx=(x") = [X°,xi (i = 1,2,3)J=(t,x) can be subject
ed to Poincare (or inhomogeneous restricted Lorentz) trans
formations-Le., space-time translations (a") and restricted 
homogeneous Lorentz transformations (A "v, A °o> 1, 

.) Boursier I.R.S.I.A. 1982-1983. 

A °o> 1, det A = 1 )-and to dilatations ((7)(or scale transfor
mations), so that 

(2.1) 

The set of (a, A, (7)-transformations form an eleven param
eter Lie group called the Weyl group or SIM(3, 1), the simili
tude group of space-time. Its multiplication law is given by 

(a', A I, (7/)(a, A, (7) = (a' + (7'A 'a, A 'A, (71(7). (2.2) 

The Lie algebra of the Weyl group is generated by the 
eleven generators [P", M"v, D J associated with infinitesi
mal space-time translations, restricted homogeneous Lor
entz transformations and dilatations characterized by infini
tesimal parameters a", w"V = - OJ V", and p, respectively, 
corresponding to Eq. (2.1), in the following form: 

x'" = xl' + px" + w""xv + a" = x" - S". (2.3) 

The commutation relations of this Lie algebra read 

[M"V, MPU] = i(g"uMvp + gVPM"U _ gl'PMvU _ gVUM"P), 

[M"v,PP] =i(gVPP"_gI'PPV), (2.4) 

[P", D] = iP", [p", PV] = O. 

This is a (maximal) subalgebra of the conformal algebra al
ready studied among authors by Mack and Salam.7 Follow
ing their conventions, a realization of the Weyl generators is 
given by 

P" = iCl' = i ~, M"v = i(x"aV - xVCl') + ,I "v, 
ax" 

D = ix"a" +..1, (2.5) 

where the operators,I "V and..1 refer to the internal structure 
of the Weyl context or, following Mack and Salam,7 to the 
corresponding stability subgroup of x = O. The Lie algebra 
of this subgroup is isomorphic to so(3,1) ® [D J and its com
mutation relations are 

[,I "V ,..!' PU] = i(g"u,I VP + gVP,I "u _ gI'P,I vu _ gVu,I !'P), 

[I "v,..1 ] = 0, (2.6) 

leading to the three usual Casimir operators 

C1 = ~"v,I"v' C2 = -lil'''v,I"v, ..1, (2.7) 

where 1 is the dual of ,I: 

I"V = _ lel'V ,Ipu £0123 = 1. 
2 pu , (2.8) 
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Let us also recall8 that, in the context of so(3, 1), the invar
iants CI and C2 take very simple values multiplying the iden
tity operator when finite irreducible (m, n)-representations, 
m, n>O are considered. In this case, we have indeed 

CI = [2m(m + 1) + 2n(n + 1)] 1, 

C2 = [m(m + 1) - n(n + 1)]1. 
(2.9) 

Furthermore, it can easily be shown from (2.6)-(2.8) that 

(2.10) 

a relation which will be useful in the following. 
Under arbitrary coordinate transformations, a covar

iant second-rank tensor T ! T,.", (x) J becomes 

axa ax{3 
T~v(x') = -- Tu{3(x). (2.11) 

ax'''' ax'v 

When the infinitesimal transformations (2.3) are considered, 
we explicitly get (at the same point x) 

T~v(x) = (1 - 2p)T,.,v(x) - (pxa + Wa{3x{3 + aa)aa T,.,v(x) 

+ w,., aTuv(x) + Wv uT,.,u (x) (2.12) 

or 

T~v(x) = T,.,v(x) + suau T,.,v(x) + (a,.,sU)Tav(x) 

+ (avsU)T,.,a(x). (2.13) 

In terms of Lie derivatives,9 these relations are nothing 
but 

(2.14) 

where the vector fields are given by x-suau as usual. If 
invariance conditions on T are required, we recover lO the 
annulation of its Lie derivative with respect to the vector 
fields X. 

Now, let us rewrite Eq. (2.13) with the Weyl generators, 
I.e., 

T~l'(x) = T,.,v(x) + iau(paT),.,v(x) 

+ !iw{3u(Ma{3T),.,v(x) + ip(DT),.,v(x), (2.15) 

which emphasizes the action of those generators on the ten
sor Tby 

and 

(puT),.,v(x) = iaa~,v(x), (2.16) 

(M u{3T),.,v(x) = i(xu;j3 - x{3aa)Tpv (x) + (.2' u{3T),.,v(x), 
(2.17) 

(DT)pv(x) = ixuau T,.,v(x) + (.1T),.,v(x), 

where 

(2.18) 

(.2' u{3T),.,v(x) = i(gu,., T{3v(x) - gv{3T,., U(x) 

+gvuT,.,{3(x) _gf3,.,Tu,,(x)) (2.19) 

and 

(2.20) 

The point of view expressed by the relations (2.15)
(2.20) has recently been developed in the Poincare context. 5 

Parallel transformation laws can evidently be obtained 
for a contravariant tensor T ! TpV(x) J, so that in correspon
dence with Eq. (2.12) we get 
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or 

T'pV(x) = (1 + 2p)TpV(x) 

- (pXU + WU {3xfJ + aU)au T"'V(x) 

+ wi-' u TUV(x) + wVu TpU(x) 

T''''V(x) = TpV(x) + Suau T"'V(x) - (auSp)TUV(x) 

- (aaS V) TpU(x) 

= T"'V(x) + LxT"'V(x). 

(2.21) 

(2.22) 

(2.23) 

The corresponding action of the W eyl generators on Tis 
similar to Eqs. (2.16)-(2.20). In fact, apart from raising the 
indices f..l, v, the only modification lies in Eq. (2.20) which 
becomes 

(2.24) 

In particular, if Tis the metric tensor GM , we immedi
ately get 

g~v = (1 - 2p)g,.,v' g''''v = (1 + 2p}gl'v. (2.25) 

Such relations express the well-known fact that GM is not 
scale invariant while being invariant under the Poincare 
transformations. This implies that contravariant and covar
iant components of space-time events transform according 
to (2.3) and 

x;, = xl' - px,., + w,., vxv + a,." 

respectively. 

3. EXTENDED LITTLE GROUPS AND THEIR 
GENERATORS 

(2.26) 

In the Weyl context, four-momenta and their contra- or 
covariant components have to transform according to (2.3) 
or (2.26), so that we have 

p'P = If' + pIf' + wi-' vpv (3.1) 

or 
(3.2) 

In a quantum mechanical context, a consistent set of 
transformation laws is evidently given by (2.3) and (3.2), re
membering that coordinates and derivatives transform op
positely. So, from (3.2), the in variance conditions on p under 
the Weyl group read 

(3.3) 

These four conditions are meaningful and can lead to the 
little group of p inside the Weyl structure, our so-called "ex
tended little group." 

In order to put the analysis of extended little groups in 
correspondence with Wigner's well-known results, II let us 
first recall some Poincare considerations (Sec. 3A) and then 
develop our Weyl comments (Sec. 3B). 

A. Poincare case 

Ifp = 0, Eq. (3.3) reduces to the conditions leading to 
the definition 11 of the so-called "Wigner little groups of p" 
and to the associated Pauli-Lubanski or Bargmann-Wigner 
operators 12: 

W"'=-le-' pVMPu=]",vp. (3.4) 2 vpa v 

If as usual we refer to spatial rotations (J) and boosts (K) 
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through the definitions 

MOi = Ki and Ji = !~ikMi\ EI23 = 1, (3.5) 

the four components of Ware given by 

WO=p.J, W=poJ -P/\K. (3.6) 

These four operators do form a four-vector 

[MltV, WP] = i(gYPWIt - gl'PWV), 

and only three of them are independent, 

WltPIt = 0. 

(3.7) 

(3.8) 

In fact, the other interesting commutation relations are 

[Wit, W Y
] = - ie'Ypu Wppu, [Wit, PP] = 0. (3.9) 

Finally, let us remember that there are three nonisomorphic 
little groups of p according to the time-, light-, or spacelike 
character of four-momenta, i.e., SO(3), E(2), or SO(2, 1), re
spectively. Moreover, in the lightlike case, we know that 

Wit = )"PIt, (3.10) 

where)., is the eigenvalue of the invariant helicity operator. 

B. Weyl case 

Let us exploit the invariance conditions (3.3). 
(i) It is straightforward to notice that the conditions (3.3) 

imply that the four-momentum has to be a lightlike four
vector 

pl"PIt = 0, (3.11) 

which shows that we are dealing here only with massless 
particles. A representative example of such a class of light
like four-vectors is 

p [jJ!tJ = (Ipl, 0, 0, Ipl)· (3.12) 

(ii) The extended little group dimension is four, i.e., 
among the seven parametersu/'Y andp, only four are linearly 
independent. In order to establish this property, let us para
metrize Lorentz transformations according to the defini
tions (3.5) in terms of rotational parameters 9 and boost pa
rameters cj>: 

wOi = <p i and () i = !~jkoJk. (3.13) 

Then, Eq. (3.3) becomes 

cj>.p + ppo = 0, cj>po - 9/\ p + pp = 0, (3.14) 

where the first relation is easily recovered by taking the sca
lar product of the second one with p( pO) - I. 

(iii) The generators of the extended little group can be 
explicitly determined. In correspondence with the four lin
early independent parameters, we get the four operators 

G'=p·J= Wo, G=J/\P-KPo+DP. (3.15) 

They generate the Lie algebra 

[G i, Gi] = i~idP /\G)\ 
(3.16) 

[G',G]= -IP/\G. 

If the eigenvalues of the translation operators are given by 
p=(3.12), we finally get the generators of the extended little 
group ofjJ: 

[P,AI=KI-J 2,A2=K2+J 1,K3_DJ, (3.17) 
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with the commutation relations 

[P,A 1]=iA 2, [P,A 2]= -iAI, [A 1,A 2]=0, (3.18) 

[K3_D,AI]=iAt, [K3_D,A2]=iA2. (3.19) 

Obviously, it represents a subgroup of the homogeneous part 
of the Weyl group and it contains the E(2)-Wigner little 
group generated by (P, AI, A 2) as a subgroup [cf. (3.18)] as 
expected. All the extended Wigner little groups of arbitrary 
lightlike four-momenta will be isomorphic to (3.17) and their 
algebras to Eqs. (3.18) and (3.19). 

(iv) The operators (3.15) do not form a four-vector. This 
property is straightforward because G '= WO = p.J but 
G # W. Here we want to exploit the three-vector character of 
the G i'S in order to find a/our-vector V with Vi = G i 
(i = 1,2,3). This four-vector must obey the commutation re
lations 

[MltY, VP] = i(gYPVIt - gl'PVY), 

from which we get 

VO=Dpo-K.P, V=G 

or, in a contravariant notation, 

(3.20) 

(3.21) 

V" = MItYPy + DPIt. (3.22) 

Using the commutation relations (2.4), we also obtain 

V" = PyMItY + PltD + 2iplt. (3.23) 

Then, with the realization (2.5), the operators (3.22) or (3.23) 
are given by 

V" = 2 ltYPy + .tJ.plt. (3.24) 

In fact, such operators Vit correspond to aparticuiar para
metrization which is a solution ofEq. (3.3). It is given by 

wltY = nltPy - nvPIt , P = - nltplt , (3.25) 

where the nit's are arbitrary parameters, three of them being 
independent since 

VItPIt =0. 

Together with (3.20), we also have 

[pit, V Y] = 0, 

[D, VIt] = - iV lt , 

[P, V Y] = i(Vltpv - VYPIt). 

(3.26) 

(3.27) 

So now we easily see that the four operators G / and G 
are in fact constructed from some components of the two 
four-vectors Vand W. 

Let us also mention that with the choice (3.12), the oper
ators Vit reduce to the three generators AI, A 2, and K 3 - D 
which form a closed structure having the non vanishing com
mutators (3.19), a substructure of our extended little algebra. 

As a last result, let us exploit the property (3.10) of Win 
order to find a similar property for V. In fact, from the light
like character of Vand the orthogonality condition (3.26), we 
learn 13 that V and P are collinear. Consequently we can set 

Vit = 1/PIt, (3.28) 

where the parameter 1/ is determined as follows. From Eqs. 
(3.4), (3.10), and (2.10), we get 

).,2 pit = 2 Wit = 2 l ltYp 
all ap ap.. v 

= i(la Y - C20a Y)pY' (3.29) 
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With (3.24), we finally obtain 

VI' = i(l - Cy'l -I - i..1 )pl', A #0, 

which fixes the value of 1]. 

(3.30) 

4. MASSLESS PARTICLES AND WAVE EQUATIONS 

Since here the lightlike character of four-momenta has 
been explicit from the start [see property 3B(i)], our consider
ations apply only to the description of massless particles. 
Now, by using (nonunitary) finite-dimensional (m,n)-repre
sentations of the Lorentz group, we can get ad hoc wave 
equations describing particles of nonzero helicity A. Let us 
recall, following Weinberg, 14 that the helicity is given in 
terms of m and n by 

A =m - n, A #0, (4.1) 

so that, in particular, the Casimir invariant C2 takes the form 

C2 =A(m+n+ 1)1, (4.2) 

a useful result for our further developments. 
From our group theoretical considerations, let us apply 

the operators VI' to a finite-component wave function if; and 
use the results (3.24) and (3.30). We have 

2l'Vpvif; = i(l - Cy'l -1)pl'if; (4.3) 

or, with (4.2), 

2I'VPvif; = - i(m + n)PI'if;. (4.4) 

This equation has been derived by Stepanovskii.4 Here its 
origin may be traced back via our Eqs. (3.28) and (3.30). In 
the Poincare context and via Eq. (3.10), we get in a similar 
way 

a set of equations which is the one given by Bacry. 3 

Now, with the specific choice 

(4.5) 

Cy'l -I = - i.:l (4.6) 

in Eq. (3.30), we get 

VI'=ipl' 

and the wave equation 

2I'VP"if; = (i -..1 )PI'if;, 

(4.7) 

(4.8) 

a result obtained by Bracken and Jessup6 in the discussion of 
local conformal invariance. Let us finally notice that the 
choice (4.6) corresponds with a (m, n)-representation to 

..1 = i(m + n + 1)1 = - ill, (4.9) 

where I is the scale dimension of the field under considera
tion, as discussed by Mack and Salam. 7 Such representations 
are of special interest as also discussed by Bracken and Jes
SUp.6 

Explicit examples for arbitrary nonzero helicity parti
cles can easily be given. Among these, the cases of neutrinos 
or photons are the physically interesting ones. Let us only 
mention that in the neutrino case we are dealing with the (0, 
!)-representation which in terms of the Pauli matrices can be 
realized by 

(2I'V)-(2 0i
, 2 ij) = ( - ial2, aI2). (4.10) 

Then, Eqs. (4.4) and (4.5) are, respectively, 
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2 I'Vpv if; = - ~iPI'if;, 1: I'Vpv if; = - ~PI'if;. (4.11) 

These sets are obviously equivalent due to the fact that 1: 1'1' 
= - i21'V. They give the well-known Weyl equation and, 

with the choice (4.6), we recover 

..1 = ~i='?l = -~, (4.12) 

the scale dimension of the neutrino field. The corresponding 
remarks in the photon context are straightforward after no
ticing that 

(21'1') (is, S), 1: 1'1' = i21'V, ..1 = 2i, I = - 2, 

where the S-matrices are associated with the (1, O)-represen
tation of the homogeneous Lorentz group. 

5. ACTION OF WEYL OPERATORS ON 
ELECTROMAGNETIC TENSORS 

Let us now discuss the Maxwell theory in the frame
work of the Weyl context by considering the action of our 
operators VI' defined by Eq. (3.23) using, for example, the 
realization (2.5). Such a discussion adopts a point of view 
similar to the one developed recently5 for helicity operators 
for integral spin fields. 

From Sec. 2, we know the action of the Weyl generators 
on an arbitrary second-rank tensor T. If we consider the 
covariant skew-symmetric Maxwell tensor (two-form) 
F ! Fap (x) J, the action of V"=(3.23) on Fyields 

(VI'F)aP(x) = Pv (MI'VF)aP (x) + PI'(DF)aP(x) 

+ 2ipI' Fap(x), (5.1) 

or, with (2.16)-(2.18), 

(VI'F)aP(x) = P,,(2I'VF)aP(x) + PI'(..1F)ap(x). (5.2) 

With Eqs. (2.19) and (2.20), we finally get 

(VI'F)aP(x) = gil pavFva (x) - gil aavFVp(x) 

+ aaFI' pIx) - apFI' a(x) - 2J1'FaP(x), 

(5.3) 

In such a context, the operator equation (4.7) plays a 
particularly prominent role. Indeed we shall prove the fol
lowing statement: 

"the action on F of Eq. (4.7) gives a necessary and suffi
cient condition for obtaining the free Maxwell theory." 
Let us show that 

(5.4) 

is such a necessary and sufficient condition. If the Maxwell 
equations are satisfied, we have with Fap = - Fpa , 

al'FI' a = 0, aaFI' p + a{3Fal' = Jl'Fap , (5.5) 

so that Eq. (5.3) gives 

(VI'F)aP(x) = - Jl'FaP(x) = i(PI'F)aP(x). 

Conversely, ifEq. (5.4) is satisfied, we get through (5.3), 

gIlpavFva -gIlaavFvp =iJ'Fa{3 +aaFpl'+apFl'a' 

(5.6) 

This set is valid for arbitrary /1, a, f3 so that we easily recover 
the Maxwell equations (5.5) in agreement with the above 
statement. 
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It is shown that any Sikivie-Weiss-type magnetic multipole solution possesses a bifurcation point 
and it has the corresponding abelian Coulomb solution as its partner branch, which is unstable. 
The magnetic multipole solution is the stable branch. 

PACS numbers: 11.15. - q, 11.10.Lm 

I. INTRODUCTION 
Some time ago Mandula! showed that the abelian Cou

lomb solution of the Yang-Mills (YM) equations is stable 
only if the external source strength is weak. Subsequently 
Sikivie and Weiss2 constructed a total screening solution and 
magnetic dipole solution, both possessing less energy than 
the corresponding abelian Coulomb solution. Since then, 
many other solutions of the YM equations have been discov
ered.3

•
8 Particularly, J ackiw et al. 4 found that there are bifur

cating solutions when the external source strength is large 
enough. 

Since the abelian Coulomb solution becomes unstable 
when the external source strength is large! and as bifurcation 
is related to instability, one is led to study whether there are 
solutions which bifurcate from the Coulomb solution. In
deed it is shown in Ref. 6 that a special magnetic multi pole 
solution bifurcates from the abelian Coulomb solution. We 
now wish to demonstrate generally that all magnetic multi
pole solutions2

•
5

•
6 possess bifurcation points and their re

spective accompanying bifurcation branch with higher ener
gy is the abelian Coulomb solution. This is performed in Sec. 
II. In Sec. III, explicit expressions for the critical charge and 
various terms of the total energy are written down in the 
simple case of the magnetic dipole solution. We end with 
some remarks in Sec. IV. 

II. BIFURCATION 
The SU(2) YM equations in the presence of an external 

source are 

(DfLF'l\')a=j~=8~Pa' (la) 

F~v = afLA ~ - a,A ~ + gE"bcA ~A~, (lb) 

and our metric is gii = - goo = 1, Here Pa is the external 
charge density and g is the coupling constant. Following 
Sikivie and Weiss,2 we substitute the following ansatz into 
the YM equations: 

A ~ = 8~¢ (P,x3 )lg, (2a) 

A 1 = 8~ ti3j(X/gp)A (p,x3), (2b) 

(2c) 

where p2 = x T + x ~, and obtain two coupled nonlinear 
equations for the function ¢ (p,x3) and A (p,x3), 

_ V2¢ + ¢A 2 = q~ (3a) 

v2A _ A Ip2 + ¢ 2A 2 = O. (3b) 

., Present address: Physics Dept., National University of Singapore, Singa
pore, 

Magnetic multi pole solutions will result if we pUt"·5,6 

c P! (cos 0) c -
A (p,x 3 ) = - -'- I f(y,O) = -A (y,O), 

a yn, a 

y = ria, r 2 = X ~ + p2. (4) 

Here c is the norm of A (p,x 3 ), a indicates the size of the 
external charge distribution, and P ~ (cos 0) is the Legendre 
polynomiaL To ensure finite energy, the function f ( y, 0 ) must 
tend to one sufficiently fast as y ---+ 00 and tend to zero as 
y-o. The magnetic multi pole solution in fact interpolates 
between the following two trivial solutions: 

f(y,O)=O, ¢(p,x3)=O for all Xi' (Sa) 

and 

f(y,O) = 1, ¢(p,x3)=O forallxi> (5b) 

and is a solution with critical source strength. 
The energy of the magnetic mulitpole solution can be 

written as 

H= + Jd3X(E~' +Bf'j 

= J d 3X [ + (V¢)2 + ¢ 2A 2]. (6) 

Thefunction¢ (p,x 3 )isdeterminedbyf( y,e ) through Eq. (3b) 
and can be written as 

(7) 

where Y( y,O) is a dimensionless function. The energy H 
then depends quadratically on the parameter c, 

H = (HI + c2H2)/a, (8a) 

HI = + Jd 3Y(VyY)2, (8b) 

(8c) 

where V means differentiation with respect to y. The charge 
y 

density q for the solution (4) and (7) can be evaluated from 
Eq. (3a), and with this charge density so obtained, one can 
construct the abelian Coulomb solution. It energy is 

Hc = ~ J d 3X (V- 1
q)2 (9a) 

= _1_ Jd 3
X 

d 3X' q(x)q(x') , 
81T Ix - x'i 

(9b) 
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where V-I = V IV2. Substituting the expression (3a) into Eq. 
(9a), we find after partial integration, 

He = ~ fd3X[(VtP)Z+2tP2A2+(V-I(tPA2)f). (10) 

Using expressions (4) and (7), this becomes 

He = (HI + c2Hz + c4H 3 )la, 

where 

(11) 

(12) 

Evidently the Coulomb energy He is greater than the mag
netic multipole energy Has H3 is positive. 

A gauge-invariant characterization of the total external 
source is 

Q = f d 3x(PaPa)I/2, 

= ~ fd
3
X Iql, 

where in the present case q is given by 

q = ( - V~Y + cZFA2)la 3
, 

= [ql(Y'O) + cZqz(y,O)]la3. 

(13) 

(14) 

In the neighborhood of a fixed Co, Eq. (13) takes the form 

Q=QI +C2Q2, (15) 

and at c = 0, 

(16) 

For small Q, the abelian Coulomb solution is stable. I As 
Q increases, bifurcation will result if respective extremum of 
the total energy and the total charge occurs at the same value 
ofthe C.4

•
7 Clearly at c = 0, He = H = Hila and 

aHJac = aH lac = 0, but azHJac2 = azH lac2 = 2H21a 
i= 0; that is, the energy is minimized at c = O. Furthermore, 

aQ = 2c fd 3y qq2/ lql, 
ac 

which vanishes at c = 0 but not a2Q lac2
, 

a
2
Q = 2fd 3y qlq2 . 

ac2 Iql 

(17) 

(18) 

Hence c = 0 cannot be an inflection point and bifurcation 
takes place at Q = Q" H = He = HJa. We have thus 
shown that for c > 0, the abelian Coulomb solution bifur
cates into a set of two branches: the stable magnetic multi
pole solution and the unstable abelian Coulomb solution. 
Note that the relation between bifurcation and stability is 
discussed in detail in Refs. 4 and 7. 

III. MAGNETIC DIPOLE SOLUTION 

We now restrict the above discussions to the magnetic 
dipole solution. 2

•
5 In this case, the expression A (y,e ) in Eq. 

(14) is given by 

A (y,e) = (sin e If(y)ly2, (19) 

and the function Y in Eq. (7) depends ony onlys: 
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Y(y) = 3u2/3( ~ 1 ~J)1/2, (20) 

From (14), we find 

_ 9 d ( 4/3 dY) 
ql- - du U du' (21) 

With these, the expressions for the total energy and total 
charge can be simplified: 

HI = 541T du U
4

/
3 

_ U
2

/
3 -=-- , !C

OO d [ ( 1 dZ~I/2] 
o du I du 2 

(22) 

ioo ( d Y ) H2 = 81T 0 du - I du 2 ' (23) 

H3 = 161T [('oo du u-s/3FY (Udu' u'-4I3FY 
81 Jo Jo 

+ _1_ (OO du U-7/~2 (Udu' U,-2/3FY], (24) 
25 Jo Jo 

Qe = 121T i'" du I-.!!...- (U4/3 dY) I. (25) 
g 0 du du 

Thus given any explicit solution for I( y), all the above quan
tities can be evaluated. 

IV. REMARKS 

(1) If instead of the gauge-invariant measure for the to
tal charge as given by expression (13), we define the total 
charge as 2,

7 

Q= ~ f d3Xq, 

then from Eq. (14), 

Q= ~ fd3yA2. (26) 

The critical value Qc vanishes. For the magnetic multipole 
solution, we still have Q> 0 since c = 0 corresponds to the 
abelian Coulomb solution. 

(2) We stress that the analysis in Sec. II does indicate 
that the abelian Coulomb solution is unstable for large exter
nal source strength and the magnetic multi pole solution is 
linearly stable. 

(3) The type II solution obtained in Ref. 4 necessarily 
requires the support of nonzero critical source strength, but 
it need not always bifurcate. 8 In contrast, the magnetic mul
tipole solution, which also requires critical source strength, 
always possesses a bifurcation point. 

(4) Near c = 0, H varies linearly as Q, while He varies 
quadratically. 
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A rather general procedure is developed in order to reduce the two field equations of the Poincare 
gauge theory of gravity by a modified ansatz for the curvature tensor involving double duality. In 
the case of quasilinear Lagrangians of the Yang-Mills type it is shown that nontrivial torsion 
solutions with duality properties necessarily "live" on an Einstein space as metrical background. 

PACS numbers: 11.15. - q, 11.30.Cp, 04.50. + h 

I. INTRODUCTION 

In recent years Poincare gauge theories (PG) of gravita
tion have become a viable alternative to Einstein's theory of 
general relativity. 1.2 It involves a Riemann-Cartan space
time ( U4 ) with the tetrad coefficients e;a and the connection 
coefficients r ;a{3 = - r fa regarded as independent geo
metrical variables. (The conventions of Ref. 1 are used 
throughout.) In PG theories these geometrical objects are 
considered as translational and (Lorentz-) rotational gauge 
potentials with the corresponding gauge field strength given 
by the torsion 

F-;t: = 2Dli ej'J: = 2(a[iej'J + r '[~{3 etl) 

and the U4 curvature 

(1.1) 

F'-{3. - 2(a r·{3 + r .. {3 r"r ) (1 2) ija' - Ii jla lilr lila' . 

In accordance with the general ideas on Yang-Mills gauge 
fields3 we adopt 

51' g = eLg(e;a,F';t,Fijt) (1.3) 

as our most general, gauge-invariant Lagrangian density for 
the gravitational field. 

The corresponding canonical field momenta are de
fined according to 

cyp' a51' g a51' g 
en l). - 2 -- 7t"'::~: = 2 -- (1.4) 

a' - aF~·a' aF-a{3 
J' P 

Improving earlier attempts of, e.g., Lanczos4 and Lopez,s 
von der Heyde6 could correctly deduce the Euler-Lagrange 
equations for such general Lagrangians. The two first-order 
field equations of the Poincare gauge theory are of the fol
lowing, elegant Maxwell-type form: 

Dj7t"'}! - (~ = el:~, 

Dj7t"';;~ - ,Jl[~a I = er:~. 
(1.5) 

(1.6) 

The sources on the right-hand side of (1.5) and (1.6) are the 
canonical momentum currents and the canonical spin cur
rents of the matter fields, if present. Compared to Maxwell's 
theory of electromagnetism, additional terms arise in the 
field equations of PG theory due to its inherent nonabelian 
group structure. The nonlinear contribution 

(1.7) 

comprise the energy-momentum currents of the transla
tional and rotational gauge fields, whereas J¥['~{3 I corre
sponds to the spin current of the translational gauge field. 

It has been suggested earlier7
,8 that the tetrad field e;a 

should be regarded as a gravitational Higgs field. This view 
gets further support after having a closer look at the basic set 
(1.5) and (1.6) offield equations. By reformulating PG theory 
in terms of globally defined differential forms9 it can be made 
particularly transparent that they correspond to a coupled 
Yang-Mills-Higgs system rather than to pure gauge field 
equations. Note that the field equations are supplemented by 
the two Bianchi identities 

Dj(e*Fjia)=e*F~~a, 

Dj(e*F!)j{3)=O 

(1.8) 

(1.9) 

in a Riemann-Cartan space-time as well as by the Noether 
identities 1 

Dj(el:~) F'!fel:~ + F'!fre,.,o;Jr' (1.10) 

Dj(erd{3) - el: la{3 1=0. (1.11) 
In flat space-time the latter degenerate to the conservation 
laws of energy-momentum and angular momentum cur
rents, respectively. 

In order to keep as close as possible to the original 
Yang-Mills theory3 as well as to Einstein's theory of general 
relativity, the canonical field momenta (1.4) are usuallyl.3 
taken as linear in torsion 

,JY'ij = (ell *2)(d Fji + d F'ijl + deli Fjlr) 
a I"a 2 la 3'a"r 

and at most linear with respect to the curvature 

cyp.ij - ( I )[Fij "Fli'll fF .. ij en a{3 - e K .. a{3 + J 1 ·a·{3 + 2 a{3 

(1.12) 

+1 Ii F Iltlil +" Ii F lit I'll +f. i ei F] 
3e.[{3 "alit J 4e'[{3 ·al·1t Se' I{3'a I 

+ (elxl*2)e~[ae!{3 I' (1.13) 

This leads to 

51' = 1 [F':.a,JY'ij + F~·a{3 ,JY'.ij ] g4)' a Jl a{3 
+ (el4xl *2)F + Aell *4 (1.14) 

as our most general quasilinear1 Lagrangian density. Here 
1* = (81rliG IC3

)1/2 denotes the modified Planck length, 
e = det e;a, F: = Fpc:! the scalar curvature, and A a cosmolo
gical constant. (The particle content of such quasilinear 
models of gravity has been analyzed recently 10.1 1 for A = 0.) 
However, also in PG theory, one should be open to more 
general gauge invariant Lagrangians capable of generating 
an essentially nonlinear gauge dynamics similar to those 
proposed, e.g., by Born and Infeld 12 for electromagnetism 
and more recently discussed by Mills 13 in the case of nonabe
lian gauge fields in order to achieve confinement. 
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II. DOUBLE DUALITY ANSATZ FOR THE CURVATURE 

In order to solve the general vacuum field equations 
(1.5) and (1.6) the strategy of Belavin et al. 14 used in the deri
vation of the instanton solution will be adopted. Such a pro
cedure has been applied by the author l5 to Yang's theory of 
gravity 16 in the search for pseudoparticle solutions, as well as 
by Baekler et al. 17 in order to rederive Baekler's nontrivial 
torsion solution 18 for a certain class of quasilinear PG La
grangians. Recentlyl9.2o multimonopole solutions of the 
Yang-Mills-Higgs equations have been constructed using 
likewise a duality ansatz as a first step. In our case this 
amounts to employing the (modified) double duality ansatz 

(2.1) 

for the rotational field momenta fft"':~. The right, left and 
double dual tensors are defined according to the following 
conventions: 

F* a/3l'v: = (i/2)eEl'wrr Fa/3 ar, 

* Fa/3l'v: = (iI2l( 1/ e)E'/3y6 Fy6I'V, 

*F*a/3. __ 1...ct/3y6F arc 
··JlV· - 4t' y8 ~(rrp.v' 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where E'/3y6 with Eom = - 1 is the anholonomic Levi-Civi
ta tensor. 

It should be remarked that the ansatz (2.1) may be re
garded as a generalization of the duality rotation 

Fl'v- e*6Fl'v: = Fl'v cos (j + *Fl'v sin (j (2.6) 

of a gauge field strength Fl'v, which in the case of electro
magnetism plays a decisive role in the Rainich geometriza
tion21

•
22 of the coupled Einstein-Maxwell system. It is the 

general virtue of such a duality ansatz that it will "rotate" 
the dynamical part of a gauge field equation into the corre
sponding Bianchi identity, thereby facilitating considerably 
the search for exact solutions. 

III. SOLVING THE SECOND FIELD EQUATION 

Let us first tum to the second field equation (1.6) and 
apply the ansatz (2.1). Since its constant curvature piece after 
covariant differentiation produces the modified torsion 

T;/3: =F~~ + 2e'(aFp~y = (2/e)Dj(ee~[ae!/3 )), (3.1) 

the left-hand side of (1.6) as a consequence of the Bianchi 
identity (1.9) turns out to be 

Dj~~ - fft"'i~a) = y(ell *Z)Ta/ - fft"'i~a). (3.2) 

For the second field equation (1.6) to be satisfied we have to 
require 

fft"'i~/3 ) = - y(ell *Z)T~~ + e1'~~. (3.3) 

Therefore, in vacuum the ansatz (2.1) for the rotational field 
momenta-without assuming this beforehand-imposes a 
certain quasilinearity on the antisymmetric part of the trans
lational momenta! At a second thought this appears to be not 
that surprising, since the duality ansatz (2.1) involves like
wise a kind of "linearization" for the rotational momenta. 

In order to see whether the condition (3.3) can be satis
fied for the quasilinear choice (1.12) the identity 

Fi - 31;'[i _ II;'''i ·[a/3 ) - r 'a/3) r a/3 (3.4) 
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has to be employed. Then in vacuum (3.3) assumes the fol
lowing algebraic condition on the torsion tensor: 

(y + dl/2)F~~ + (dz - ~dl)Fi'2/3 

(3.5) 

As already remarked by the double dual curvature part 
* F ~/1/3 of the ansatz (2.1) will be mapped into the second 
Bianchi identity (1.9) and consequently drops out, whereas 
the "unit" curvature term in (2.1) produces a certain amount 
of torsion, which may be adjusted by a proper choice of the 
free constant y so as to make the right-hand side of (3.2) 
vanish. 

Three cases have to be distinguished. For 
(A) "spherical" torsion 

F[a/3y) = 0 and 2y = d3/2 = - d l 

has to be required, whereas for 
(B) purely axial torsion 

(3.6) 

Fa/3y = F[a/3y) and y = dl - d2 (3.7) 

is mandatory in order to satisfy the second field equation. 
(C) The trivial case fft"'/1 = 0 requires y = O. Conse

quently, it yields no restriction on the symmetry of those 
torsion terms being concealed in the U4 curvature. Note that 
in this case, the constant curvature piece in the related 
"modified" double duality ansatz of Ref. 23 is solely a conse
quence of the choice (1.13) of the rotational field momenta. 
This unit tensor will not be differentiated and consequently 
does not contribute to the spin current of the gauge field, in 
contrast to the generic situation. 

An irreducible decomposition of the torsion shows that 
in vacuum these are the only possible solutions of(3.3) in the 
case of quasilinear translational momenta. 

IV. REDUCTION OF THE FIRST FIELD EQUATION 

The next step is to reduce the first field equation (1. 5). 
However, its antisymmetric part 

Djfft"'[~/3 ) - E[a/3 ) = el:[a/3 ), 

written anholonomically by introducing 

Ea/3: = Ea/3 - J/ij/3fft"'/1 
ROT 

= - (ell *2)Xa/3 + Ea/3' 

(4.1) 

(4.2) 

turns out to be redundant for vacuum solutions with duality 
properties, except for a certain topological information. 

To this end, let us split the anholonomic energy-mo
mentum curent as indicated into a translational part 

TR 

X . - (/*2/)- - (/*2/)[ 1 F"YCYPji a/3' - - e Ea/3 - e - 4'T/a/3 ij cfl Y 

F"YCYPj +11;' JY'.ij] (4.3) + ajcfl y./3 r ij/3 a 

depending only on the torsion and a remaining contribution 
from the rotational field strength. Upon inserting the ansatz 
(3.3)-or its resolved form (4.12) given later-into (4.3) the 
expression 

X[a/3) = - (I *zle) [J/ij[afft"'j) - Fi[ali~~ d 
= 2yFI'[a/3 )F~~ (4.4) 

of the antisymmetrized translational energy-momentum 
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current shows clearly that it vanishes in the cases A and B 
due to the torsional symmetry requirements (3.6) and (3.7) as 
well as in case C for trivial reasons. Consequently, only the 
curvature is instrumental in the antisymmetrical part of the 
energy-momentum current. Linearizing it by means of the 
duality ansatz (2.1) a calculation reveals that 

ROT 

E[aP I = - 2y(el I *2)F[ap I + *E* [ap I (4.5) 

is proportional to the antisymmetric Ricci tensor in a U4 , 

notwithstanding the "dual" current 

*E* ap = {; (el2K)(F;:vu*F* p"vu - * F *;:vUFp"W7) 

= - {;(eIK)(FF[aP I + 2F~::'p IFv,,)' (4.6) 

Note that this current which involves the double dual curva
ture tensor is antisymmetric, i.e., *E*(aP) = 0, and according 
to the given equivalent expression [compare with (4.12) of 
Ref. 17] vanishes in a Riemannian space-time (V4 ). 

Using this information, the derived condition (3.3) on 
the translational field momenta as well as (1.11), we find that 
the field equations (4.1) by means of a duality rotation are 
transformed into the contracted form 

(4.7) 

of the first Bianchi identity (1.8) except for the requirement 

*E*[aP I = O. (4.8) 

In order to understand the meaning of this remainder of the 
first field equation (occurring only in a U4 !) note that (4.6) is 
formally the energy-momentum current corresponding to 
the Lagrangian density 

{; if . _ (; e FaP *F*"yli 
- -.L Euler' - - - - ·oyli ap 

K 4 K 
(4.9) 

of the Euler type. It is known that this term contributes only 
a boundary terms to the gravitational action. More precisely, 
upon integration over a closed four-dimensional manifold it 
yields the Euler number 

X(M4) - ( - 1)3/2i!£ d 4x (4.10) 
- 2(21T)2 M4 Euler 

due to the generalized Gauss-Bonet theorem (see, e.g., Le
vine and Zund,24 also Mielke,15 for the sign conventions for 
spaces with Lorentzian signature). 

A sufficient condition for (4.8) to hold is therefore the 
vanishing of (4.9), or equivalently, the restriction to nontri
vial torsion configurations for which the Euler number is 
zero. It is gratifying to note that this restriction on the global 
topology is, e.g., met25 by Baekler's solution. IS 

Then we are left with the symmetric part 
ROT 

Dj7t(~p) + (ell*2)X(aP) - E(aP) = el:(ap)· (4.11) 

of the first field equation (1.5). From the ansatz (3.3) the 
translational field momenta it may be deduced with the help 
of (3.4) that 

Kip = - 2y(e/1 *2)(T~Pa + ~T.~p I) 
+ 2e~pa + 3e'T.~p I' (4.12) 

i.e., that the symmetric part is reduced to 

cyp .. j - 2.A II *2)Tj 2 ...i en lap) - - ,Ie .(ap) + eT'laP)' (4.13) 
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ROT 

Furthermore, the curvature dependent part E~ of the gauge 

momentum currents (1.7) after substitution of the duality 
ansatz (2.1) assumes the form 

ROT e e ( A F ) 
E(aP) = - 2y-2 FraP) + -2 -2 + - 1JaP' (4.14) 

I * I * 1* 4X 
i.e., it involves the symmetric traceless Ricci tensor FlaP) and 
a trace part. Due to the duality ansatz (2.1) the occurring 
scalar curvature is a constant, i.e., 

F= - (K/AI *2)(12y + 6IX), 

where 

(4.15) 

(4.16) 

provided our analysis has been restricted to a theory which is 
also quasilinear in the curvature, i.e., to a model for which 
(1.13) holds. 

The crucial step in the reduction of (4.11) is to note the 
identity [Ref. 17, Eq. (4.5)] 

(lIe)Dj(eT~laP))= -GapO J)+G(aP) - YaP (4.17) 

for the difference between the Einstein tensor Gap ({ )) with 
respect to a symmetric (Christoffel) connection {~p) ofgen
eral relativity and the corresponding tensor 

Gap: = - *F*"Pa" = Fa{3 - !1Ja{3F (4.18) 

in a Riemann-Cartan space-time. The additional symmetric 
tensor YaP in (4.17) depends solely on torsion 

YaP: = ~Ta!'V(T"r + T;") -IT,,va T':.'P - ~Ta Tp 

+ 11Jap IT" T" - T"vAT"VK + !T"KV)). (4.19) 

Then, on account of(4.13) the relation (4.17) can be em
ployed to eliminate the covariant derivative in the first field 
equation (4.11). Using also (4.18) the Einstein-type field 
equations 

GapO J) + (111 *2)Aeff1JaP 

1*2 [ 2 .]-
= - l:la(3) - -Dj(e~la{3)) + TaP 

2y e 
(4.20) 

remain with an effective "cosmological constant" 

_~_ 3K(I __ 1 )(y+_1 ) 
2y A 2YX 2X 

_ ~ + 2yX - 1 I *2F 
2y 8yX 

(4.21) 

of partially microscopic26 origin. 
The insertion of the resolved ansatz (4.12) for the trans

lational momenta into (4.3) shows that the additional 
"source" tensor 

TaP: = - ((1I2Y)Xla{3) + Ya(3) 

= - !*Ta *Tp - *T?(a{3) *Ty + !1Jap*TY*Ty 
(4.22) 

for the Einstein equations (4.20) vanishes only in the case of 
spherical or zero torsion (case A) but not for purely axial 
torsion. (Remarkably enough, the combination 

(1I2Y)X(a{3) - Ya{3 = !TkTkla(3) (4.23) 

has the opposite property with respect to the symmetry of 
the torsion). 
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V. SOLUTIONS WITH SPHERICAL TORSION 

Let us now consider the case A in which the antisymme
tric part of the torsion vanishes. The preceeding calculation 
reveals that in vacuum the right-hand side of (4.20) is zero. 
This is not surprising, since the conditions (3.6) relate our 
case to the special one studied by Baekler et al. 17 in which the 
same result holds. Then, it follows for (4.20) that the sym
metric part of the first field equation reduces completely to 
the Einstein field equations 

Gij{! )) + (A etr ll*2)gij = 0 (5.1) 

of general relativity written holonomically. 
In order to obtain nontrivial torsion solutions, we may 

integrate the duality ansatz (2.1) on an Einstein space as met
rical background. This still difficult task has been underta
ken in Ref. 17 for a particular model specified by the choice 

A = lIX =!; = 0, d l = - 1, d2 = 0, d3 = 2 (5.2) 

of the characteristic parameters of the quasilinear Lagran
gian (1.14). 

In a spherically symmetric background, among others, 
a new derivation of the Baekler solution 18 is thereby 
achieved. This solution is reminiscent of the self-dual instan
ton solutions27 of the coupled Einstein-Yang-Mills system 
inasmuch as in both theories the metric is not deformed off 
from an Einstein space and both configurations also have no 
flat space analogs. 

Benn et al. 28 have found a similar spherical solution as 
Baekler's in a model with Yr/1 = 0 (case C with r = 0). Then 
the symmetric part (4.11) of the first field equation is identi
cally fulfilled merely by requiring A = - (KIA )(3/2X2). In 
view of this it may be questioned whether an Einstein space is 
really the most general starting point of such a deduction. 

VI. CONFIGURATIONS WITH AXIAL TORSION 

In the case B of purely axial torsion, the symmetrized 
translational field momenta (4.13) have to vanish on account 
of (3.7). Consequently, the first field equation reduces in 
vacuum to 

1;af3) = - 2~ {X(af3) + ( 1~2 + ~ )7Jaf3}' (6.1) 

For a purely axial torsion tensor this implies the constraint 

X a
a = ~(d2 _ dl)FIIlVK]FIIlVK] = _ ( 4~ + F) (6.2) 

1* X 
on the trace of the translational part (4.3) of the energy-mo
mentum current 

Consequently, the axial torsion turns out to be dual to a 
lightlike axial vector in those particular models, studied, 
e.g., by Baekler et al., 17 for which A = 0 and lIX = 0 hold. 
Otherwise, there is no further information contained in (6.1) 
compared with the relation (4.20) which is true in general. 

Solutions of the Einstein equations (4.20) with a non
vanishing "source" term given by (4.22) provide the metrical 
background geometry in the search for solutions with axial 
torsion. [Although given by the same formal expression 
(4.21) the occuring "cosmological" constant in (4.20) takes 
on a different value due to r = d l - d2]. 

So far no explicit solutions of the duality ansatz (2.1) 
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have emerged in this case. For a background with axial sym
metry the techniques described by Tomimatsu29 or, alterna
tively, Bogomol'nyi's30 method of generating monopole so
lutions of the coupled Yang-Mills-Higgs system could 
possibly provide a way out if transferred to PG theory. 

VII. THE REDUCED LAGRANGIAN 

In order to conclude this paper we would like to exa
mine how these reductions of the field equations are reflect
ed in the quasilinear Lagrangian ( 1.14) of the quadratic Poin
care gauge theory (PG2

). 

The insertion of the double-duality ansatz (2.1) yields 

Y =~[1-(r+_l )F+~] 
g 1*2 2 2X 1*2 

_.£~Faf3 *F*-yfJ 
4 K ··yfJ af3 

+ IF".af3 /J't".-j 
4 J f3a' (7.1) 

For a comparison with the field equation (4.20) it is crucial to 
pass on to the effective "cosmological" constant Aetr in the 
Lagrangian. This may be achived by noting the second part 
of (4.21), i.e., the formal relation 

A = - 2rAetr + (r12 - (1I4X ))/*2F. (7.2) 

Furthermore, we now make use of the resolved ansatz (4.12) 
for the translational momenta with respect to the torsion. 
Then (7.1) reads 

(7.3) 

From the trace of (4.17) one may deduce the splitting of the 
occurring U4 scalar curvature Finto the corresponding Rie
mannian scalar R plus related torsion-dependent terms: 

F = R + !F7f3(2T~af3 - 3T[~f3 ) 
+ (2/e)aj(eF~~l (7.4) 

It should be noted that this identity is at the heart of the 
equivalence proof relating the teleparallelism theory [char
acterized by a vanishing U4 curvature and the choice!; 
= lIX = A = 0, d l = - 1, d2 =~, d3 = 2 ofthe dynamical 

parameters in (1.12) and (1.13)] to Einstein's standard theory 
of general relativity. For linear translational momenta (1.12) 
the Lagrangian (7.3) may also be written as follows: 

Yg = 1:2 {rR - 12~ Aetr + 2r+aj(eF~:) 
+ !F7f3[(2r + dl)F~af3 - (3r + d2)F;'~p 
- (4r - d3 )7JlaIP F~tll]} _.£ Y Euler' (7.5) 

K 

The constraints (3.6) or (3.7), respectively, on the symmetry 
of the torsion tensor together with the condition for the free 
constant r forces the quadratic torsion terms to vanish in 
both cases A and B (C is trivial). Consequently, we are left 
with an Einstein-Hilbert type Lagrangian density 
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2' = 2r~ {~R _ Aeff 
g 1*2 2 /*2 

+ ~ aj(eF~:)} - £2' Euler 
e K 

(7.6) 

in a Riemannian space-time except for two boundary terms. 
These additional terms are the relicts of the Riemann

Cartan space-time (U4 ) we started with and, according to our 
discussion in Sec. IV, would have been expected to occur. 
One of these boundary terms corresponding to a local 
expression ofthe Euler-Poincare characteristic and is of sig
nificance for the global topology. On the other hand, the 
term linear in the torsion does not seem to have a similar 
interpretation. However, for solutions with axial torsion the 
total derivative with respect to the torsion is zero anyhow, 
whereas the vanishing of the Euler-Poincare characteristic 
is a necessary condition in order to satisfy the remainder (4.8) 
of the antisymmetrized first field equation. Therefore, the 
reduction of quadratic Poincare gauge theories of gravity to 
Einstein's theory by means of a double duality rotation is 
rather complete even in the generic case. Configurations 
with nontrivial torsion do exist,I7·23 the information on the 
latter being coded into the duality ansatz. Inserting the de-
composition 

Fija f3 = Rija f3 - 2D[iKj]af3 + 2K[ila EKj ]/ (7.7) 

of the U4 curvature, (2.1) entails partial differential equations 
for the torsion on the Riemannian background given by (5.1 ). 

VIII. OUTLOOK 

As a gauge field theory, PG theory is founded on the 
quantum realm of microphysics. Consequently, the nontri
vial torsion solutions emerging from the described reduction 
procedure would be expected to gain a meaning only after 
fully quantizing the theory. 

Following covariant quantization methods31 the calcu
lation of the scattering matrix for asymptotic states proceeds 
via Feynman path integrals. As in Yang-Mills theories32 

also for a quantized, quadratic Poincare gauge theory 
(QPG2) one would suppose that the contributions from the 
gravitational configurations of the instanton type (see, e.g., 
Ref. 15) dominate in the transition amplitUdes. This could be 
particularly important if the contributions of classical solu
tions with nontrivial topology33 as well as with nontrivial 
torsion34 are considered. 

Already in the "one-loop" or WKB approximations to 
these path integrals the divergences stemming from the con
ventional Einstein-Hilbert Lagrangian density of general 
relativity have to be compensated by counter terms which 
are quadratic in the curvature tensor. For a Riemannian 
space-time, Stelle35 could prove that a model containing 
quadratic curvature terms of the Yang-Mills type in the gra
vitational action is renormalizable in each order of the per
turbative expansion. However, such a modified Stephenson
Kilmister-Yang (SKY) gravity would give rise to "ghosts." 
These states can be suppressed in the special cases of QPG2 

listed in Refs. 10 and 11. Moreover, under certain condi
tions36 such tensorial states having a negative norm in the 
quantal Hilbert space are innocuous, since they do not neces-
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sarily invalidate the Froissart unitarity boundedness of cross 
sections. 

Generalizing the definition given in Ref. 15 to PG the
ory, those configurations should be regarded as gravitational 
instantons which are nonsingular in an "Euclidean" space
time and satisfy duality ansatze such as (2.1) and (3.3). Since 
these solutions occur on Einstein spaces as metrical back
ground, it follows from (7.6) that the classical gravitational 
action given by (1.14) takes an extremum. Apart from a tor
sional boundary term the precise value of which is deter
mined by the Euler number (4.10) which is instrumental for 
classifying instantons topologically. 

Interesting enough, the generatIOn ofa "cosmological" 
or "bag,,37 term of microscopical origin, and in the wake of 
this, a "spontaneous compactijication,,38 of space-time ap
pears to be unavoidable in such constructions. Macroscopi
cally the astrophysical data indicate that the cosmological 
constant is rather small if not zero. Similarly, as in the Wein
berg-Salam model in which the Higgs fields after symmetry 

. 1 39' h breaking generate a huge vacuum expectatIOn va ue, m t e 
QPG2 theory, being dominated by an "instanton gas," there 
remains then the problem of compensating for the "in
duced" cosmological term. Superficially, the effective cos
mological constant (4.21) can be given any value (even zero!) 
by properly adjusting the "bare" constant A. On a deeper 
level this could be viewed as an indication that a "confining 
phase" may occur in such geometrodynamical models.9 ,26 
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Prolongation techniques are used to derive a linear deformation problem for self-dual spherically 
symmetric solutions ofthe SU(2) Yang-Mills equations. Backlund transformations are then 
obtained which generate solutions to these equations. We use the transformations to generate 
some new solutions to the equations. 

PACS numbers: 11.15. - q, 11.30.Jw 

1. INTRODUCTION 

The SU(2) Yang-Mills field equations are derived from 
the Lagrangian density I 

.!f = - !GaPGap , 

where GaP = aaAp - apAa -Aa /\Ap. (Ll) 

The Euclidean Yang-Mills field equations are solved by self
dual gauge fields 

G -*G *G _,c Gyli ap - ap' an - "'apyli , (1.2) 

which alternatively can be written as 

Gij = - E;jkGkO' (1.3) 

Witten2 has obtained a large class of spherically symmetric 
instanton solutions by using an ansatz in the self-dual equa
tions: 

A f = [(cP2 + 1)/r]E;akx k + (cPI/r)(8;a r -x;xa) 
+Alx;xa/r , 

Ag = AoXa/r with cP; =cP;(x,t), A; =A;(x,t), (1.4) 

which reduces the self-duality equations to the set 

cPI,. + AOcP2 = cP2,r - A IcPI' 

cPI,r + A IcP2 = - cP2,. + AocPl' 

r(A I,. -Ao,r) = l-cPi -cP~· 
(1.5) 

Several authors have investigated this set of equations 
besides Witten. Manton3 has discussed the relation between 
Witten's multi-instanton solution and the Prasad-Sommer
field monopole solution of the classical monopole equations. 
Leznov and Saveliev,4 using group-theoretic methods, have 
obtained an (L, A ) pair of operators which can be used to 
investigate solutions to (1.5) with the techniques developed 
by Zakharov.5 

In the second section of this paper we present a direct 
method using prolongation techniques6 for determining a 
linear deformation problem which can be associated with 
(1.5). Then in Sec. 3 we derive a Backlund transformation for 
(1.5) and use it to derive some new solutions. 

2. LINEAR DEFORMATION PROBLEMS 

On the manifold M with local coordinates (r,t,cPI,cP2 
Ao,A Il introduce the set of 2-forms 

a I = dcP2/\ dt + dcPI/\ dr - (A IcPI + AocP2) dr /\ dt, 

a2 = dcPI/\ dt - dcP2/\ dr - (AocPI - A IcP2) dr /\ dt, (2.1) 

a 3 = dAo/\dt + dAI/\dr + r- 2(1- cP i - cP~) dr/\dt . 

The set of forms I a;,i = 1,2,3} generate a differential ideal 
E (M) of the exterior algebra ofM called an exterior system. A 
solution manifold of E (M) is a two-dimensional manifold S 
conveniently parametrized by x and t together with a map 
f:S--M, which annihilates E (M), f* E (M) = 0. Then, pro
vided x and t are in involution (dx /\ dt =1= ° on a solution 
manifold), the solutions of (2.1) are equivalent to the solu
tions ofthe original set of equations (1. 5). To determine a 
scattering problem for (1.5), we require the Wahlquist-Esta
brook prolongation of E (M) to form an exterior system. 
Thus, we introduce the vector-valued I-form 

W = dy - F y dr - G y dt, (2.2) 

wherey = (YI, ... ,Yn) and Fand G are matrix-valued func
tions on M.Then, on the manifold N with local coordinates 
( r,t,cPI,cP2,A0,AI,y), I a;,w} generates an exterior system E (N) 
on N provided 

and 

F = (Xo + cPIXI + cP-72 + A IX3)' 

G = (Yo - cP IX 2 + cP-71 + AoX'3) 

Xo,. - Yo,r + [Xo,Yo] + r- 2X3 = 0, 

XI,. + X2,r + [XO'%2] + [XI,YO] = 0, 

X". - Xl,r + [XO,xI] + [X2, Yo] = 0, 

X3,. + [YO,x3] = 0, 

X3,r - [XO,x3] = 0, 

XI - [X2'%3] = 0, 

X2 + [XI,x3] = 0. 

(2.3a) 

(2.3b) 

(2.4a) 

(2.4b) 

(2.4c) 

(2.4d) 

(2.4e) 

(2.5a) 

(2.5b) 

The r,t dependency of the matrix functions can be re
moved from these relations by defining new constant matri
ces, 

X3 = X3, Yo = rYo' 
(2.6) 

In terms of these new matrices (2.4) and (2.5) become 

[Xo,Yo] + X3 + Yo = 0, (2.7a) 
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(XO,x2] + [1\,1'0] - 1'2 = 0, 

[Xo,xd + [X2,YO] + XI = 0, 

[YO,x3] = 0, 

[1'0,1'3] = 0, 

[1'2,1'3] -XI = 0, 

[1'\,1'3] + 1'2 = 0. 

(2.7b) 

(2.7c) 

(2.7d) 

(2.7e) 

(2.8a) 

(2.8b) 

The set ! Xi' Yo J thus generates a prolongation algebra, 
that is. a free Lie algebra with constraints, which is associat
ed with Eq. (1.5). We now determine a homomorphism of the 
prolongation algebra into a finite-dimensional Lie algebra. 
A representation of this together with (2.2) then leads on 
solution manifolds of the exterior system to the required lin
ear deformation problem. The simplest such homomor
phism which yields nontrivial results is given by choosing 

Yo = -1'3' 1'0 = 0. (2.9) 

We are therefore left with the two relations of (2. 8) which can 
be expressed in terms of a basis for sl (2,q. Thus with 

e l = (~ ~). e_. = (~ ~). h = (~ _OJ (2.10) 

we find that 

X. = !(e l + e_tl. 1'2 = !i(e_ 1 - ed. 1'3 = - !ih. 

(2.11) 

We can introduce a parameter into the representation by the 
automorphism 

(2.12) 

Thus on a solution manifold the I-form UJ is completely inte
grable, and the deformation problem we have obtained is 

-1 I ( 
-iA 

Y,r - 2 <Ps -Ir-I 
(2.13) 

where <P = <PI + i<p2' The complete integrability conditions 
on (2.13) yield the equations (1.5). Other deformation prob
lems can also be associated with (1.5). For example, the lin
ear deformation problem 

corresponds to a solution of (2.5) in which Xo#O. 

3. SOLUTIONS TO THE SELF-DUAL YANG-MILLS 
EQUATIONS 

(2.14) 

Before investigating the equations in detail it is worth 
establishing their relationship with some of the known solu
tions. If we introduce the complex coordinate z = r + it, 
then (2.13) can be written as 

670 J, Math, Phys., Vol. 25, No.3, March 1984 

Y = l( - iAI - (Ao - r- I
) 2<P ·Sr- I ) 

,z 4 ° iA I +(Ao-r- 1) Y, 
(3.1) 

Y. =l(-iA I +(Ao-r-
I
) ° ) 

,z 4 2<Ps -Ir-I iAI _ (Ao _ r- I ) Y. 

In terms of the inhomogeneous coordinate 
w = YLY2- ·,Y = (YI,Yzt, the system can be written as 

w,z = 2Aw + BS, (3.2a) 

w.z• = - 2A ·w - B·S -IW2
, (3.2b) 

where A = - WA 1 + (Ao - r- I)] and B = !<P ·r- 1
• Ifwe 

impose the condition that w is analytic, then w • = ° and we ,z 
get that 

B= -2AS·w·-I. (3.3) 

Then from (3.2a) 

1 d 
A = '2 dz In(lwl2 - IS21), 

B = - S·w.z 

(lwl Z 
- Is 12) . 

(3.4) 

Ifwe now put w = Sg, thenB = g.z(1 - IgIZ)-I. Define func
tionsXI'X2' and if; by 

g.z = XI - iX2' if; = -In[(1 - IgI 2)12r], (3.5) 

and we find that Eqs. (3.4) can be written as 

(3.6) 

This contains the multi-instanton solution ofWitten.2 

The one-monopole solution is defined by the functions 

<PI = 0, <P2 = - /3rlsinh/3r, 

Ao = r- I - /3 + coth /3r, Al = 0. (3.7) 

It is interesting to attempt to find a Backlund transformation 
which generates this solution from some initial state. To do 
this, we put the value of the functions given by (3.7) into 
(2.13) and integrate the equations to determine the wave 
functions. The result is the following: 

Y=G(I+RIS+Rzt-l)yo, (3.8) 

where 

G = ! [ tanh(VJr)] - 1/2 [1 + tanh(!fJr)] I, 

RI = - ie-pr(~ ~), 
(3.9) 

Thus G is just a gauge transformation whereas 
1+ R IS + Rzt -I is a singular matrix function of S. The 
monopole solution is therefore generated from the initial so
lution 

<PI = 0, <P2 = 0, Ao = r- I - /3, AI = 0. (3.10) 

We present here a modification of the methods in Ref. 5 for 
obtaining Backlund transformations from the linear defor
mation problem given by Eq. (2.13). Let Ybe a fundamental 
matrix solution of (2.13). Then we can write the equations as 
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(3.lla) 

with 

(3.11b) 

(3.llc) 
a 2 = - ~i(A0 - r- I), f32 = if3I' 

An investigation of (2.13) shows that it possesses the follow
ing symmetry: 

(3.12) 

Furthermore, a new matrix solution Y can be defined in 
terms of the given solution Yby the formula 

y(;*-I)=uY*(;*). (3.13) 

Assume that (Ao,Bo, yo) and (A,B,Y) are Backlund-related. 
Then there exists a singular function H (; ) such that 

Y(;) =H(;)Yo(;)' 

Moreover, the Backlund transformation is given by 

A =H.rH- 1 +HAoH-l, 

B=H.,H- I +HBoH- l. 

(3.14) 

(3.15) 

The conditions (3.12) and (3.13) require that H must satisfy 
the relations 

H(;)uHT( -;)u=l, 

H(;) = uH*(; -I)U. 

(3.l6a) 

(3.l6b) 

The relation (3.16b) forces H to have the representation 

H=G(I+ _R_ + ;UR*U) 
(; -,u) (1 - ;,u*) , 

(3.17) 
where G = uG *u, G = G (r,t ), and R = R (r,t ). 

The function R is a singular matrix function. Consider the 
case first of all when,u = O. Then (3.17) becomes 

H = G(I + R /; + ;uR *u), (3.18) 

which is easily seen to agree with (3.8). Ifwe implement the 
condition (3.l6a), then we find that 

1= Gu(1 - RR"T - R *R T)G TU, 

Ru-uRT=O, 

RuR T =0. 

The conditions (3.l9b) and (3.l9c) require that 

R = e ~) with bc = 0, 

and (3.19a) imposes the constraints, 

(3.19a) 

(3.19b) 

(3.19c) 

(3.20) 

glg2 = 0 and (lg112 + Ig212)(1 -Ib 12 - Ic1 2) = 1, 

where 

(3.21) 

Introduce the notation Xi = (r,t) and a oi ,{3oi and a i,{3i for, 
respectively, the components of Ao,Bo and A I,B I' There are 
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two possible Backlund transformations: case (a) 
b = 0,{30i #0; case (b) f30i = o. Case (a) further resolves into 
two subcases; 

(ai) c,x, + 2aOi c + f3 ~i - f30ic2 = O. 

In this case the Backlund transformation can be written as 

a i = (1 - IcI2)(g2,x,g! + gl,x,gT) + Igl1 2Ai + Ig212A~, 
(3.22) 

f3i = 0, 

where 

Ai = a Oi + a Oi 1e1 2 - cc~, + f3~iC* - f30i C, glg2 = 0, 
(3.23) 

(1 - Ic1 2)(lg11 2 + Ig21 2) = 1. 

First observe that the equation defining c is equivalent to 
(2.17) for the initial variables (those with a 0 suffix) upon 
introducing homogeneous coordinates 

( 
0YOI + WYOI )* 

C = OY02 + WY02 (; = _ I . 
(3.24) 

The functions (YOiJYOi) are the components of the column vec
tors (Yo,Yo) comprising Yo, the fundamental matrix solution 
for the initial functions. Since the gauge is at our disposal, we 
choose a suitable gauge function so that the transformation 
(3.22) assumes its simplest form. There is no loss in generality 
here because the transformations we are considering are 
only defined up to an arbitrary gauge. We choose g 1# 0 and 
real so that (3.23) definesgl. The final form of the Backlund 
transformation becomes 

af3i = a Oi + W3 t;c* - f30i C), 

f3i = 0, 

where c is defined by (3.24). 

(aii) g2 = O. 

In this case the Backlund transformation becomes 

a i = (1 - IcI2)(gl,x,gT) + Igl1 2AliJ 

f3i = giAz;, 

where 

Ali = aOi + a Oi Icl 2 - f30i C + f3 tiC* - cc~" 

A2i = - 2aOi c* + f30i - f3 tic*2 + c~" 
(1 - Ic1 2)lg11 2 

= 1. 

(3.25) 

(3.26) 

For this case the constraint f32 = if31 imposes the additional 
condition 

(3.27) 

This equation can be solved up to an arbitrary function of z*, 

c = exp [ - Fa(z') dZ']{h (z*) - Ff3odZ') 

xexp [ - F'a(Z")dz"] dZ'}-I, (3.28) 

where h is arbitrary and a = a OI - ia02' Ifwe choose the 
gauge so that (3.26) assumes its simplest form, we take g I 
real, and the transformation becomes 
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a i = (1 -lcI2)-I(!(C*C,x, - CC~2) +fJ~IC* 

- fJOiC + a oi (1 + IcI2), 

fJi =(I-lcI2)-I(c~, +fJOi -fJ~iC*2-2aOiC*), (3.29) 

Case (b ) fJOi = 0: The Backlund transformation is 

a i = (1 - Ib 12 - IcI 2)(g2,x,g! + gl,x,gT) 

+ P3i Igl1
2 + pfi Ig21

2
, 

(3.30) 

fJi = P2ig7 + p1';~ , 
where 

(3.31) 

and 

Plig7 + P!i~ = 0, 

(lg112 + Ig212)(1 -Ib 12 -lcI2) = 1. (3.32) 

Sinceglg2 = ° and bc = 0, we select the gauge so thatg2 = ° 
andg 11= ° and real. Again there are two subcases to consider: 

(bi) c = ° and (In b ),x, = 2aOi : 

a i = (1 - Ib 21)-1 [~(bb~, - b *b,x,l + a oi (1 + Ib 12)], 
(3.33) 

fJi = 0. 

(bii) b = 0: 

a i = (1-lcI2)-IU(c*c,x, -cc~,) +aoi (1 + IcI2)], 
(3.34) 

fJi = (1 -lcI2)-I(C~, - 2aOi c*). 

It is easy to see that (bi) is just the identity transformation 

(3.35) 

For (bii) the reiationfJ2 = ifJ leads to the following form for c: 

c = h (z*)exp[ - JXa(Z')dz'] , (3.36) 

where h is an arbitrary function and a = a OI - iao2' 
We shall only consider here some simple applications of 

these transformations. Transformations which belong to 
case (bii) we shall call B + transformations and those for case 
(a) B _ transformations. We shall denote transformations of 
type (ai) by an index 1 (B 1_ ). 

Consider the starting solution 

(1+) a OI = 0, a 02 = !ifJ, fJOi = ° (3.37) 

and apply a B + transformation such that c [Eq. (3.36)] only 
depends upon xl=r. Then we find that 

(3.38) 

where {j is a complex number. The choice {j = - irr/2 re
sults in (3.34) generating the monopole: 
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(II) a I = 0, a 2 = !ifJcoth fJr, fJ 1 = FfJcsch fJr. 
(3.39) 

An application of the B 1_ transformation to the monopole 
solution requires as wequicklyseefrom (3.8), (3.9), and (3.24) 
that one of the following possibilities arise: 

(i) {j = 0, w1=O, c = - ie-Pr, 

(ii) {j 1= 0, w = 0, C = - iePr
, 

(iii) {j 1= 0, w 1= 0, 

c = - icosh(a - FfJt + yJr)sech(a - !ifJt - yJr), 

where 

eU = (i{jlw)I/2. 

Notice that from case (i) and (ii) we regain the starting 
solution 

(3.40) 

Thus B 1_ B + for case (i) is the identity transformation. For a 
nontrivial transformation we consider case (iii). The result is 
the following solution: 

_ ifJ sin(y + fJt) 
a 1 - -

2 cosh(l3r - 7) + cos(y + fJt ) 

a
2

= ifJ sinh(l3r-7) (3.41) 
2 cosh(l3r - 7) + cos(y + fJt) 

fJi = 0, 

where iy = a* - a, 7 = a* + a. 
The combination offunctions a which occurs in (3.28) 

can be written in terms of the starting solution (3.41) as 

a w - ia20 = (13 12)tanh(l3z12). (3.42) 

Equation (3.28) can now be solved to give 

c = h (z)*sech(l3z12). 

The particular choice h (z*)= 1 results in the solution 

a 1 = FfJl1 - 1 sin fJt, 

a 2 = lifJl1 -I sinh fJr, 

fJ 1 = - yJl1 - I [ sinh(l3r 12 )cos(l3t 12) 

+ icosh(l3r 12 )sin(l3t 12)], 

where 11 = sinh2(13r/2) - sin2(13t 12). 

(3.43) 

(3.44) 

We are currently investigating the significance of this and 
some other solutions. 

'Greek indices range from 0 to 3, Latin indices from I to 3. If(xa) is a local 
chart then xoo=t. 
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By formulating the anomaly-free condition in terms of the fully symmetric third-order Casimir 
operators, we find all safe algebras and the algebraic equations satisfied by the highest weights of 
the anomaly-free representations of the only nonsafe algebras An, n;;;. 2. By solving these equations 
for the irreducible representations of An _ 1 [SU(n)], n = 3, 4, 5, and 6, we obtain the generating 
formulas of the highest weights for all anomaly-free representations of these groups. It turns out 
that for SU(n), n;;;.5 there is an infinite set of anomaly-free complex irreducible representations 
grouped as infinite series of such representations. Using the same technique, the infinite series of 
complex anomaly-free representations containing the lowest-dimension ones for SU(n), n = 7, 8, 
9, and 10 are determined. 

PACS numbers: 11.30.Ly, IUS. - q, 11.l0.Gh 

I. INTRODUCTION 

The condition of the renormalizability of gauge theories 
requires use of anomaly-free representations. 1-3 

The general condition for cancellation of the anoma
lies3,4 is 

Tr(IT/, T j + JT/ )=C ijt = C ifk 
=TrO T i-, T j - J T k-)' (1.1) 

with T i± , the right- and left-handed parts of the Hermitian 
matrices T i , specifying the couplings of gauge bosons to 
spinor-fermion fields through the interaction Lagrangian 
gW~WTit{;·1 T/ j and (Ti-j are representations not nec
essarily irreducible and equivalent to the same compact 
semisimple Lie algebras 

[ T ± T ±] - kT ± i , j - cij k' (1.2) 

with the negative definite symmetric metric tensor gij 
= Cin mCjm n. The condition (1.1) may be satisfied in the fol

lowing different ways: 

Cij7.=O 

Cij7. =0 

on all representations; (1.3) 

on some particular representations T / ; 
(1.4a) 

C ilk = C ifk #0 on some particular representations 
Ti±' (l.4b) 

An irreducible representation (IR) satisfying Cijk = 0 is 
called a safe representation and an algebra with all safe re
presentations is called a safe algebra:' On the basis oftheir 
condition (Ll) Georgi and Glashow4 have established that 
all compact algebras except E6 and An (n;;;'2) are safe. 

Using different methods in Refs. 5 and 6 it has been 
proved that all safe algebras are characterized by the nonex
istence of a genuine third-order Casimir operator, the alge
bra E6 being also of this type. Also, in Refs. 5, 6, and 7 it has 
been proved that for the only nonsafe algebras An (n;;;'2), the 
coefficients Cijk have the remarkable property that they can 
be factorized in two parts, a tensorial one which depends 
only on the algebra and a scalar one depending on IR; this 
last part, called anomaly, and consequently Eqs. (1.4a) and 

(l.4b) have been expressed in terms of the eigenvalues of the 
fully symmetric third-order Casimir operators. 

The purpose of this paper is, in the light of some general 
arguments from group theory, to present a short and quite 
complete proof of the vanishing of Cijk'S for all simple com
pact groups except SU(n), n;;;.3 [and SO(6) which is locally 
isomorphic to SU(4)], to obtain in the same manner the stan
dard formula5

-
7 for the anomaly ofSU(n), and to discuss in 

detail, on this basis, the complex safe representations of these 
groups. 

This paper is divided as follows. In Sec. II we show that 
the algebras without third-order invariant polynomials are 
safe ones. In Sec. III a compelling form of condition (l.4a) is 
given for IR's ofSU(n). It consists in the vanishing of the 
eigenvalue of the fully symmetric third-order Casimir opera
tor and it represents a constrained algebraic (Diophantic) 
equation in integers. Using this equation it turns out that 
there is an essential difference between n = 3,4 and n;;;.5 
cases. For SU(3) and SU(4) only real (self-contragradient) 
representations are safe. For SU(n), n;;;'5, in addition to the 
real representation, there is an infinite set of safe complex 
representations. For SU(5) and SU(6) we give the generating 
formulas for the highest weights of all safe representations, 
and for SU(n), n = 7, 8,9, and 10 we offer some examples of 
infinite series of complex safe representations which contain 
the ones with minimal dimensions. The Appendix contains 
certain details associated with the proofs. 

II. LIE GROUPS WITH SAFE ALGEBRAS 

In order to obtain all safe algebras it is useful following 
Gruber and 0'Raifeartaigh8 to build up the Casimir opera
tors 

S3 = Cijk(f)TiTjT k = Cijk(t)T,~Tk' (2.1) 

CijdT ) = Tr(IT;. 1'; jTk), (2.2) 

~ith Ti (T i! the matrix ofthegrou£ generator Ti (T i = gij1j) 
m any particular representations T. S3'S represent the main 
objects for finding the safe algeb~s because they vanish 
identically iff all representations T are safe. Therefore all we 
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have to do is to find all algebras for which any S3 vanishes. In 
order to obtain all safe algebras one may use the Cartan
Weyl canonical basis of the algebra ~ of the group G, (H" 
Ea,E -a J, l<i<l=rank ~,a = (a l ,a2, ... ,a/)foO, ± aE.:1, 
where..1 is the set of the roots of the algebra :§: 

[Hi' ~] = 0, [Hi' Ea] = a,Ea 

[Ea, Ep] = NapEa +P' where NaP = 0 if a + PrM, 
(2.3) 

LetA = (Ai' ... ,..1,/) be the weights of an IR of ~ withAi 
the eigenvalues of the representation operators Hi' and let 
A = (A I' ... , AI) be its highest weight. In what follows we shall 
specify an IR of ~ by A or by nonnegative integers (A I' ••• , 

AI) = A defined by A = ~; A) (II, where A (II, i = 1,2, ... ,1 are 
the highest weights of the fundamental IR's of ~. As S3 is a 
Casimir operator, it has a unique eige~value S3(A ) ~n the 
space ofIR. A Lie algebra is safe iff S3(A ) = 0 for all A. If one 
defines S3 as the reduction of S3 on the Cartan subalgebra 
spanned by Hi'S, i.e., 

(2.4) 

then its eigenvalue s3(A ) on an IR is a homogeneous polyno
mial of third degree in A. 

The vanishing of S3(A ) for all algebras except An' n>2, 
may be shown by using the well-known S Theorem8

-
lo which 

for S3(A ) reads _ 
Theorem: LetS; (u) be the polynomialS3 (A ) written as a 

polynomial of u ===.A + !I, S; (U)==S3(U - !I), where I is 
sum of the positive roots for ~. The polynomial S ; (<;:) is 
invariant under the Weyl group of ~. Moreover, S3(A ) and 
s3(A ) have the same homogeneous term of the highest degree. 

On the other hand, according to a theorem due to Che
valley, 10 S; (u) as a polynomial of third degree invariant un
der the Weyl group generated by the reflections in the planes 
orthogonal to the roots, is a polynomial in so-called invar
iant fundamental polynomials of degree <3. The degrees of 
the fundamental polynomials for all compact simple Lie al-

I· db I 10 11 gebras are Iste e ow. . 

An: 2,3, ... ,n + 1 Bn and Cn: 2,4, ... ,2n Dn: 2,4, ... ,2(n - 1) 
and n G2 : 2,6 F4 : 2,6,8,12 E6: 2,5,6,8,9,12 E7: 
2,6,8,10,12,14,18 E8: 2,8,12,14,18,20,24,30. (2.5) 

One may see from this list that for all simple Lie algebr~s 
with the possible exception of An' n>2 and D3::::-A 3, S3(A) 
must be a polynomial of degree <2 and consequently 
s3(A )-0, i.e., Tr(H,H)lk) = 0 for any representation of the 
former algebras. 

The final step of the proof is contained in the f0l!.0wing 
Lemma: If the symmetric invariant tensor CijdT) 

Tr( [ Ti , Tj J Tk ) vanishes on the Cartan subalgebra then it 
vanishes on the whole algebra. 

A possible proof of this lemma consists in using 
straightforwardly the Cartan-Weyl commutation relations 
(2.3) to show that 
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Tr(EaHjHk) = Tr([H" Ea ]~Hk) = 0, 

(a, + p, )Tr(EaEf3Hk ) = Tr([ H" Ea ] Ef3Hd 

+ Tr(Ea [H" Ef3 )Hk) = 0, 
(2.6) 

aj Tr(Hj (Ea, E _ a j) = I a' Tr(H,H f), , 
y, Tr([Ea, Ep JEy) = Naf3 Tr([Ey+p, Ea JH,) 

+Nya Tr((Ey+a,EpJH,). 

Now it is obvious that if Tr(Hi~Hk) = 0, then Tr( (Ea, 
Hj JHk) = Tr((Ea, Ef3 lHk) = Tr((Ea , Ef3 lEy) = 0. 

In conclusion, all the algebras A I' Dn (n fo 3), Bn, Cn, G2, 

F4,E6,7.S' i.e., ofthegroupsSU(2), SO(2n) (nfo3), SO(2n + 1), 
Sp(2n), and of all compact special groups are safe. Obviously, 
the most general safe algebra is a direct sum of simple safe 
algebras with no abelian components. 

III. SAFE REPRESENTATIONS FOR SU(n) 

According to the previous arguments the only Lie alge
bras nonsafe in all IR's are An _ 1 algebras ofthe SU(n) 
groups. In order to obtain all safe representations and the 
anomaly-free condition for nonsafe representations, we 
must write down a relevant form for Cijk (A ) in an appropri
ate basis. Obviously, the safe property of CijdA ) does not 
depend on the chosen basis. On the other hand, we are inter
ested in a safe condition having a general and simple algebra
ic form in the highest weight of IR. This is possible due to 
factorization of Cijk (A ) in two parts: a tensorial one depend
ing only on the algebra and the other depending on the repre
sentation, more exactly on the eigenvalue of an appropriate 
Casimir operator of third degree. This task may be more 
easily accomplished in the tensorial basis. Moreover, in this 
basis the eigenvalues of all Casimir operators take a form 

d· d b th 12-14 stu Ie y many au ors. 
The tensorial basis (A; J I<i.j<n for An _ 1 algebras is de

fined by 

[A i Ak] £kAi £'A k "A'-O (3.1) j' I = Vj I - VI j' 4 i - . 
I 

(For the sake of simplicity we shall use the same symbols A ; 
for both the Lie group generators as well as their representa
tion.) We shall prove in the Appendix that for an IR ofSU(n) 
defined by the highest weight A = (A 1,A2, ... ,An_ I ), one has 
the factorization5 

Tr((A;, A 7jA:;') 

=y;~m = N(A )I3(A )(8/n(n2 - l)(n2 - 4)) 

X [ £' £k£m _ In(~'~m~k + ~ k~m~i + ~ m~k~n VjVIVn 2 J I n I J n n J 

+ ~n2(~;~7'~~ + ~;~~~~)], (3.2) 

where 

N(A ) = mIJJ 1 + (k - m)-I:~: Aj ], k = 1,2, ... , n 

(3.3) 

is the dimension of the IR and 13(A ) is the eigenvalue of the 
third-degree symmetric Casimir operator 

I - (1/3')P(A "A "A ") (3.4) 3 - • ':2 l~ I.' 
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P denoting the sum over all permutations of A's. Thus, the 
vanishing of 13 (A ) is a necessary and sufficient condition for 
an IR of An _ I [SU(n)] to be safe. It is worthwhile noticing 
that Eq. (3.2) represents an explicit proof of the fact that the 
groups SU(n), n>3 can have only one symmetric invariant 
tensor. The right hand of Eq. (3.2) is manifestly split in two 
parts, one which depends only on the representation, name
ly, N(A) 13(A ), and one contained in the bracket which de
pends only on the algebra and which can be evaluated from 
Y;~nm on the fundamental n-dimensional representaion of 
SU(n). 13(A) has the form (see Appendix) 

n 

13(A ) = I Ii, (3.S) 
I 

with Ii completely determined in terms of nonnegative inte
gers (A I, A 2, ... , An _ I) by the equation 

n 

Ai=l;-/i+I- I , li>/i+1 I/;=O, (3.6) 
I 

i.e., by 
1 n ;- I 

1;=- I (n-k)(A k +l)- Ik(Ak +l). (3.7) 
nk~1 k~1 

It follows now that in order to obtain all safe representations 
for SU(n) we have to solve the algebraic equations in integers 

n n 

I Ii = 0, I I; = 0, I; > I; + I • (3.8) 
I I 

A real (self-contragradient) representation corresponds to a 
highest weight which satisfies Ai = An _;; hence, Ii 
= - In _; + I' i.e., any real IR is a safe one. The general 

scheme for obtaining safe representations ofSU(n) consists 
of two steps: 

(i) Solve the homogeneous equations (3.8) with l; inte
gers. 

(ii) Take Ii such that Ii > Ii + I' and for any distinct multi
plet of relatively prime integers Ii> i = 1,2, ... ,n associate an 
infinite series of safe representations having the highest 
weights Aj = (Ij -Ij + I)t - l,j = 1,2, ... ,n - 1, where the 
homogeneity parameter t takes all values leading to nonneg
ative integers A j • We note that Eqs. (3.8) become 

11/2/3 = 0, II + 12 + 13 = ° for SU(3) (3.9) 
and 

(/1 + 12)(/2 + 13)(/3 + 14) = 0, 

II + 12 + 13 + 14 = ° for SU(4). (3.10) 

The solution of these equations have the form (/1' 12 , 13 ) = (/, 
0, -/),(AI,A2)=(/-l,l-l),I= 1,2, ... forSU(3)and(/I' 
12,/3,/4) = (I, k, - k, -l), (A I,A2,A3) = (/- k - 1, 2k - 1, 
I - k - 1), I> k, both integers or half-integers for SU(4). It 
turns out that for SU(3) and SU(4) only real representations 
are safe. 

Equations (3.8) become 

(/1 + 12)(/2 + 13) + /4/5(/4 + 15) = 0, 
s 
I Ii = ° for SU(S) (3.11) 

1 

and 

(II + /2)(/1 + 13)(/2 + 13) + (/4 + /5)(/5 + 16)(/4 + /6) = 0, 

(3.12) 
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for SU(6). 

In order to solve these equations it is convenient to re
write them as 

11+/2 14 ° 
° 12 + 13 15 = 0, 

14 + 15 ° 13 + II 
(II + Iz)p + 14 q = 0, 

(/2 + 13)q + 15 r = 0, 

(/4 + Is)p + (/3 + IIlr = ° 
for SU(S) and 

II + Iz 14 + Is ° ° 12 + 13 Is + 16 = 0, 

16 + 14 ° 13 + II 
(II + 12)p + (/4 + Is)q = 0, 

(/2 + 13)q + (/5 + 16)r = 0, 

(/6 + 14)p + (/3 + II)r = ° 

(3.13) 

(3.14) 

for SU(6). The general solutions of these equations in inte
gers are 

II = k (q2r - qr + rp - rp2), 

Iz = k (qZr - rp + rp2 _ pqZ), 

13 = k ( - qZr + qr - rp + pqZ), 

14 = k (pZq + rp - 2pqr), 

15 = k ( - pZq - qZr + 2pqr), 

(3.1S) 

with p, q, r relatively prime integers and k a rational number 
for SU(S), and 

II = stIr - q)/q)P(mR + nQ) - kRQ, 

Iz = slIp - r)/r)Q(kR + nP) - mPR, 

13 = s((q - p)/p)R (kQ + mP) - nPQ, 

14 =skQR, 

15 =smPR, 

16 = s n PQ, 

where 

P = q(pZ + qr - 2pr), 

Q = r(qZ + pr - 2pq), 

R = p(r + pq - 2qr), 

(3.16) 

(3.17) 

withp, q, r relatively prime integers, s a rational number, and 
k, m, n three rational numbers satisfying the constraint 
k + m + n = ° for SU(6). 

These equations will give us all anomaly-free IR's for 
SU(S) and SU(6) if we follow the second step described above. 
According to Eqs. (3.1S)-(3.17), in addition to the real IR's 
for SU(S) and SU(6) there are infinite series of complex 
anomaly-free IR's. From these equations one can obtain 
easily the following examples of infinite series of complex 
safe representations, together with their contragradients 
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AI Az 
SU(5) t - 1 8t - 1 

2t - 1 9t - 1 

2t - 1 25t - 1 
SU(6) t - 1 6t - 1 

t - 1 lIt - 1 

t - 1 7t - 1 

A3 
4t- 1 

2t - I 

16t - 1 

t - 1 

t - 1 

t - 1 

A4 
4t - 1 

6t - 1 

lOt - 1 

t - 1 

t - 1 

4t- 1 

5t - 1 

9t- 1 
4t- 1 

N(A) 

1357824 t 10 

3048474t lO 

92 925 085 500 t 10 

374556 t 15 

108 645 537 t 15 

28514304 t 15 

Similar methods for solving Eqs. (3.8) can be developed for SU(n), n> 7. Here we shall give only some examples of complex safe 
representations ofSU(n), n = 7, 8, 9, 10, t = 1,2, .... 

nA AI Az A3 A4 A5 A6 
7 t - 1 5t - 1 3t - 1 t - 1 3t- 1 4t - 1 

8 t - 1 2t - 1 4t-l t - 1 t - 1 t - 1 

9 t - 1 4t- 1 t - 1 3t - I t - 1 t - 1 

10 t - 1 t - 1 t- 1 4t- 1 t - 1 t - 1 

It is interesting to note that for t = 1 all these representations 
and the first ones from those given for SU(5) and SU(6) are 
the complex safe representations with the minimal dimen
sions for the corresponding groups. The fact that the dimen
sions of the complex safe representations ofSU(n), n>5 are 
extremely large is a very strong argument against the unifi
cation theories in which the fermionic multiplet belongs to a 
single complex irreducible representation of SU(n). On the 
other hand, for reducible representations the anomaly-free 
condition can be satisfied for very low dimensions, as for 
example in the model of Georgi and Glashow l5 based on 
SU(5) where the fermions belongs to the anomaly-free com
plex reducible representation 5* + 10. 

So far we have studied only safe representations but an 
anomaly-free theory can be obtained also for nonsafe irredu
cible representations ofSU(n) if they satisfy [see Eqs. (1.5) 
and (3.2)] 

(3.18) 

whereA ± are the highest dominant weights of the right and 
left IR's. Of course this condition is trivially satisfied when 
the right and left IR's are equivalent, but it may be satisfied 
also for some inequivalent IR's. 

For the reducible representation the anomaly-free con
dition for the algebra An takes the form 

I N(A +)I3(A +) = I N(A -)I3(A -) { = 0, (3.19) 
,1+ ,1- i'0, 

where A ± are the highest weights of all IR'scontained in the 
right and left reducible representations. 

When the abelian components occur, none ofthe pre
vious formulas, except the general condition (1.1) can be ap
plied. From Eq. (1.1) it may be shown that in this case an 
anomaly-free representation must be reducible or its left and 
right representations must be equivalent. The right and left 
components T rf of the generator of the representation of the 
abelian group have to satisfy the anomaly-free condition 

(3.20) 

where {Tj j, i = 1,2, ... are the anomaly-free representation 
generators of the simple group G. Choosing the normaliza-
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A7 A8 A9 N(A) 
823 350 528 t Zl 

4t - 1 12 360 348 t 28 

2t - 1 4t- 1 12322252800 t 36 

t - 1 t - 1 3t - 1 19423404 t 45 

I 
tion Tr TiTj -/)ij' Eqs. (3.20) become 

I N (A (~ )I2(A (~ )t (a) = I N (A (~) )I2(A (~) )t (~.) , 

(3.21) 
IN(A (~)t(~3 = IN(A (l»)t(~)3, 

where A (~b) denote the IR's of G and I 2(A ) and t are the 
eigenvalues of the second-degree Casimir operator and To, 
respectively, on the IR's A of G. 
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APPENDIX 

In this Appendix we shall prove Eqs. (3.2) and (3.5). 
The tensor 

!Tikm = Tr(rA i A kjA m) (AI) 
lin l l' I n 

in an IR, as an invariant tensor, can be expressed by products 
of Kronecker /) 'so This tensor has the properties 

!T;7nm = 0, 

!Tiki = !Tkim = !Timk 
Jmn Ijn Jnl , 

so that it must have the structure 

!T17nm(A ) = a 1/);/)7/)'; + a2(/)1/)'!'/)~ 
+ /)7/)7/)~ 
+ /) ';/)j/);) + a3(/)j/),!,/)~ 
+ /)j/);/)~), 

where owing to (A2a) and (A2b) 

(A2a) 

(A2b) 

(A3) 

az = -!n ai' a3 = !nz a l • (A4) 

The only unknown coefficient in Eq. (A3) may be obtained 
by relating !T to the eigenvalues I3(A ) of the third-degree 
symmetric Casimir operator (3.4). In this way one obtains 
Eqs. (3.2). 

The eigenvalue I3(A ) may be calculated by using the 
tensorial basis (3.1) and the definition of the highest weight. 
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By inspection ofEqs. (3.1) and (2.3) one can easily see that A : 
(no sum), A ; and A {, i < j correspond to the generators Hi of 
the Cartan subalgebra, to the rising operators Ea and the 
lowering operators E _ a' respectively. 

For the highest weight we shall define the vector ItPo} 
satisfying 

A: ItPo) = m i ItPo) (no sum), A; ItPo) = 0 for kj, 

Imi =0, mi>mi + l • 
i 

(A5) 

We note that for the Young tableaux [11'/2' ... '/n] 
associated with the previous IR we have m i = /t for U(n) and 

mi =/t - (lIn)I/t for SU(n). 

In terms of the Casimir operators C2 and C3 defined as 

(A6) 

13 can be written as 

13 = C3 - !n C2• (A7) 

The eigenvalue Cp(A ) of Cp can be calculated by noticing 
that 14 

Cp = (B(p-I));A{ , [A;,Bn =8;B; -8;B;, (AS) 

(B (p - I)); ItPo} = 0 for kj , 

(B(q));ltPo) = (B(q-I));A{ltPo) 

n 

= L aij(B(q-I))~ltPo), 
j= I 

where 

(B (p - I))i = A i A i, ... A ,~- , 
'J '2 I;>. J 

(A9) 

and 

aij = (mi + n - i)8ij = (/j + (n - 1)/2)8ij - ()ij' (AlO) 

l=m+n+l -i , , 2 ' 
± I, = 0, () .. = {I for i>j, 

I '} 0 for i<J. 
Therefore 

n n 

CpltPo) = I (m j +n+1-2i)(B(p-I));ltPo)= I (aP)ij 
j= I i,j= I 

(All) 

and 
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where the nonnegative integers {A j ], 

Aj=mj-mj + 1 =lj-Ij+I-1, j=I,2, ... ,n-l, 
(A13) 

as well as {mi}' mi>mi + lor {Ii]' Ii >Ii+ I' i = 1,2, ... ,n 
characterize an IR ofSU(n). 

Finally we note that Eqs. (3.2) may be rewritten in the 
standard form given by Banks and Georgj1 and Okubo6 as 
follows. Define 

(AI4) 

where the standard Hermitian traceless n X n matrices {Aa ], 
a = 1,2, ... ,n2 

- 1 satisfy 

Tr(AaAb) = 28ab , 

(Aa)ij(Ab)kl = 2(8i/8jk - (lIn)8ij8k/ )· 

Thus Eq. (3.2) may be put in the form 

Tr({ Ta, Tb ] Te) = K (A )dabc , 

where 

and 

(A15) 

(AI6) 

(AI7) 

K(A )=(n/(n2 
- l)(n2 

- 4))N(A )I3(A) (AIS) 

has been called the anomaly coefficient.6
•
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In the first part of this study [J. Math. Phys. 19, 1751 (1978)], a wide class of inequivalent 
irreducible *-representations of the C *-algebra & of quasi local observables of the free 
electromagnetic field was constructed and analyzed. A *-representation 1T is called positive if it 
satisfies the spectrum condition, i.e., if space-time automorphisms are implemented in 1T by a 
strongly continuous unitary representation of Mink ow ski spaceM4 whose infinitesimal generator 
has spectrum contained in the forward light cone. Here, we characterize the subclass of the class 
of *-representations constructed in Ref. 1, which consists of positive *-representations. This then 
leads to the exhibition of new superselection sectors, i.e., equivalence classes of positive *
representations. 

PACS numbers: 11.90. + t 

I. INTRODUCTION 

In this paper, unless there is a statement to the contrary, 
our notation and assumptions will be as in Ref. 1. However, 
for the convenience of the reader, we begin the discussion 
with a cursory review of the definitions of some of the func
tion spaces and operators employed in Ref. 1, which will also 
be used in the following. 

Let !iJ (R3) be the real Schwartz space of COO functions 
with compact support in R3, and let !iJ4(R3) denote the four
fold Cartesian product of !iJ(R3) with itself. We shall denote 
by !iJ6 (R3) the subspace of !iJ4(R3

) consisting of all 
f = (loll/z/3) E !iJ4(R3

) such that each component/I' of/ 
has a Fourier transformfl' given by 

3 

fl'(p) = IplfI'O(p) + I p}fl'}(p), 
}~I 

P = (PI,P2,P3) E R
3

, 

where/I'v E !iJ(R3) and/I'v + /VI' = O. Clearly, each 
/E !iJ6(R3

) satisfiesf(O) = O. 
Let..j denote the Laplace operator in three variables 

and set ( -..j )1/4 = C. We may now introduce two Hilbert 
spaces dY* and dY defined as follows. 

dY* is the completion of !iJ6 (R3
) in the topology de

rived from the norm 

Ill",. :!iJ6 (R3)_R+ = [0,(0), 

/= (loll/z/3) 

~1I/1I;y· = LtoJ dx I(C-11')(xWrz
. 

Similarly, dY is the completion of !iJ6(R3
) in the topology 

derived from the norm 

The Hilbert space dY* is dual to the Hilbert space dY in the 
pairing 

3 

(J,g)~</,g) = I <c-~,Cgl')O' 
I'~O 

where ("')0 is the inner product of L Z(R3,dx). 
In Ref. 1, we constructed a class of inequivalent irredu

cible *-representations PT of the C *-algebra & of quasilocal 
observables of the free electromagnetic field by means of *
automorphisms YT of&; the *-automorphisms YT are in
duced by simplectic transformations T which belong to a 
certain class @o(dY*,dYj defined in Sec. 4 of Ref. 1. The *
representations PT and the *-automorphisms YT of & are 
related as follows: 

PT =PooYT' 

where Po is the identity *-representation of&. Each simplec
tic transformation Tin @o(dY*,dYj is an operator-valued 
matrix whose full representation is given in (AI). 

In this paper, we are interested in a characterization of 
the subset of ! PT:T E @o(dY*,dYjl, consisting of *-repre
sentations of &, which are positive in the sense of Definition 
(1.5) below. 

We may view the abstract C *-algebrapT(&) as a con
crete C *-algebra whose representation Fock space ,'TPr, 

T E @o(dY*,dYj, may be described as follows. 
Let T + and T - denote the linear transformations 

T +: df'* ffi dY _dY* 

/ffi~T+(fffig) = C-V + s/)C/+ C- I 2'C- Ig 

and 

T-: dY* ffidY-dY 

/ffi~T-(fffig) = C&?JC/+ C(I +Y)C-1g. 

Recall that to each fixed pair (f,g) in dY* X dY, there corre
sponds a unique solution (F,G ) of the equations 

(1.1) 

with Cauchy data 

F(O,x) =/( x), G(O,x) =g( x), X E R3. 
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Hence, there is a unique pair (FT,GT) which solves (1.1) such 
that 

(1.2) 

and 

(1.3) 

for each fixed pair (f,g) in JY* XJY. We mention next the 
following relationship between the vector functions F T and 
T + (f ff3 g). Let T + (f ff3 gt be the uniquely determined four
component vector function, with complex-valued compo
nents, given by 

T+(fff3g)( x) = f dp T+(fff3g)- (p)eip.X, (1.4) 

(f,g) E JY* XJY. Then, we have 

F T ( xo,x) = f dp T+(fff3g)- (p)e- i[p,x l , 

(f,g) E JY* xJY, 

(xo,x) = x E 004
, and p is the 4-vector p = (Ipl,p), p E JR3. 

Here and hereafter [.,.] denotes the indefinite inner product 
of 004

• It is clear that since the components of FT are real 
generalized functions, we must have that 

T+(fff3g)-(-p)= T+(fff3g) (p), PEJR3, 

(f,g) E JY* XJY. 

Next, let Y T denote the collection of all four-compo
nent vector functions T + (f ff3 g) - , (f,g) E JY* X JY, related 
to T+(fff3g) E JY*, as in (1.4), which satisfy the following 
two conditions: 

3 

(i) IpIT+(fff3g)o(p) - L Pi T +(fff3g)i(p) = 0, 
i= 1 

(ii) IIT+( fff3glll Z 

= f dp[T+(fff3g)- (p), T+(fff3gt(p)] < 00, 

for all (f,g) E JY* XJY. Then the map 

II·II:Y r-+[O,oo) 

[where 11·11 is defined as in (ii)] is a norm on Y r/Ker(lI·I!). 
Denote by .91- the real Hilbert space obtained by completing 
Y TIKer(II·II). 

Let (.,.>r be the inner product of.91-. Introduce the 
linear operator j on .91- with the following properties: 

(a)j Z = - I, where I is the identity operator on .91-, 
(b) (jFIJFz>r = (F1,F2>r, for all (F1,F2) E.91- x.91-, 
(c) (jF,F)T >0 if and only if F ::;60. 

Then .91- becomes a complex Hilbert space, denoted by 
y~T, relative to the inner product «.,.) >r given by 

«F1,F2»T = (F1,F2)T - i(jF1,F2)T' 

where i is the imaginary unit. 
Set yg' = C, the complex numbers, and let y~T, 

n = 1,2, ... , be the n-fold symmetric tensor product of y~T 
with itself. Then the Hilbert space 

is the representation space for the *-representation 
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PT:2!--+PT(2!) = PO(YT(2!))· 

For Tbelonging to @o(JY*,Jn the *-representation 
(PT,yPT) is unitarily inequivalent to the *-representation 
(Po,Y), which is the Fock representation. 
(1.5) Definition: Identify Minkowski space 004 with the sub
group of &' t+ ' the Poincare group, consisting of all space
time translations and let af---+lXa, a E 004

, be a representation 
of 004 in *-Aut(2!). Then a *-representation ¢ of 21 is said to be 
positive (a fa Borchersz) if and only if the map ¢ (2!)~ (aa (21)) 
is implementable by a strongly continuous unitary represen
tation of 004 in ~(YPT) (the group of unitary operators on 
YP1) which satisfies the spectrum condition in the usual 
sense. 
(1.6) Remark: (i) The representation af---+lXa ofM4 in *-Aut(2!) 
induces, and is induced by, a representation a~Ta of 004 in 
B (JY* ff3 In (the Banach algebra of all bounded linear opera
tors on the Hilbert space JY* ff3 In, defined as follows: 

(Ta fff3g)- (p) = ei(aolpl- a,pi(fff3g)- (p), 

a = (ao,a) E 004
, 

Ipl-Jj(p)= f dxf(x)e-ip,X, fEJY* 

and 

Iplg(p)= f dxg(x)e- iP'X , gEJY, PEJR3. 

It is clear that al---+Ta extends by linearity and continuity to a 
strongly continuous unitary representation of 004 in 
~(JY*ff3Jn: 

(ii) In Sec. 3, we shall also employ a representation 
A~T A of the restricted Poincare group in ~ (JY* ff3 In de
fined as follows: 

(TA fff3g)- (p) = ((A ff3A )(fff3g))- (A -Ip), 

where A -lpdenotesthespacecomponentofA -1(po,p).The 
representation AI---+TA induces, and is induced by, a repre
sentation Af---+lX A of the restricted Poincare group in *
Aut(2!). 

2. The set K of admissible kernels 

In our subsequent characterization of the subset of the 
*-representations I PT =PoOYT:TE@o(JY*,Jnl of2! 
which are positive in the sense of Definition (1.5), we shall 
utilize a certain distinguished set K of kernels. In the follow
ing, we characterize the members of K. 

For each a E 004
, a = (ao,a), let Ka denote the set of all 

Lebesgue-measurable kernels K which satisfy the following 
two conditions: 

f dp dq IK (p,qW = 00, (2.1) 

f dp dq IK(p,qW sinzlHao(lpl + Iql) - a.(p + q)] l < 00. 

(2.2) 
(2.3) Theorem: The set K a , a E 00\ is nonempty. 
Proof To prove the assertion, it suffices to exhibit a 

class of members ofKa , a E 004
• Thus, let K~, a E 004

, be the 
set of all Lebesgue-measurable kernels k which are: 

(2.4) asymptotically absolutely square summable with 
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respect to dp dq; 
(2.5) such that Ik (p,q)1 2 behaves like 

Ipl-2Iql-2[(lpl + Iql)2 + Ip + qI2]-1 

in a neighborhood of the origin. 
The condition (2.1) above is clearly satisfied because in a 
neighborhood of the origin, we have 

f dp dq Ik (p,q)1 2 

-f d Ipi d Iql dflp dflq IpI2IqI2Ipl-2Iql-2 

X [(Ipl + Iql)2 + Ip + qI2]-1 

= f d Ipl d Iql dflp dflq [(Ipl + Iql)2 + Ip + qI2]-1 

= 00. 

(Here dflp denotes the element of surface measure on the 
unit sphere of R3 expressed in the variables p' = pi I pi, 
Ipi #0, p E R3.) 

Condition (2.2) is also satisfied for, in a neighborhood 
ff of the origin ofR3XR3, we have that 

L dp dq Ik (p,qW sin2[Hao(lpl + Iql) - a·(p + q)]j 

-Ld Ipi d Iql dflp dflq ((Ipl + Iql)2 

+ Ip + qI2)-1 sin2{Hao(lpl + Iql) - a·(p + q)] J 

= !lal 2 L d Ipi d Iql dflp dflq cos2..i 

X sin2Hao(lpl + Iql) - a·(p + q)] 

Hao(ipl + IqlJ - a·(p + q)f 

.;;;4,rlaI 2 f d Ipi d Iql < 00, for all a E 004, 

where lal 2 = a~ + lal2 = a~ + ai + a~ + aL and A is the 
angle between the vectors a = (ao,a) and 
b = (Ipl + Iql, - (p + q)), considered as elements of the 
four-dimensional Euclidean space (R4, 1·1). Thus, members 
ofK~, a E 004, are square-integrable in a neighborhood ff of 
the origin with respect to the measure (sin2[Uao(lpl 
+ Iql) - a·(p + q)] J) dp dq. Since, by the definition of K~, 

a E M4, each member ofK~, a E M4, is asymptotically absolu
tely square-summable with respect to dp dq, it follows that 
each member ofK~, a E M\ satisfies condition (2.2). This 
concludes proof of the nonemptiness of K~, a E 004, and 
hence ofKa , a E 004. 

(2.6) Remark: A specific member ofK~, a E M4, is given 
by the kernel: 

(p,q)~k (p,q) = Ipl-2Iql-2K2([(lpl + Iql)2 + Ip + q12] 1/2), 

where tl--+Kv(t) is the modified Bessel function of the second 
kind of order v. 

(2. 7) Definition: In the following, we set 

Kernels from the set K will playa role in the sequel. 
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3. SUPERSELECTION SECTORS OF THE FREE 
ELECTROMAGNETIC FIELD 

In this section, we characterize the subset of 
[ PT = PooYT:T E ®(dY'*,JY'j J, which consists of positive *
representations. 

In the sequel, the operator-valued matrix Y = T'T - 1 
intervenes in our considerations. The matrix representation 
of Yis given by (A3). Notice that the matrix of Yinvolves the 
operators A,u, BI" C,u' and DI" f1 = 0,1,2,3, which are de
scribed in (A4). The operators A,u, BI" C,u, and DI' are 
bounded integral operators. 

By studying the above kernels, we readily obtain the 
following result: 

(3.1) Theorem: For (.a1,,q({ ,J,2') E ®(dY'*,JY'j the 
bounded integral operators AI" BI" CI" and DI" 
f1 = 0,1,2,3, do not belong to the Hilbert-Schmidt class. 

Proof The assertion is established in the same way as 
Theorem 1 of Ref. 1. Indeed, the operator A 1 of the present 
theorem is precisely the operator Y11 of Theorem 1 of Ref. 1. 
Hence we shall omit the details. 

(3.2) Remark: (i) The class ®(dY'*,JY'j is defined in the 
course of the discussion immediately preceding Theorem 1 
of Ref. 1. In the following, we denote the Fourier transforms 
of0e ken~~ls oft~e integral ~peratorsAI" B,u' CI" and D/L , 

by AI' (.,.), BI' (.,.), C,u (,.,), andD (.,.), respectively. (ii) The next 
result marks the beginning of our characterization of the 
subset of the set [ PT = PooYT:T E ®0(dY'*,JY'j J, which con
sists of positive *-representations of W. 

(3.3) Theorem: There exists a continuous projective uni
tary representation af-----NT(a) of004 in w (YP, ), which imple
ments the *-automorphism 

PT(W)-(PToaa )(W), a E 004, TE ®0(dY'*,JY'j, 

i.e., (PToaa)(W) = uT(a)pT(W)uT(a)-I,ifand only if each of 
the kernels AI' (.,.), BI' (.,.), (;1' (.,.), and D,u (.,.) belongs to K. 
Furthermore, U T has an associated true unitary representa
tion. 

Proof Let a~Va denote the representation of M4 in *
Aut( PT(W)) given by 

Va (PT(W)) = (PToaa)(W), 

Then Va' a E 004, is unitarily implementable if and only if 

(PToaa)(W) = (pooYToaa)(W)~PT(W) = (PooYT)(W), 

where ~ denotes unitary equivalence. Thus Va' a E M4, is 
unitarily implementable if and only if 

(PooYToaa 0yy: I)(W)~PO(W). 

But, by Shale's theorem, the latter will be the case if and only 
if the operator-valued matrix 

(TTa T-I)'(TTa T-I)-I 

= (T')-ITa-IT ' TTa T- 1 
- 1 

=()(a) 

has entries each of which is Hilbert-Schmidt. Since Ta ,T I , 

and T are bounded operators, with bounded inverses, it fol
lows that () (a) has entries which are Hilbert-Schmidt if and 
only if the entries of the operator-valued matrix 
()T(a) = YTa - Ta Yare Hilbert-Schmidt. Here 
Y = T t T - I. From the matrix representation for Y [see 
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(A3)], we conclude that the entries of the operator-valued 
matrix OT(a) are Hilbert-Schmidt if and only if each of the 
operators 

(i) AI'Ta - 'TaAI' , 

(ii) BI'Ta - TaBp, 

(iii) C,..Ta - 'TaC,.., 

(iv) D#Ta - TaD#, J.L = 0,1,2,3, 

is Hilbert-Schmidt, for all a E 004. 
The method of establishing the assertion of the theorem 

for each of the listed operators is the same; hence it suffices 
only to consider the operators AI' 'Ta - 'TaAp.,/i = 0,1,2,3, 
for example. 

Let (p,qj.-+lap (p,q), (p,q)---Jap. (p,q), and (p,qj.-+Kap. (p,q) 
denote the Fourier transforms of the integral operators 
Ap.'Ta - TaAp.,Ap.Ta, and TaAp, respectively,J.L = 0,1,2,3. 
Then 

lap. (p,q) = lal' (p,q) - Kal' (p,q). 

Furthermore, one readily checks that, in fact, 

101' (p,q) = AI' (p,q)e - ilaolql - a"l) 

and 

Kap. (p,q) = A p. (p,qjei /ao/p/ - .,pl. 

Hence 

lal' (p,q) = Ap. (p,q)(e - ilaolql - a"l) _ eilaolpl - a'p)), 

a = (ao,a) E 004. 
Finally, the operators Ap. 'Ta - 'TaAp., J.L = 0,1,2,3, are 

Hilbert-Schmidt if and only if 

f dp dq [laJt (p,qW < 00, /i = 1,2,3, 

i.e., if and only if 

f dp dq [AI' (p,qW [e - ilaolql - a"l) _ eilaolpi - a'p) [2 

= 4 f dp dq [AI' (p,q)[2 

Xsin2 Wao([pJ + JqJ) - a·(p + q)] J < 00, 

/i = 0,1,2,3 and for all a = (ao,a) E M4. But this is condition 
(2.2) in the definition of the set Ka elK, a = (ao,a) E M4. Also, 
since Tbelongs to @o(dY*,jy'), we know that 
Sdp dq[A" (p,q)12 = 00 ,J.L = 0,1,2,3, by theorem (3.1): This is 
condition (2.1) in the definition of Ka C K, a = (ao,a) E M4. 
[Analogous proofs are valid for the operators B" T a - 'TaB", 
Cp. Ta - 'Ta CJt , and DJt To - TaDI" J.L = 0,1,2,3, and 

a = (ao,a) E M4.] Hence the assertion of the theorem con
cerning the existence of the unitary operator uT(a), a E M4

, 

has been established. 
Next, let a~a) E ~(Y) be the strongly continuous 

unitary representation of M4 which implements space-time 
automorphisms in the *-representation Po' i.e., 

Po(ua 2f) = u(aloo(2f)u(a)-I, a E M4, 

where a~a is a representation ofM4 in *-Aut(2f). 
Let @oP¥,'*,dY,K) denote the set of all TE @o(dY*,jy') 

such that the Fourier transform of the kernel of each of the 
entries of the operator-valued matrix Y = T t T - I belongs 
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to K. Since Po is an irreducible *-representation of 2f, it fol
lows that uta) belongs to Po(2f)" for each a E M4. Further
more, notice that the *-representationpT = PooYT' 
T E @o(dY*,dY,K) being faithful, is nondegenerate. Hence 
by a well-known theorem (Ref. 3, Theorem 3.7.7.), there is a 
uniquely determined normal *-morphism PT of the envelop
ing W*-algebra env(2f) (of the C *-algebra 2f) onto the enve
loping W*-algebra env(pT(2f)) [of the C *-algebrapT(2f)J, 
which extends PT' T E @o(JY*,JY,K). [Recall that the enve
loping W*-algebra env('G') of a C *-algebra '7ff is the strong 
closure in B (H) of the C *-algebra ffi SES Ps ('G'), where 
H = ffi sEsHs> the pair (Ps,Hs) is the Gel'fand-Naimark
Segal*-representation of C(J associated with the states, and S 
is the state space of C(J.] 

It was previously shown that the *-automorphism 

(3.4) 

T E @o(JY*,JY,lK) is implemented by a unitary operator 
uT(a), a E 004. Now, (3.4) is also implemented by the unitary 
operator PT(u(a)), a E 004. To see this, notice that 

PT(aa 2f1 = PT(aa 2f), since PT extends PT 
= PT(u(al21u(a)-11 

= PT(u(alloT(21lpT(u(a))-I. 

Hence, since P T (2f) is irreducible for each T E @o(JY*,JY,Kj, 
it follows that 

uT(aj = ei;-r(a)PT(U(a)), (a,T) E 004 X ®o(dY* ,dY,lK), 

where af-+; T(a) is some real-valued function on 004. The uni
tary operator uT(a), a E 004, satisfies the group property: 

uT(a)uT(b) = eiO'rla,hluT(a + b), 

where 

(3.5) 

Hence uT(a), a E 004, is aprojective unitary representation. 
Furthermore, defining VT(a) by 

VT(a) = ei;-Tla)UT(a), a E M4, TE @o(dY*,~,K), 

one readily checks that V T is a true unitary representation of 
M4. 

Finally, the strong continuity ofuT(a), a E :M4, implies 
and is implied by the continuity of a~T(a), a E M4. 

(3.6) Remarks: (i) Notice that since uT(a)uT( - aj = the 
identity operator, it follows that; T is an odd function on M4. 
From this fact, one infers that the mapping (a,b )~ T (a,b ) is 
also an odd function on 004 X 004. 

(ii) In the functional equation (3.5), suppose that UT("') 
is known. Then a continuous solution; T of (3.5) is of the 
form 

;T(a) = [piT) ,a] - f /iT(db )uT(b Xa,a), a E M4 , 

where piT) is some fixed member of :M4, /iT is some finite 
measure on M4, b xa = (boOo,blal,b2a2,b3a3)' and [.,.] de
notes the indefinite inner product on 004

• 

Let 

c';l = [a:/l J /iT(db )u(b xa,a)] I a = 0' 

TE ®o(Jf"'*,JY,K), (3.7) 

G. O. S. Ekhaguere 681 



                                                                                                                                    

and let G be the Minkowskian metric tensor with compo
nents: Goo = 1, Gij = - 8ij' GOi = 0 = GiO , iJ = 1,2,3. 

(3.8) Definition: Let @o(Jf'*,Jf',lK) denote as before the 
set of all T E @o(Jf'*,JYj such that the Fourier transform of 
the kernel of each of the entries of the operator-valued ma
trix Y = T t T - I belongs to K.. Set 

@+(Jf'*,Jf',lK) = [TE @o(Jf'*,Jf',lK): 

i TI - GCIT ) belongs to the closed forward light cone of 004 J . 
(3.9) Theorem: The energy-momentum spectrum for 

the *-representation PT' T E @+(Jf'*,Jf',lK), is contained in 
the closed forward light cone of 004

• 

Proof Let H iTl denote the infinitesimal generator of the 
unitary group PT(u(a)), a E 004. Then since the spectrum of 
the infinitesimal generator of the unitary group uta), a E 004, 
is contained in the closed forward light cone of 004

, so is the 
spectrum of HbTi . Next, the infinitesimal generator H(T) of 
the unitary group uT(a) = ei;-TlalpT(u(a)), a E 004, is related to 
H bTl as follows: 

HITI = HbTI + (piTI - Gcl TI )1, TE ®+(Jf'*,Jf',lK), 

where 1 is the identity operator. Hence the spectrum of HIT I 
is contained in the closed forward light cone of004 if and only 
ifiTI - GclT) belongs to the closed forward light cone of004. 
But plTI - GclT) belongs to the closed foward light cone of 
004 since T E ® +(Jf'* ,Jf',lK). This concludes the proof. 

(3.10) Remark: We turn next to the question of unitary 
implementability, in the *-representation PT of m-, 
T E ®o(Jf'* ,JYj, of the representation A~ A , defined in Re
mark (1.6) (ii), of the restricted Poincare group in *-Aut(m-). 
By arguing as in Theorem (3.3), we readily also establish the 
following assertion, whose proof we therefore omit: 

(3.11) Theorem: The *-automorphism 
PT(m-~(pToaA )(m-), TE @o(Jf'*,JYj, T # identity operator, 
with A belonging to the restricted Poincare group, is unitari
ly implementable if and only if A is the identity matrix. 

(3.12) Remark: We infer from Theorem (3.9) that re
stricted Poincare automorphisms are not unitarily imple
mentable in any of the *-representationsPT' 
T E ®o(Jf'* ,JYj, T # identity operator. Hence angular mo
mentum operators are not defined in any of these *-represen
tations. This difficulty, arising from infrared problems, is 
amply noted in the literature.4--6 

(3.13) Remarks: (i) The *-representations forming the 
set 

@+(Jf'*,Jf',lK)=[ PT: TE ®+(Jf'*,Jf',lK)J 

are the positive *-representations of m-, and ® + (Jf'* ,Jf',lK) is 
the physically interesting subset of the set 
[ PT:T E ®o(Jf'* ,JYj J. In the preceding, we have achieved a 
characterization of the physically relevant *-representations 
ofm-. 

(ii) Two representations PT) and PT2 belonging to 
@ + (Jf'* ,Jf',lK) are unitarily equivalent if and only if each of 
the entries of the operator-valued matrix T~ T) - T~ T2 is of 
Hilbert-Schmidt class. 

(3.14) Definition: By a superselection sector we mean a 
unitary equivalence class of members of@+(Jf'*,Jf',lK). 

(3.15) Comments: Let Y be the image in B (Jf'* E9 JYj of 
the operator Y which maps @o(Jf'*,Jf',lK) into B (Jf'* E9 JYj 
as follows: 
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Y: ®o(Jf'* ,Jf',lK)~B (Jf'* E9 JYj 

TI-+Y(T) = r T - I. 

In Y, we introduce a relation ~ thus: for Y), Y2 in Y, write 
Y) ~ Y2 if and only if each of the entries of the operator
valued matrix Y) - Y2 is Hilbert-Schmidt. By Remark 
(3.13), ifpT) andpT2 belong to ®+(Jf'*,Jf',lK), then 
PT) ~PT2 if and only if the entries of the operator-valued 
matrix T~ T) - T~ T2 are Hilbert-Schmidt. Setting 
Y) ~ Y(Td and Y2 ~ Y(T2), one sees thatpT) ~PT2 ifand 
only if Y) ~ Y2 • Hence the disjoint equivalence classes ®*.
(Jf'* ,Jf',lK) of *-representations in ® + (Jf'* ,Jf',lK), i.e., the 
superselection sectors, are labeled by the set y* of disjoint 
equivalence classes of members ofY. Consequently, @*.
(Jf'* ,Jf',lK) is a set of the form 

@":- (Jf',Jf',lK) = [ Pv:v E y* J 

in which, for each v E Y*, Pv is an equivalence class of posi
tive *-representations. Next, set 

and 

y = E9 Yv' 
VE Y· 

Here, Y v' V E Y*, is a Hilbert space which is isomorphic to 
sr, the Fock space of the free, electromagnetic field; in our 
analysis, Y v is the representation Hilbert space for Pv, 
V E Y*. The pair (Pv ,Y v) is, for each v E Y*, what we have 
referred to above as a superselection sector of the free electro
magnetic field. The couple (p,Y), which clearly has the 
structure of a vector bundle, is a superselection theory repre
sentation of the canonical commutation relations of the free 
electromagnetic field. 

The superselection sectors constructed above still con
stitute a fairly wide class. We obtain an interesting subclass 
of 
®":- (Jf'* ,Jf',lK) as follows: 

Let Yp be the subset ofY defined thus: 
Yp = [ X E Y: X has pure point spectrum J. 

In view of the separability of Jf'* E9 Jf', the set of eigenvalues 
of each operator in Yp is countable. For X E Yp' let 
(q)( X),q2( X),.··,qn (X), ... )beanenumerationoftheeigenval
ues of X, with 

q)( X»q2( X» .. ·>qn (X) .... 

Let 

For q(l) = (qi)l,qhll, ... ,q~I, ... ) and q(2) = (qi21,qh2), ... ,q~), ... ) be
longing to Q, we shall write q(ll:::: ql21 if and only if l:;;,= ) Iq~1) 
- q~2)12 < 00. We denote Q/:::: by Q*. Let 

® + p (Jf'*,Jf',lK) 

= [PT:TE ®o(Jf'*,Jf',lK) and r T - IE Yp J 

and let ®":- p (Jf'* ,Jf',K.) be the set of equivalence classes of *
representations in ® + p (Jf'* ,Jf',lK). Clearly, 
®":- p (Jf'* ,Jf',lK) C ®":- (Jf'* ,Jf',lK). The superselection sec
tors arising from this construction are now pairs of the form 
(pq,.q, ..... qn .... ,Yq,.q' ..... qn .... )' which are labeled by sequences of 
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real numbers. We remark that, as mentioned in Ref. 1, 
Streater and Wilde7 and Bonnard and Streater,S in their 
studies of superselection rules in two-dimensional space
time, have also obtained superselection sectors labeled by 
continuous real numbers. 

APPENDIX 

For convenience, we collect together in this Appendix 
some of the undefined notation which we have employed in 
the foregoing sections. 

Let @o(JY*,JYj be as defined in Sec. 4 of Ref. 1. Then 
each T E @o(JY*,JYj is of the form 

Mo 0 0 0 Qo 0 0 0 

0 MI 0 0 0 QI 0 0 

0 0 M2 0 0 0 Q2 0 

0 0 0 M3 0 0 0 Q3 (A1) T= 
Po 0 0 0 No 0 0 0 

0 PI 0 0 0 NI 0 0 

0 0 P2 0 0 0 N2 0 

0 0 0 P3 0 0 0 N3 
where 

{MI' =C-I(I+dl')C, NI' =C(I+YI')C- I, 
(A2) 

{PI' =C!!lJI'C, QI' =C-I.!L'I'C- I, p=0,1,2,3. 

With Tasabove, let Y = Tt T -1. Then Y has a matrix 
representation given by 

Ao 0 0 0 Ho 0 0 0 

0 AI 0 0 0 HI 0 0 

0 0 A2 0 0 0 Hz 0 

0 0 0 A3 0 0 0 H3 
Y= (A3) 

Co 0 0 0 Do 0 0 0 

0 CI 0 0 0 DI 0 0 

0 0 Cz 0 0 0 D2 0 

0 0 0 C3 0 0 0 D3 
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A =C-Id C+Cd'C- 1 
I' I' I' 

+ Cd' C-2d C+ C-I.!L"!!lJ C I' I' 1'1" 

H = C-I.!L' C -I + C -1.!L't C- I 
I' I' I' 

+ Cdt C-2.!L' c- I + C-I.!L't Y c- I 
I' I' 1'1" 

C = C!!lJ C+ C!!lJ t C+ c- I (A4) I' I' I' 
xY~ C 2 !!lJ I' C + C!!lJ~dl' C, 

D =CY C-I+C-1ytC I' I' I' 
+C-1y t C 2y c-I+C!!lJt.!L' c- I 

1'1' 1'1" 

P = 0,1,2,3, 

C = ( -.a )1/4 and .xr denotes the transpose of X. 

One sees that the entries of the matrix for Tinvolve the oper
ators d 1" !!lJ I' ' Y I' ' and .!L'I" P = 0,1,2,3; these operators 
are defined on p. 1754 of Ref. 1. We remark that the opera
tors AI" HI" CI" and DI" which appear in the matrix repre
sentation of Y, are bounded integral operators on L 2(R3,dx). 
The Fourier transforms of the kernels of the operators are 
denoted by AI' (.,.), BI' (.,.), GI' (.,.), and DI' (.,.), respectively. 
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Coulomb-modified scattering parameters for Coulomb-plus-separable 
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For three different separable-potential models, closed analytical expressions are presented for the 
Coulomb-modified scattering length and effective range for all values of the angular-momentum 
quantum number, 1= 0,1,2, .... In the derivation of these results, use is made of the regular and 
irregular Coulomb wave functions that are entire analytic in k 2. It is shown that the Coulomb
modified effective-range function can be written as a simple expression involving these entire
analytic functions. 

PACS numbers: 12.40.Qq, 03.80. + r 

I. INTRODUCTION 

Effective-range theory has been highly successful in the 
analysis and interpretation of low-energy two-particle scat
tering data. Usually, in this theory the effect of scattering by 
a short-range potential Vs is described essentially by two 
parameters, the scattering length and the effective range, see, 
for example, Refs. 1 and 2. 

The modification of effective-range theory in the pres
ence of a long-range (Coulomb) tail of the interaction has 
been studied extensively. 1-15 Thereby the Coulomb-modi
fied effective-range function Kcsl has been introduced, which 
is a real-meromorphic function of the energy variable k 2 in a 
large part of the k 2 plane, for each value of the angular
momentum variable I. Roughly speaking, it describes, in a 
practical way, the deviation from pure-Coulomb scattering 
due to the addition of Vs to the pure-Coulomb potential VC' 

Separable potentials have been, since the appearance of 
Yamaguchi's original paper, 16 an immensely popular tool in 
dynamical calculations. In this paper we show how, when Vs 
is a separable potential, the Coulomb-modified effective
range function and scattering parameters are obtained in a 
convenient and relatively simple way. An essential ingre
dient in our method is the use of radial Coulomb wave func
tions (,bcl and Xci that are entire-analytic functions of k 2. The 
entire analyticity of the regular function (,bcl is well known, 
whereas Lambert9 has given the explicit prescription to con
struct Xci' The analytic structure of Kcsl is clearly displayed 
in Eq. (3.17), which is basic for this paper. 

The organization of this paper is as follows. In Sec. II 
we recall some notations and conventions. In Sec. III the 
Coulomb-modified effective-range function is obtained. 
Choosing three particular shapes for the form factor (rlg/ ), 
we derive, in Sec. IV, closed expressions for the Coulomb
modified scattering length acsl and effective range rcsl in each 
case, for alII, and for Coulomb repulsion. After a minor 
modification, which we explain in Sec. V, the same formulas 
hold for the case of Coulomb attraction as well. By consider
ing the limit Vc-o, we have obtained also the expressions 
for the effective-range parameters as, and rsl (Sec. IV). This 
enables us to study the relationship between purely-short
range and Coulomb-modified low-energy scattering param-

eters for these form factors. Section VI concludes this paper 
with a discussion. Thereby the relation between acs, and asl 
for the three form factors considered is compared with other 
known relations. 

Most of our results are new. In this respect, our work 
extends the results of previous work: For the Yamaguchi
like form factor, we mention Ref. 17 (ac,{J and rc,{J), Ref. 18 
(acsl and rcsl ), and Ref. 19 (acsl for alII, in perhaps a slightly 
less elegant form, but not rcs/ ), whereas for the o-shell form 
factor, we recall Ref. 20 (acsl and rcsl for alII). The results for 
the third form factor have not been obtained before. 

II. NOTATIONS 

We shall use notations and conventions that have been 
developed previously. 13,21 Units are such that Ii = 1 = 2m, 
where m is the reduced mass, and the energy variable is de
noted by E = k 2. The Coulomb potential is given in the coor
dinate representation by 

Vc(r) = - 2s/r = 2kr/r, (2.1) 

where s is the Coulomb strength and r is Sommerfeld's pa
rameter. It is convenient to consider solutions of the com
plete partial-wave projected Schrodinger equation 

H l ltP/)=k 2 ItP/)' (2.2) 

where 

HI = HOI + VI' (2.3) 

and VI is restricted to be a rotationally invariant potential. In 
the representation [r/ ]Hol is given by 

R - _..!.. £. + I (I + 1) (2.4) 
01 - r dr r r' 

Three different solutions ofEq. (2.2) in coordinate space are 
(rlkl +), (rlkl t), and (rlklt). Their connection with the 
regular solution (,btlk,r) and the Jost solutionsft± (k,r) of the 
radial Schrodinger equation is given by 

(rlkl + ) = (2hr)1/2(ik l (,bl(k,r) , 
(21 + 1)!!j;(k) r 

(rlkl i) = (2hr) I 12ft + (k,r)/(kr) , 

(rlkh) = (- )'(2hr)1I2ft_(k,r)/(kr), 

(2.5) 

(2.6) 

(2.7) 
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respectively. We recall that the regular solution satisfies the 
boundary condition 

lim tPI(k,r)r- I - 1 = 1 . (2.8) 
riO 

Furthermore,.t;(k) is the Jost function, 

.t;(k) = lim (rlkl t) I (rlkl t)o , (2.9) 
r--+O 

and (rl kl t) 0 is the solution corresponding to V =0. The 
three solutions (2.5)-(2.7) are interrelated by 

2i(rlkl+) = exp(2iDI(k))(rlkl t) - (rlkl!), (2.10) 

where the phase shift DI(k) is given by 

D/(k) = - arg.t;(k), k>O. (2.11) 

For the pure Coulomb case (V = Ve)' all these functions 
are well known in closed form, 

(rlkl +)e = (- )/e(kl-Ir) 

= (2hr) I 12 r(/+ 1 +iY)e-I121TJ'+ikr 
r(21 + 2) 

X (2ikrVIF I(1 + 1 + iy;21 + 2; - 2ikr), (2.12) 

(rlklt)e =(-)/(rlk*l!)~ 

= (2hr) I 12e1l21TJ' + ikr( _ 2ikr)1 + I 

X U(I + 1 + iy,21 + 2, - 2ikr)/(kr), (2.13) 

where the sUbscript c stands for Coulomb, and IFI(';';') and 
U (.,.,.) are the confluent hypergeometric functions. 22

-
25 The 

Coulomb Jost function obeys (2.9) and reads 

!c/(k) = e1l21TJ'r(l + 1)/r(1 + 1 + iy); (2.14) 

the pure Coulomb phase shift udk ) follows from (2.11), 

u/(k) = - arg!c/(k) = argr(1 + 1 + iy), k>O. 
(2.15) 

The regular solution tPcl(k,r) satisfies the boundary con
dition (2.8). Since this boundary condition is independent of 
k, tPc/ is an entire-analytic function of k 2 for every nonnega
tive value of r. This follows from a theorem by Poincare.26 

From the relationship 

tPc/(k,r) =,J+ leikrlFI(1 + 1 + iy;21 + 2; - 2ikr), (2.16) 

it is manifestly clear that Eq. (2.8) is satisfied. 
An irregular solution Xci (k,r) of the radial Schrodinger 

equation, which is an entire analytic function of k 2 for every 
positive r, has already been constructed by Lambert.9 We 
shall use 

xc/(k,r) = (1T/2)1/2(21 + 1)!!( _ ik)1 [ kr(rlkl t) e 
icl(k) 

- C ~ iY)C ~ iY)2YH (y)!c/(k )kr(rlkl + ) e ] 

685 

= [(2/ + 1)!!(2/- I)!!]eikrr-' r(1 + 1 + iy) 
r(21 + 1) 

X( - 2ikr)2' + IU(l + 1 + iy,21 + 2, - 2ikr) 

( I + iY)(/- iY) 2'+ I - I I 2yH(y)k tPcl(k,r). 
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(2.17) 

Here H (y) is given bylB 

H (y) = ",(iy) + (2iy) -I - In( - iy sgn(s)) , (2.18) 

",(z) = r '(z)1 r (z). Note that X cl is not the only entire-analytic 
irregular solution. It has been constructed in such a way that 
the Coulomb-modified effective-range function can be given 
by a simple and convenient formula, see Eq. (3.17). From the 
relation 

lim r(1 + 1 + iy) ~/+ IU(I + 1 + iy,21 + 2,z) = 1 , 
z--+O r(21 + 1) 

1=0,1,2, ... ,largzl<1T, (2.19) 

the behavior of Xci near r = 0 is easily derived: 

Xedk,r) = (21 + 1)!!(2/- 1)!!r-' [1 + 0 (r)] , 1=1,2, ... , 
(2.20) 

whereas for I = 0, we have Xeo(k,r) = 1 + 0 (r In r). We 
stress that for real k and r> 0, both tP and X are real. This is 
not apparent from the forms given in Eqs. (2.16) and (2.17). 

III. THE COULOMB-MODIFIED EFFECTIVE-RANGE 
FUNCTION 

In this section we consider the potential 

V= Ve + Vs , (3.1) 

where Ve is the Coulomb potential and Vs is a short-range 
potential. In the Gell-Mann-Goldberger27 two-potential 
formalism, it follows that the total T operator for this poten
tial can be written as 

T=Te+Tes 

(3.2) 

Here, Te is the Coulomb Toperator, tes is a short-range oper
ator satisfying the equation 

(3.3) 

and Go and Ge are the free and Coulomb resolvents, respec
tively. The partial-wave analogs of these equations have the 
same form: One merely attaches an extra SUbscript I to each 
operator. 

The Coulomb-modified phase shifts Des,(k) are connect
ed to the Coulomb-modified physical on-shell T-matrix ele
ments13

•
28 

(kloo -ITes,lkloo +) =e(kl-ltes,lkl+)e 

= - (2/1Tk )exp(2iuI) 

X [cot Des,(k) - i] -I. (3.4) 

For separable potentials of the type 

Vs'= -A,lg,)(g,l, (3.5) 

the Coulomb-modified t operator and the phase shift can be 
obtained explicitly: 

tesl = - Ig,) (g, 1/(..1. ,- I + (gil Gc/ Ig,») , (3.6) 

t
£ • 2 (2') ..1.,-1+ (gt!Gcllgt ) co u , - I = - exp IU, 

es 1Tk e(kl-lg/)(gtlkl+)e 
(3.7) 

Furthermore, it is known that for a large class of potentials, 
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the so-called Coulomb-modified effective-range function, 
defined as 

Kesl(k 2): = k 21 + '(I ~ iY)(' ~ iY) 

X [2YH (y) + 21TY (cot Desl - i)l ' 
eXp(21TY) - 1 

(3.8) 

is a real-meromorphic function of k 2 in a neighborhood of 
k = 0, see Comille and Martin,1O Hamilton et 01., II and van 
Haeringen. 18 Its expansion coefficients are related to the 
Coulomb-modified low-energy scattering parameters. 

Kes,(k 2) = - l/aesl + !reslk 2 - Pes''';'s,k 4 + Qcs'~slk 6 _ •••• 

(3.9) 

The definition of H (y) has already been recalled in Eq. (2.18). 
For potentials of the type (3.5), it follows from Eqs. (3.7) and 
(3.8) that 

Kesl(k 2) = k 21 + 1(1 + iY)(1 - iY) [2YH (y) + 21TY 
I I exp(2ry) - 1 

X _ exp(2iCTI) I gl cl gl . (3.10) 2 A -I + ( IG I ) ] 
1Tk e(kl-Ig,)(g,lkl+)e 

The RHS of this equation has a seemingly complicated 
structure in the variable k. For example, H (y) is not analytic 
at k = O. The analytic structure in k can be made more trans
parent, as we shall show now. The following procedure is 
also a convenient method to calculate the Coulomb-modi
fied low-energy parameters aesl,resl'''' . 

First, we observe that Gel in Eq. (3.10) is the usual out
going Green function. In the coordinate representation, its 
matrix elements can be expressed in terms of the solution 
regular at r = 0, and the outgoing irregular solution, as fol
lows [cf. Ref. 29, Eq. (14.50)], 

(r'IGcllr) = - (1Tk /2)( _)1 (r > Ikl r)e(r < Ikl + )e , 
(3.11) 

where r < = min(r',r), and r> = max(r',r). 
Second, both the regular and the irregular solution can 

be expressed in terms of the entire-analytic radial solutions 
<PeIlk,r) andXcl(k,r), as is clear from Eqs. (2.12), (2.13), (2.16), 
and (2.17): 

(rlkl +) = (2/1T)1/2(ik)1 <pcl(k,r) 
e (21 + 1 )!ifc,(k) r 

(3.12) 

(rlkl r) = (2/1T)1/2fcIlk) [Xci (k,r) 
e (21 + 1 )ll( _ ik )1 kr 

+ (I ~ iY)(' ~ iY)2YH(Y)k21 <pcl~k,r)]. (3.13) 

Third, we introduce the notation 

/ # (k 2) = 100 

dr' r'<pcl(k,r')(r' IgI) 100 

dr r<pcl(k,r)(gllr) , 

(3.14) 

and 
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/x.p(k 2) 

= 1"0 dr' r' 1"0 drr(r'lg,)XeIlk,r> )<pcl(k,r < )(gllr). 

(3.15) 

Using Eqs. (3.11)-(3.15), and 

{fc,(k)) -2 = (I +/iY)(/-/ iY) 21TY exp(2iuI)' 
exp(21TY) - 1 

(3.16) 

it is straightforward to rewrite the RHS ofEq. (3.10), so as to 
obtain 

K (k 2) = 1 [ { (21 + l)ll f _ / (k 2)] 
esl /.p.p(k 2) Al x.p· 

(3.17) 

Equation (3.17) is central to this paper. Barring convergence 
difficulties for large r,r' the integrals / ...... and (j) are ana-
l
.ti. k2 '1"1' d'x.p 

ytlc unctions of . Note that / # is the product of two 
one-dimensional integrals. Equation (3.17) clearly displays 
the analytic structure of the Coulomb-modified effective
range function for separable potentials: The RHS is a real
meromorphic function of k 2. The region ofmeromorphicity 
of Kes' can be obtained by means of estimates and inequalities 
as have been used by Comille and Martin. 10 

Here, and in the next section, we have tacitly assumed 
the form factors (rlgl) and strength parameters Al to be 
independent of k 2. This assumption is unnecessary and the 
extension to form factors and strength parameters that are 
functions of k 2 is immediate. 

The main purpose of this paper is the calculation in 
closed form of the Coulomb-modified effective-range pa
rameters for certain separable potentials with simple form 
factors. For the expansion in k 2 of the Coulomb-modified 
effective-range function, the use ofEq. (3.10) seems to be less 
convenient. 

The functions <P and X are, by construction, entire-ana
lytic functions of k 2. Their expansions in powers of k 2 are 
given in Appendix A. Upon interchanging the order of sum
mation and integration (with due care!) the calculation of the 
Coulomb-modified effective-range parameters is immediate 
if the remaining integrals are known. Therefore Eq. (3.17) 
will be our starting point in the next section. 

Finally, we note that in the limit of vanishing Coulomb 
potential (s-+O), we retrieve expressions for the effective
range function Ks,(k 2): 

Ks,(k 2) = k 21 + 1 cot DsI(k) . (3.18) 

Clearly this function is real meromorphic in k 2, too. Its ex
pansion coefficients are related to the scattering length asl' 
the effective range rsl "'" according to 

Ks,(k 2) = _ asl
1 + ~rs,k 2 _ Psi r;, k 4 + Qs,r;,k 6 - .... 

(3.19) 

IV. THE COULOMB-MODIFIED SCATTERING 
PARAMETERS FOR COULOMB REPULSION 

In this section we shall utilize a method by which the 
Coulomb-modified effective-range parameters can be ob-
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tained in closed form. The method will be illustrated by 
choosing three particular simple separable-potential form 
factors (rlg/), We stress that the method is quite general: It 
works for all I, and both for Coulomb repulsion and Cou
lomb attraction. 

Starting point is the observation that the integrals 
/1>4> (k 2) and / xt/> (k 2), under some mild restrictions on the 
form factor, are analytic functions of k 2 in a region contain
ing the origin. This follows from the fact that tPc/(k,r) and 
X edk,r) have this property for every r> O. In particular, 
tPedk,r) and Xedk,r) are uniformly represented by their Tay
lor series in k 2 in the whole k plane. These series are given in 
Appendix A, which heavily relies on Ref. 30. Replacing 
tPedk,r) and xc/(k,r) by their Taylor series in k 2, we have to 
evaluate integrals of the type 

where b is either finite or infinite. Conditions for interchang
ing the order of summation and integration are given in Ap
pendix B. Interchanging the summation over the first N 
terms and the integration is already allowed if only I(z,t ) and 
In (t), O<n<N, are integrable as functions of t. 

We shall consider, for each value of I, three different 
form factors, viz., 

In all three cases, R plays the role of a typical (short-) range 
parameter. In the momentum representation, these form 
factors take the following form: 

(ii) (plg/) = (2/1r)1I2[(21 + 2)!} -IR 2/+2p l 

X IF2(1 + 1;1 +~,l + 2; -lp2R 2), (4.6) 

(4.7) 

respectively. In each case, the threshold behavior p' is appar
ent. The D-shell potential (in a slightly different normaliza
tion) has already been considered in Ref. 20, where formulas 
for aesl and resl are presented. The calculation, in closed 
form, of these parameters for cases (ii) and (iii) can be carried 
out along the lines sketched in Appendix C and Appendix D, 
respectively. 

We shall first consider a repulsive Coulomb potential 
( - s > 0). The following formulas hold. 

(i) Defining v = - 2sR, one has, for the D-shell poten-
tial, 
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V I + 1 

- ae'rl l = 
(12/ + 1)2 

X {A - IR - 4/- 4 _ (2R) - 2/- I 41 K } 
1 (/W 2/+ I 2/+ I , 

(4.8) 

~r = V
I
+

1 
[4A 1-

1R _41_2(1121+3 +/V12/+2) 
2 esl 6(1 )2 I 21+ I V 2/+ I 

(2R )-21+ I 
- v- 2

[ - 2/(1 + 1) 
(I !)2 

X(l - (41 + 2)12/ + IK2/ + I) - (12/ + 1)2 + vJ ] . 
(4.9) 

(ii) Using again v = - 2sR, one has for the unit-step 
form factor 

- V-I ---41 K (2R ) - 2/- I (1 )} 
(l W I + 1 21 + 2 21 + 2 , 

(4.10) 

1 
-resl 
2 

= V
I
+

2 
[4A

1
- IR _41_2((/-1)12/+4 +/V12/ +3 ) 

6(121 + 2)2 v121 + 2 

(2R )-21+ I 

(I !)2 

Xv- 3{/(21 + 1)(1 - 4(1 + 1)12/+2K2/+2) - (121 +2)2 

+2V( __ I_+ (/-1)12/ +4 +/V12/ +3 )}] .(4.11) 
21 + 3 (21 + 2)12/+ 2 

In Eqs. (4.8)-(4.11), the shorthand notations In and Kn have 

been used for In (2/V) and Kn (2/V), respectively. 
(iii) For the Yamaguchi-like form factor, we use 

v = - sR (and not v = - 2sR as in the two previous cases!), 
and obtain 

+ (2(21 + l)!/(/Wj.r/+ IF( - 2/- 1,4v) (4. 12a) 

= e- 4V [A 1-
1R -4/-4 - (2(21 + 1)!/(/W) 

XR -2/-IV I+ IU(21 + 2,21 + 2,4v)j , (4.l2b) 

!resl = e- 4vA 1-
IR -4/-2(21 + 2 + ~v) - !~/-I/(/W 

+ ((21 + 1 )!s2/- 1/6(1 !)2) [le - 4V(4v) - 21 + I 

+ (I + l)F( - 21 + 1,4v)} . (4.13) 

In the limit of vanishing Coulomb strength (s-o, i.e., 
v-o for fixed R ) we retrieve the effective-range parameters 
asl and rsl for the following. 

(i) For the D-shell potential, 
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- asi l = [(21 + 1)'F,1 1- IR -41-4 

_ [(21 + 1)!!]2 R -21-1 
21 + 1 ' 

!rsl = [(21 + 1)!]2,1 I-IR -41-2/(21 + 3) 

[(21 + I)!! ]2 R _ 21 + I • 

(2/- 1)(2/ + 3) 

(4.14) 

(4.15) 

(ii) For the unit-step form factor, 

- asi l = [(21 + 2)W,1 I-IR -41-4 

_ [(21 + I)!!] 2(41 + 4) R -21-1 
(2/+ 1)(2/+3) , 

(4.16) 

~r = [(2/+2)!f(2/+2) A -IR -41-2 
2 sl (21 + 3)(21 + 4) I 

[(21 + 1)!!F(41 + 4)(4/2 + 161 + 11) R -21+ I. 
(2/- 1)(2/ + 3)2(21 + 4)(21 + 5) 

(4.17) 

(iii) For the Yamaguchi-like form factor, 

-asil=,1I-IR -41-4_2(~)(4R)-21-1, (4.18) 

+rsl = (21 + 2)A I-IR -41-2 

_ ~ (21\ (21 + qz (4R) -21+ I. (4.19) 
8 I} 2/- 1 

Equations (4.10)-(4.19) enable us to study the relation
ship between purely short-range and Coulomb-modified 
low-energy scattering parameters. To lowest orders in v (the 
ratio of a typical short range and the typical long-range pa
rameter Isl-I = a B' the Bohr radius), we get the following. 
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(i) For the 8-shell potential (v = - 2sR ), 

- R -lv [2C -! + In v + O(v)] , (4.20) 

-a-I 1[1 __ v_+ O(V)] 
s 1+1 

!(21 + 1)!qzR -2/-1 

+ 21(21 + 1)(21 + 2) 

2 [1 2/(41 + 7) 
X v - v 

(2f - 1 )(2f + 2)(2f + 3) 

+O(VlnV)] , (f;;;,J). (4.21) 

(ii) For the unit-step form factor (v = - 2sR ), 

-ac~l= -a..o I [1-jv+O(v)] 

- R -lv[2C - H + In v + O(v)] , (4.22) 
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- ac~ I = - asi
l 
[ 1 - 2/; 3 + 0 (V)] 

[(2/+ 1)!!F(2/+2)R -21-1 

+ 21(21 + 1)(21 + 3)(21 + 4) 

X6v[I-~ 2/(6/+17) v 
3 (21- 1)(21 + 3)(21 + 5) 

+ O(v In V)], (1;;;>-1). (4.23) 

(iii) For the Yamaguchi-like form factor (v = - sR ), 

- ac~1 = - as; I exp( - 4v) 

- 2R -IV[ C + In 4v + ~ ( - 4v)n/(n nIl] , 

(4.24) 

-ac~l= -asil[I-4v+O(v)] 

+ 8(21 - 1 )! (4R ) - 21 - I 

(l!f 

X[I-_
2
_
1
-4v+O(VlnV)] , (/:>1). 

21- 1 
(4.25) 

In Eqs. (4.21), (4.23), and (4.25), the order terms 0 (v In v) 
may be replaced by order terms 0 (v) in case 1:>2. The con
stant Cis Euler's constant, C'Z0.5772. Note that Eq. (4.24) is 
without any approximation. 

v. THE COULOMB-MODIFIED SCATTERING 
PARAMETERS FOR COULOMB ATTRACTION 

In the previous section we have discussed the case of 
Coulomb repulsion. We now briefly discuss the case of Cou
lomb attraction, i.e., s> O. All formulas in Sec. III remain 
valid. In particular, Eq. (3.17) is again a convenient starting 
point. 

The function ¢lei (k,r) is an entire, real-analytic function 
of s. Likewise, the expansion coefficients in its Taylor expan
sion in the variable k 2 are entire, real-analytic functions of s. 
For example, ¢lel(k,r) for k = 0, i.e., ¢lei (O,r), is entire real
analytic in s, and (21 + 1)!(2s) -1- 1(2sr)1/2 J21 + I (2(2sr)1/2) is 
the entire-analytic continuation to the positive real s axis of 
(21 + 1 )!( - 2s) - 1- I( - 2sr) 1/2 121 + I (2( - 2sr) I 12), which is 
¢lel(k = O,r) on the negative reals axis, cf. Eqs. (AI) and (A4). 

The function XeI(k,r) has been given by expansions in 
Eqs. (A2) and (A5) for Coulomb repulsion and Coulomb at
traction, respectively. It is not analytic in the variable s. For 
s> 0, it is given in (A5). One observes that for s > 0, we have 

- (2s)1 (2sr) I I 21TN21 + I (2(2sr) I 12) 

= Re[(2sr(2sr)1/21TiHW+ I (2(2sr) 1/2)] , (5.1) 

and similar relations hold for the expressions involving 
N21 + I + q ( • ), q = 1,2, .... From this it may be concluded that 
X eI (k,r) for s on the positive real axis (s> 0) is the real part of 
the analytic continuation in the complex s plane of XeI(k,r) 
for s on the negative real saxis (s < 0). Indeed, upon defining 
- s = e - 7TiS , by using (Ref. 22, p. 67), 

de Maag, Kok, and van Haeringen 688 



                                                                                                                                    

K
v

(ze-(1I2)1Ti) = ~1Tie1l21TVH~)(z), 

we have that 

Re[(15V(15r)1/21TiHW+ 1 (2(15r)1/2)] 

(5.2) 

= Re[(15e- 1Ti)I(15re- 1Ti)2K21+ d2(15re-1Ti)1/2)] . (5.3) 

Hence, in Eqs. (3.17) and (3.15), for the case of Coulomb 
attraction (s> 0), we can still use Eq. (A2), provided we take 
Re xc/instead of X c/' 

As a consequence, all formulas which have been given 
in the previous section for the case of Coulomb repulsion 
(s < 0) hold also for the case of Coulomb attraction (s > 0) 
after only a minor modification: The RHS of each of the Eqs. 
(4.8)-(4.13) and (4.20)-(4.25) has to be replaced by its real 
part. This only affects the functions Kn( . ), r( " . ), and 
In( . ). 

For the 8-shell potential, some further practical details 
are given in Ref. 20. 

VI. DISCUSSION 

In Secs. III and IV, we have given a simple prescription 
for evaluating the Coulomb-modified effective-range func
tion Kcsl and parameters acsl and rcsl for the Coulomb-plus
separable potential. It can handle a separable potential of 
arbitrary form, and it works for all values of the angular
momentum quantum number I. The derivation of the central 
formula of this paper, given by Eq. (3.17) and Eqs. (3.14) and 
(3.15), utilizes the entire analyticity of the functions ifJc/(k,r) 
and Xc/ (k,r), which are regular and irregular at the origin 
r = 0, respectively. 9 

In Sec. IV, closed expressions are given for acsl and rcsl 
for three choices (i)-(iii) for the form factor (rlgl ). These 
results generalize and extend previous work in several re
spects. First, our formulas incorporate the effect of the Cou
lomb potential to all orders in the Coulomb coupling param
eter s, whereas recent work of Nogami and van Dijk31 

includes only effects to first order in the fine structure con
stant. When evaluated for our form factors, their first-order 
formulas give results in agreement with Eqs. (4.20), (4.22), 
and (4.24). Second, the results of Refs. 17-20 are extended. 
In Refs. 17 and 18, only in the cases I = 0 and 1= 1, are 
closed formulas for the scattering parameters given. In Ref. 
19, in a momentum-representation formulation, closed ex
pressions for Kcsl and acsl for the form factor (iii) have been 
given. Our formula (4.12) agrees with the result of Ref. 19; at 
the same time our expression is appreciably simpler and very 
elegant. In addition, the result (4.13) for rcsl is new and rela
tively simple. The results for form factor (ii) are new. They 
are rather similar to the results for case (i). This is, perhaps, 
not surprising in view of the intimate connection between the 
function 8 (1 - r I R ) and the distribution 8 (1 - r I R ). 

In passing, we note that Eq. (3.17) is useful also in the 
chargeless case. In Eqs. (3.14) and (3.15) the entire real-ana
lytic functions (in the variable k 2) 

ifJoI(k,r) = lim ifJc/(k,r) = (21 + 1)!!rk -J/(kr) , (6.1) 
s--->O 

XOI(k,r) = lim xc/(k,r) = - (21 + 1)!!k Ikrndkr) , (6.2) 
s--->O 
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have to be used. We note here that Lambert9 uses Messiah's 
convention32 for the spherical Neumann function, which 
differs by a minus sign from nl ( • ) in Eq. (6.2), where we have 
used the convention of Ref. 23. 

The formulas of Sec. IV are useful in checking charge 
symmetry or charge independence of the nuclear forces. Il
lustrative checks have been made for NN scattering in Ref. 
17 and for Na scattering in Ref. 20 for I = 0 and 1= 1, re
spectively. 

From the explicit formulas for acsl and asl ' one can find 
a relation between these two quantities. For low orders in y 

(the ratio of a typical short-range parameter and the typical 
long-range parameter lsi-I = aB , the Bohr radius), we have 
obtained Eqs. (4.20)-(4.25). In the literature, one finds a 
number of relations between acsl and asl ' For the S-wave 
case, we mention an old and famous formula given three 
decades ago. Chew and Goldberger33 then derived a relation 
valid for Coulomb repulsion and attraction: 

ac~1 = a;; 1_ 15[ln 2R laB 

+ series in powers of 2R laB] . (6.3) 

Here R stands for an effective range. Blatt and Jackson l 

quote a formula, with Coulomb repulsion in mind, from 
Schwinger.6 Writing it for repulsion and attraction, we have 

ac~1 = a;; 1_ 15[ln 2rcsOiaB + 2C - 0.824] . (6.4) 

Following these authors, we have taken the quantity rcsO in 
the logarithmic term. The constant 0.824 is appropriate for a 
local square-well potential. It would be somewhat larger (but 
S 1) for a Yukawa-like potential, i.e., it is shape dependent. 
In fact, Sauer l2 has observed a considerable model depen
dence of the relation between acsO and asO . He considers cer
tain unitary transformations which greatly affect the interior 
part of the radial wave functions. 

Recently, Popov and collaborators34 have presented a 
relation relating acsl and asl for I> 1, see Ref. 14, p. 124. It 
reads 

ac~ 1= as' I - 15[(2/- l)!!W L'" dr(nPtlrjflr. (6.5) 

Here nPtlr) is the radial wave function of the short-range 
interaction with zero binding energy, normalized according 
to limHoo r

l + Ilft(r) = 1. Equation (6.5) can be easily 
checked in our explicit models (i)-(iii). For example, in case 
(i) we have tP/(r) = rR -21- 18(R - r) + r- I - 18(r - R). 
Hence it is trivial to verify that Eq. (6.5) leads to a relation 
which results after the two forms between square brackets in 
Eq. (4.21) are deleted. 

Equations (4.20)-(4.25) exemplify what has already 
been stressed in Ref. 14 [Sec. 4.2.2, and, in particular, Eq. 
(4.44)]: The appearance of a correction factor of the type 
1 + C/Y + 0 (v) multiplying the quantity as' I. Here CI is 
some real constant. Such a factor is absent in relations (6.3)
(6.5). It becomes particularly important when the scattering 
lengths are small. Among others, this is the case in the limit 
of weak short-range coupling (Vsl-D). 

The connection between the spectrum of 
H = Ho + Vc + Vs for hadronic atoms and (Coulomb
modified) scattering parameters has been studied by many 
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authors. 35, 7,8,36-38,20 Bound-state positions - K follow from 
the solution of cot {jcsl - i = 0, or [cf. Eq. (3.8) with 
k-. + iK] 

I 

K csl ( - K) = - ~H(isIK) IT (- K2 + s2Im2). (6.6) 
m=l 

This equation is rigorous, and it has been the starting point of 
many approximation schemes. These schemes relate the en
ergy shift (due to Vs ) to Coulomb-modified scattering param
eters. By measuring the energy shifts experimentally, one 
can gain information about the purely internal scattering 
parameter asl ' by invoking the relations connecting acsl and 
asl ' Inclusion of the correction factor discussed in the pre
vious paragraph in that case may be very important. 

APPENDIX A: TAYLOR EXPANSIONS OF rp AND X IN k2 

The functions rpcl(k,r) and xc/(k,r) are entire analytic in 
the variable k 2, for every r> O. Their Taylor expansions are 
easily derived from the results given in Ref. 30. 

For the repulsive Coulomb potential (s < 0), one has 

rpcdk,r)=(2/+ 1)!(~)-21-\.l+1 f k 2ns- 2n 
2 n =0 

3n - 3p (x)q 
X L a~~p,q - - 121+ 1 +q(X) 

q = 2n - 2p 2 
(A2) 

- cpt/) 3ni3P a~~p,q (~)q4K21+ 1 +q(X)] . 
q= 2n - 2p 2 

Here a~,~ and Cn (I) are defined (and partly tabulated) in Sec. 
7 of Ref. 30, see also the Appendix of Ref. 20. Furthermore, 

x = 2~ - 2sr , (A3) 

and l:~ = 1 ... = 0 if p = 0 has been assumed in writing down 
Eq. (A2). The B 2m are the Bernoulli numbers.23 Note that in 
Ref. 30 a different convention for these numbers has been 
used. 

For the attractive Coulomb potential (s > 0), one has 

rpc/(k,r) = (21 + 1)!(.£) -21- 1,J + 1 f k 2ns - 2n 

2 n=O 

(A4) 

3n - 3p (t)q ] 
X L a~~p.q - 21TN21 + 1 +q(t) , 

q= 2n - 2p 2 
(A5) 

where 

(A6) 

APPENDIX B: ON THE INTERCHANGE OF THE ORDER 
OF SUMMATION AND INTEGRATION ON THE RHS OF 
EQ.(4.1) 

Without loss of generality, we can take b = 00. When 
either 

(Bl) 

converges, or 
00 

L Iz-zonln(t)1 (B2) 
n=O 

converges pointwise to an integrable function h on [0,00], 
then the series 

00 

L In(t Hz - zof (B3) 
n=O 

converges pointwise almost everywhere on [0,00] to an inte
grable function/(z,t ) and 

F(z):= 100 

dtl(z,t) = 100 

dt ntoln(tHz-zor 

= nto (z - zo)n 100 

dtln(t) . (B4) 

For the proof of this, we refer to Ref. 39. Suppose further 
that Fis analytic on Iz - zol <po Then 

00 

F (z) = L Fn (z - zor, Iz - Zo I <p . (B5) 
n=O 

Since a power series for an analytic function is unique, it 
follows that 

Fn = 100 

dt In (t ) . (B6) 

APPENDIX C: DERIVATION OF THE EFFECTIVE-RANGE PARAMETERS FOR THE UNIT-STEP FORM FACTOR 

In this Appendix we give some essential steps in the derivation of the Coulomb-modified effective-range parameters for 
the separable potential given by Eq. (3.5) with form factor (4.3). The effective-range function Kcsl is given by Eq. (3.17). The 
functions / </></> (k 2) and / x</> (k 2) have Taylor-series expansions in k 2. Given these expansions it is straightforward to compute 
the coefficients - ac-;/' ~rcsl"" on the RHS ofEq. (3.9). 
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The expansion for /4>4> is obtained by using the indefinite integral of Ref. 22, p. 87. It follows that 

3n 

X ~ (I) ( 2) - m 21 + 2 + m1 () ~ an.m - Xo 2/+2+m Xo , 
m=2n 

with 

Xo = 2~ - 2sR 

The expansion for / x4> can be obtained in closed form, too, from 

100 

dr' r' 100 

dr r r"- 18(1- r'/R )xc/(k,r> ),pc/(k,r < )1- 18(1 - r/R) 

= 2[(21 ~ 1)!]\.2/+ 1(4s)-4/-4 u~o k 2us- 2u v~u a~,~( - 2)-V n~o k 2ns- 2n pto [mtl IB:m I cp_m(l) 

3n - 3 p X 41 + 5 + q + v ( ) 

X L a~~p,q(-2)-q 2(4/ 4 ) 121+ I +q(XO)l2/+ 2+ v (xo) + 12/+ 2+ q(XO)l2/+ 3+ v (Xo) -cp(l) 
q=2n-2p + +q+v 

3n - 3 p X
41 + 5 + q + v ( )] 

X L a~~p,q22-q 2(4/ 4 ) K 2/ + I +q(XO)l2/+2+v(XO) + K2/ + 2+q(XO)l2/+ 3+ v (xo) , 
q=2n-2p + +q+v 

cf. Eq. 11.3.31 of Ref. 23, p. 484. 

APPENDIX D: DERIVATION OF Sesl' res/' ••• FOR 
YAMAGUCHI· TYPE POTENTIALS 

00 (2V)21+ I + m 
= R 1+ 1(2v)-' L ----!.---'---

m = 0 m!(21 + 1 + m)! 

xy(21 + 2 + m,r/R) , 

(C1) 

(C2) 

(C3) 

(D3) 

In this appendix, we give some essential steps in the 
derivation of the Coulomb-modified effective-range param
eters for the separable potential given by Eq. (3.5) with form 
factor (4.4). The effective-range function Kcs' is given by Eq. 
(3.17). The full integral / H factorizes into two factors 
which are easily calculated (cf. Ref. 22, p. 278) using 

100 

dr rl + I exp(ikr - r / R ltFI (/ + 1 + iy;21 + 2; - 2ikr) 

see Ref. 22, p. 337, where an integral representation for 
y(a,x) is given. We then use the integral representation for 
the Bessel function of the third kind (see Ref. 22, p. 85), 

IR -I - ik I > I - 2ik I . (D1) 

This leads immediately to an expression for the first term on 
the RHS of(3.17), namely, 
A I-

I(l +k 2R2)2/+2R -4/- 4B 2ir, withB = (1 +ikR)I 
(1 - ikR ). This expression is easily expanded in a (Taylor) 
series of powers of k 2. 

The first term in this series can also be directly derived 
from the series representation (AI), by using (cf. Ref. 22, p. 
93) 

100 

dr r(21 + 1)!( - 2s) -1- I( _ 2sr)I/2 

x12/ + d( - 8sr)I/2)1-le- rIR 

= (2/ + 1)!R 21+2exp( - 2sR). (D2) 

Similarly, the lowest-order term in the Taylor-series expan
sion of / x4> can be computed directly by using the lowest
order terms of the expansions (AI) and (A2) in Eq. (3.15). To 
this end, we first note that (recall v= - sR =kyR ) 
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2(z/;r12K", [2(Z;)1/2] = 100 

dte-zte-tltt -",-I, 

Rez>O, Re;>O, (D4) 

and, furthermore (Ref. 24, Formula 6.451.1), 

100 

dt e - t(1 + U)y(m + 21 + 2,t) 

= (1 + u)-Ir(m + 21 + 2)(2 + u)-m-21-2, 

to obtain 

100 

drr( - 2sr)I/2K2/+ d~ - 8sr)I-le - rIR 

X f dr' r'( - 2sr')1/2121+ I (~ - 8sr') 

Xr,I-le-r'IR = !(2s)21+2R 4/+4(21 + I)! 
X U (21 + 2,21 + 2,4v) 

(D5) 

= !(2s)21+2R 4/+4(21 + 1)!e4Vr( - 2/- 1,4v). (D6) 

Collection of the lowest-order terms on the RHS of Eq. 
(3.17), with use ofthe results (D2) and (D6) gives immediately 
the result (4.12) for acsl ' 
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Using similar relations, it is not difficult (but somewhat 
laborious) to obtain the general formula (4.13) for resl ' 
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In the present paper, a spinless primordial tachyon is considered in the background of Robertson
Walker (RW) cosmology. Various physical parameters, such as probability density, energy, and 
dissipation of energy are investigated in open, fiat, and closed R W models. For this purpose, the 
Klein-Gordon equation, generalized to curved space-time and having a term proportional to the 
scalar curvature of the space-time, is solved for the spacelike scalar field 1/J(t,r,O,</> ). It is speculated 
that if a primordial spinless tachyon survives up to the present epoch, its metamass would be less 
than 2.447 X 10-93 g. 

PACS numbers: 14.80.Pb, 98.80.Dr 

1. INTRODUCTION 

Now it is widely accepted that existence of tachyons 
does not violate the theory of relativity. But so far these par
ticles could not be detected and produced in the laboratory. 
Some particle physicists, such as Arons and Sudarshan, I 
Feinberg,2 and Dhar and Sudarshan,3 have discussed quan
tum-mechanical properties of these particles which have 
some relevance to their production and detection. In 1976, 
Narlikar and Sudarshan4 have suggested that as far as pro
duction of tachyons is concerned, we should not confine our 
attempts to the terrestrial laboratory alone, but we should 
pay some attention to astronomical discoveries also. There 
have been many astronomical discoveries of such particles 
that could not be produced in the laboratory. One of the 
extreme events is the big bang, if the universe originated in a 
big bang. They (Narlikar and Sudarshan) have assumed that 
tachyons also were produced at or just after the epoch of big 
bang along with many other particles. 

If one assumes the production of tachyons like Narlikar 
and Sudarshan,4 and as we do here, he will naturally ask 
"What happened to primordial tachyons? Do they survive 
up to the present epoch?" Narlikar and Sudarshan4 have 
discussed many features of primordial tachyons in cosmolo
gical background taking the Robertson-Walker model of 
zero space curvature. To answer the above questions, they 
infer from their investigations that if tachyons survive up to 
the present epoch, their metamass would be less than even 
the rest mass of an electron. 

In the present paper, we also deal with the question of 
survival of spinless primordial tachyons in the background 
of Robertson-Walker cosmology in more detail taking open, 
fiat as well as closed models. The autho~ has published one 
paper in which he has considered a spinless tachyon in the 
closed RW model. In another paper6 he has considered spin
! primordial tachyons in RW cosmology and discussed simi
lar questions. This paper is different from the above papers in 
certain aspects. In this paper we have solved the Klein-Gor
don equation generalized to curved space-time of the Fried
mann universe and having a term proportional to scalar cur
vature R which enables us to deal with the case of conformal 
coupling of the scalar and spacelike field 1/J to the gravita
tional field. Thus here we deal with the more generalized 
case. 

We consider the Robertson-Walker line element 

ds2 = c2 dt 2 _ S 2(t) [d? I( 1 - k?) + ?(dO 2 + sin20 d</> 2)], 
(Ll) 

where t is the cosmic time along the hypersurface 
x 2 = const (i = 1,2,3) and k is the space curvature with pos
sible values - 1,0, + 1 for open, fiat, and closed models, 
respectively. Under the coordinate transformations 

7= -- and a= =-sm-I(r..[k), i t dt i' dr 1. 
o S (t) 0 ~ 1 - k? ..[k 

the line element (1.1) is written as 

dS 2 =n2(7)[d~ -d~ 

(1.2) 

- (11k )sin2(a..[k)(d0 2 + sin2 Od</> 2)], (1.3) 

where n (7) = S (t ). 
In Sec. 2, we solve the Klein-Gordon equation 

( _ g)-I/2 ~[( _ g)1/2g1'v ~]1/J + ~(rR + m2 )1/J = 0(1.4) 
ax/-' axv fi 

for different values of k. Here R is the scalar curvature and r 
is a real constant. For our investigations, like Parker,7 we 
take r = i. As it appears from the generalized Klein-Gor
don equation given above, the gravitational effect is incorpo
rated through the metric tensor gl'v and scalar curvature R. 
fl, in the above equation, is Planck's constant divided by 21T. 

In Sec. 3, we derive expressions for probability density 
of primordial tachyons in open, fiat, and closed models of the 
universe. 

In Sec. 4, we derive expressions for energy as well as 
dissipation of energy of primordial tachyons in different 
models. It is observed that dissipation of energy is fast in the 
beginning but it slows down when t is large. 

In Sec. 5, with the help of the uncertainty principle we 
speculate that the metamass of a primordial tachyon surviv
ing up to the present epoch would be less than 2.447 X 10-93 

g. 

2. SOLUTION OF THE KLEIN-GORDON EQUATION FOR 
DIFFERENT VALUES OF k 

Under coordinate transformations (1.2), the Klein
Gordon equation (1.4) is written as 
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( _ g) -112 ~[( _ g)1/2g''' ~]¢ + ~ 
axP' ax" ~ 

x (yR + m2)fJ 2¢ = 0, (2.1) 

where ¢ = n (r)¢' andg''' is the metric tensor provided by the 
line element (1.3) and R is the scalar curvature of the space
time derived from g'''. 

On substituting g''' and 

m=iM (2.2) 

(where M is the metamass8 ofthe tachyon) we have Eq. (2.1) 
as 

~ if¢ + _2_ afJ a¢ _ a
2
¢ _ 2.Jk cot(u.Jk) a¢ 

c2 ar c2 fJ ar ar ae? au 

_ k [_1 ~(sinO a¢) +_1_ a
2
¢] 

sin2(u.Jk) sin 0 ao ao sin2 0 a¢> 2 

+~[k+2 + iJ2 + iJ _M2fJ2]¢=0 (2.3) 
~ 3 3fJ 2 fJ ' 

where the dot over the variable denotes differentiation with 
respect to r. 

¢ can be expanded in terms of a complete set of eigen
functions of the angular momentum operator. Hence, set
ting 

00 

¢ = I ¢(P1(cos 0), (2.4a) 
1=0 

we have the partial differential equation of ~I (r,u) as 

1 if¢1 2 afJ a¢1 a2¢1 
c2 ar + c2fJ ar a; - ae? 

_ 2.Jk cot(u.Jk) a¢1 + kl(1 + 1) ¢I + ~ 
au sin2(u.Jk) ~ 

• 2 •• 

x[k+2 +~+ fJ _M2fJ2]¢1 =0. 
3 3fJ 2 fJ 

(2.4b) 

The velocity of the tachyon is given by 

V= SIt) dr=S(t)du>l; 
~1 - k? dt dt 

(2.5a) 

hence, 

J dt 
u> SIt)' 

(2.5b) 

This shows that u will increase rapidly. Hence there is no 
harm in taking the limit U---+oo as 

( 'k) {
o when k = + 1, 

cotuv/\' = 
i3 when k = - 1, 

wherei=~. 
Also we find that 

~ afJ =HfJ =HS 
fJ ar ' 

where H is Hubble's constant. 

(2.6) 

(2.7) 

After the epoch of big bang, we assume that at time te 
the entire energy of the universe came into thermal equilibri
um. Now approximating HS near t = te we have5 

HS=HeSe+(t-te)[He(as) + (aH) Se]. 
at I, at Ie 

But up to the time te expansion of the universe would have 
been very small; hence Se may be approximated to zero. As a 
result, we have 

HS-;::;O. (2.8) 

Hence the partial differential equation (2.4) becomes 

~ if¢1 _ a
2
¢1 _ 2.Jk cot(u.Jk) a¢1 + kl (I + 1) ¢I 

c ar ae? au sin2(u.Jk) 

+~[k+2+ il2 +iJ _M2fJ2]¢ =0. (2.9) 
~ 3 3fJ 2 fJ 1 

Now we suppose the solution of the partial differential equa
tion (2.9) to be 

¢I = fP (u)exp( - ivr). (2.10) 

Combining Eqs. (2.9) and (2.10) we have the ordinary differ
ential equation 

Substituting different values of k we solve the ordinary 
differential equation (2.11). 

Case 1. When k = - 1, with the help of approximation (2.6) we have the differential equation (2.11) as 

d
2
fP + 2 dfP + [V __ 1 __ ~ _.J.!...- + M2fJ 2]fP = 0. 

de? du c2 3~ 3fJ 2~ fJ~ ~ 
(2.12) 

This equation is integrated into 

[ 
JV 1 il2 iJ M 2fJ 2)1I2] 

fP =A exp - u± iV\c2 - 3~ - 3fJ2~ - fJ~ + ~ . (2.13) 

Hence 

- [ JV 1 il2 iJ M
2
fJ

2
)1I2] 

["'I ]k= _IA exp - u - ivr + iV\c2 - 3~ - 3fJ2fz2 - fJ~ + ~ . (2.14) 

Also 

[ 
JV 1 il2 iJ M 2fJ 2)112] 

[ "'I ] k = - 1 = AfJ - 1 exp - u - ivr + iv \ c2 - 3~ - 3fJ 2~ - fJ~ + ~ . (2.15) 
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Case II: When k = 0, on taking the limit r-+ 00 the differential equation (2.11) reduces to 

d2<P [V 2 iJ2 iJ M2n2] 
dr + c2 - 3fi2 - 3n 2fi2 - nfi2 + -r <p = o. 

This equation is integrated into 

[ (
V 2 n 2 n M2n2)1I2] 

<p = A ' exp ± ir c2 - 3fi2 - 3n 2fi2 - nfi2 + -r ' 
which yields 

_ [ (V 2 iJ 2 iJ M 2n 2)112] 
[ "'I] k = 0 = A ' exp - iV7 ± ir c2 - 3/j2 - 3n 2fi2 - n/j2 +-r 

and 

["'] =A'n- I exP[-iV7+ir(V _~_~_~+Mln2)1I2]. 
'f/ 1 k = 0 c2 3fi2 3n 2/j2 nfi2 fi2 

Case III: When k = + 1, on using the approximation (2.6), the differential equation (2.11) reduces to 

d
2

<P + [V _..l_~_~+M2n2]<p=0. 
de? c2 fi2 3n 2fi2 nfi2 fi2 

This equation is integrated into 

[
,.Iv 1 iJ 2 iJ M 2n 2)112] 

<p = A "exp ± iV\c2 - fi2 - 3n 2fi2 - nfi2 + -r ' 
which yields 

_ ,,[.. (V 1 iJ 2 iJ M 2n 2)112] 
["'/]k= +I A exp -lvr±IU c2 - fi2 - 3n 2fi2 - nfi2 +-r . 

Also 
,,-1 [. .Jv 1 iJ2 iJ M2n2)1I2] 

["'dk= +IA n exp -lvr±lv\c2 - /j2 - 3n 2fi2 - nfi2 +-r . 
The scalar wavefunction "'I' in this case, can be normalized to unity as 

I "'/*"'1 d
3
V = 1 

(* on "'I denotes the usual meaning), i.e., 

I 
A,,2 
~2dndw= 1 
n 2 

(here dw = sin () d() d,p ), which yields 

A" = _l_n -1/2. 
2,fii 

Hence 

1 -3/2 [. . (V 1 iJ 2 iJ M 2n 2)112] ["'dk= +1 =--n exp -lvr±lu 2- ,,2 ---2-2 -~+~ . 
2,fii c ~ 3n /j nn n 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

The solution (2.22) is different from the author's solution for this case in his previous5 paper due to the presence of an 
extra term proportional to the scalar curvature. 

Our solution in the case k = 0 is different from that of Narlikar and Sudarshan4 due to two reasons: (1) they have omitted 
the term proportional to the scalar curvature of the space-time in the Klein-Gordon equation and (2) they have shown that no 
tachyon can live in this universe beyond an epoch t = tmaximum and have used this result throughout their entire paper, whereas 
we do not start our investigations with such notions. 

3. PROBABILITY DENSITY OF PRIMORDIAL 
TACHYONS IN RW MODELS 

The probability density is defined as 

p=",*",. (3.1) 

Case I: When k = - 1, we have the probability density 
from Eq. (2.15) as 

(3.2) 
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Case II: When k = 0 we have the probability density 
from Eq. (2.19) as 

(3.3) 

Case III: When k = + 1, we have the probability den
sity, as given by Eq. (2.25), 

(3.4) 

Einstein field equations with suitable equations of state 
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yield9 

[l (r) = S (t ) = t q, (3.5) 

(k = - 1) model. Any way, the probability density of a pri
modial tachyon decreases very fast in every model. 

where q has different values ~, ~, !, and ~ for R W models 
containing different perfect fluids as bradyon dust, radi
ation, superdense bradyonic matter, and nonrelativistic mat
ter, respectively. 

4. ENERGY AND DISSIPATION OF ENERGY OF 
PRIMORDIAL TACHYON IN RW MODELS CONTAINING 
DIFFERENT PERFECT FLUIDS 

Connecting Eqs. (3.2), (3.3), and (3.4) with Eq. (3.5), we 
can easily study how the probability density for a primordial 
tachyon will decrease in different RW models containing 
different perfect fluids. Moreover, we find that if we take the 
limit 0'-+00, as earlier, the probability density in the open 
model of the Friedmann universe will be almost zero. Also, it 
is interesting to note that the decay of the probability is faster 
in the case of the closed (k = + 1) model than the flat 

Connecting Eqs. (1.2) and (2.5) with (3.5) we have 

r=t 1
-

q/(I-q) 

and 

0' = v J dt = _v_ t l-q, 
t q 1 - q 

where v is the velocity of a free tachyon. 
Substituting 0' in Eq. (2.14) we have 

- [ vt
q 

ivt
q 

ivt
q 

](V 1 il2 ii M2[l2)112 
[ tPl h ~ - 1 = A exp - 1 _ q - 1 _ q ± 1 _ q c2 - 3fi - 3[l2fi - [lfi + ~ . 
The magnitude of energy associated with this wave is given by 

E = I!!...[ -ivt
1
-

q +iV~(V __ I __ ~_--.!L+M2[l2)l/2]1 
dt 1 - q - 1 - q c2 3fi 3[l 2fi [lfz2 fi 

=_ -vt-qfz± v (q_2q2_q3_2M 2qt 2q +2) 1 I [ t - 2 - 3q 

fz 6(1 - q)M 

+-.!:'...t -1-3q(...!...t 2 + 4q2 _q_M2tZq+2)](I __ I_t -zq __ l_t -Z-Zq_q(q_l)t -2
q-z)1 

- M 336M2 6q2 

;:::...!...I[± vt-
Z

-
3q 

(q_2q2_q3_2M2qtZq+Z)±-.!:'...t-I-3q(...!...t2+ 4q2 _q_M 2t Zq +Z)] 
fz 6(1 - q)M M 3 3 

X(I __ I_t -zq __ l_tz-zq_q(q_l)t -Zq-z)1 
6Mz 6q2 

(neglecting the term containing fz within the modulus) 

;::: vMq t _q+~(tl-3q _M2tl-q) 
3(1 - q)fz Mfz 3 

(4.2) 

(neglecting terms containing higher powers of t -I). 
Employing the same method as above we find that the 

expression for the energy of a primordial tachyon in case of 
flat and closed models is also given by (4.3) as in the case of 
the open model. 

When the model contains radiation q = ~. Hence 

E = VMt -1/2 + _V_t -1/2 _ VMt 112. 
3fz 3Mfz " 

When models contain bradyon dust, q = j. Hence 

E= 2vMt -2/3 +_v_t - I _ VMtl/3 (4.4) 
3fz 3Mfz fz 

Now we have 

3fz 3Mfz 

It yields 

E= 

and 

{
~1 + MZ)t -1/2 when t is small, 
3Mfz _ v: t 1/2 when t is large 

(4.1) 

(4.3) 

(4.7) 

(4.8) 

{
~t -2/3 + _V_t -I when t is small, 

E= 
- V~t 1/3 when t is large. 

(4.5) 

{

_V_(1 + M2)t -3/2 when t is small, 
_ dE = 6Mfz (4.9) 

dt vM t -1/2 when t is large. 

The rate of emission of energy of the primordial tachyon is 
given by 

{

4VM v -2 . --t - 5/3 + --t when t IS small, 
_ dE = 9fz 3Mfz (4.6) 

dt vM t - Z/3 when t is large. 
3fz 
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2fz 

When models contain superdense matter q = !. Hence 

(4.10) 

which yields 
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and 

E= 
{

VMt -1/3 + ~ when tis small, 
611 liM 

- vMt 2/3 when t is large 
II 

dE 18E 

{ 

vM t -4/3 when t is small, 

- dt = 2vM t -1/3 when t is large. 
311 

(4.11) 

(4.12) 

When models contain nonrelativistic matter q = ~. 

Hence 

E = 2vMt -2/5 + ~(t -1/5 _ M2t3/5), 
911 liM 3 

(4.13) 

which yields 

E = 911 31iM (4.14) 
{

2VMt -2/5 + _V_t -1/5 when t is small, 

-v: t 3/5 when t is large. 

and 

dE 4511 151iM 

{

4VMt -7/5 + _V_t -6/5 when t is small, 

-- (4.15) 
- dt - 3vMt -2/5 when t is large. 

511 

Thus we find that dissipation of energy of a primordial 
tachyon is large in the beginning but this phenomena slows 
down later on, in every phase of the universe. 

5. PRIMORDIAL TACHYON AT THE PRESENT EPOCH 

It is noted that the expansion of the universe has been 
governed by its nonrelativistic matter content at least since 
the time when S (t ) was one-hundredth its present value. 10 It 
is also the view of cosmologists that the universe is 1.3 X 1010 

years old. Hence, it is justified to take the expression for the 
energy of a primordial spinless tachyon as given by Eq. 
(4.14), 

E = - (vM III)t '''. (5.1) 

Suppose T is the life of a primordial tachyon such that 
T> to where to is the present age of the universe. Now by the 
uncertainty principle we have 

(vMt 6/5/11)T-zIi. 

It yields 

M -zfi2lvt 6/5T. 
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Hence 

M<fi2lvt~/5. 

In the case of tachyons we can write 

v = 3X 101Oa, 

where a > 1. Combining Eqs. (5.2) and (5.3), 

M<fi2/3x 1OIOat~/5. 

Substituting the value of to and II as 

to = 401 X 1017 s, 

II = 1.055 X 10-27 erg s 

in (5.4) we have 

M<2.447 X 1O- 931a g. 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

Thus we find that if a spinless primordial tachyon sur
vives up to the present epoch as well as into the future, its 
metamass would be less than 2.447 X 10-93 g. We also find 
that primordial tachyons moving with higher speeds, if they 
survive up to the present epoch and into the future, should be 
much lighter than those moving with low speeds. One thing 
is also interesting to note here-that the metamass of a spin
less primordial tachyon surviving up to the present epoch 
would be very much less than that of spin-! primordial ta
chyons, because it has been estimated earlier6 that the meta
mass of a spin-~ primordial tachyon surviving up to the pres
ent epoch should be less than or almost equal to 8.77 X 10-54 

g. Thus we find that the possibility of survival of spin-! pri
mordial tachyons is more than the spinless ones. However, 
our investigations agree with Narlikar and Sudarshan's re
sult that if primordial tachyons survive up to the present 
epoch, their metamass should be very much less than the rest 
mass of an electron.4 
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The analytical expressions for operators, which allow us to generate the basis functions from the 
simplest (ground) states by means of differentiating by parameters, are obtained. Some important 
properties of these operators are indicated. This approach allows us to simplify the structure of 
molecular matrix elements, whose calculation presents considerable difficulties in the variational 
LCAO-type methods. 

PACS numbers: 31.20. - d, 03.65. - w 

1. INTRODUCTION 

The application of variational methods of quantum me
chanics to many-particle systems with several force centers 
is related, as a rule, to the use of a multicenter basis set, i.e., 
instead of the set offunctions «/Iy,j(r) (y,) are the continuous 
and discrete parameters, respectively), which are sufficient 
for the case of one force center; one should consider the 
states 

«/I~j(r) = «/Iy,j(r - R) = Y(R) «/Iy)r) , 

where Y(R) is the translation operator 

(I) 

Y(R) = exp [ - R·V(r)] = exp( - X.!.... - Y i. - z i.) , ax ay az 
(2) 

which correspond to force centers localized at some fixed 
points R. Atoms or cluster groups in molecules and crystals, 
nucleons or nucleon associations in nuclei, point defects in 
solids, etc" may serve the examples of such systems, We shall 
restrict ourselves to the case of atomic orbitals used in the 
MO LCAO SCF methods,l which contains all the typical 
problems inherent in the multicenter basis set problem, 

As an example of typical quantities, which have to be 
dealt with in the LCAO scheme, one may consider matrix 
elements 

&;?(R) = («/I""jl&I<</I~j) = J dr «/I""j(r)&(r)«/Iy)r - R) (3) 

related to the mean values of some operator & as well as the 
coefficients of an expansion 

(4) 

that allows us to express multicenter electron repulsion inte
grals 1 as expansions over simpler integrals with fewer 
centers. Obviously, the coefficients C (R), in the case of or
thogonal basis functions «/I are directly related to integrals (3) 
for the case of the unit operator & = I. 

As a rule, the state «/I y.o corresponding to the lowest 
possible quantum numbers has a simple structure, which 
considerably facilitates the calculation of corresponding ma
trix elements. If there exists such a differential operator 
,ftJ)y,R) that 

(5) 

there arises as well an obvious possibility of reducing the 
corresponding matrix elements to simpler form. For exam
ple, in the case of the matrix element Iij' using Eq. (5) conse
cutively-first, directly for the function «/Iy.j(r - R) in Eq. 
(3) and, then, after changing r-+r + R, for the function 
«/I",,;(r + R)-we have the following expression: 

(6) 

Since for the quantity I~(R) (not only in this illustrative 
example, but also in other, more complicated cases) one suc
ceeds frequently in obtaining relatively simple expressions, 
Eq. (6) allows us, in principle, to get the "explicit" expres
sions, i.e., those not containing quadratures, and leads to the 
advised breaking up of the initial complicated problem into a 
series of more simple steps. Since the operators Ii) and ma
trix elements 100 are found to be, as a rule, associated with 
some system of special functions, the practical value of such 
an approach is stipulated not only (and not predominantly) 
by the possibility of obtaining the "explicit expressions," but 
also by the possibility of using the analytical properties of 
functions Ii) and 100 for establishing the analytical properties 
of matrix elements, for example, recurrence relations, differ
ential and asymptotic properties, and so on. 

Thus, establishing the analytical form of the generating 
operators Ii) in Eq. (5), which relate the basis function «/Iy,j to 
the "ground" state «/Iy.o by means of differentiating by pa
rameters, may have significance for the development of more 
effective methods of calculating matrix elements in the 
LCAO scheme. In the following we shall consider all the 
main types of basis functions used in quantum chemical ap
plications (the Slater, hydrogenlike, Gaussian, and so-called 
reduced Bessel functions2

•
3

). Two methods of constructing 
the generating differential operators (GDO) will be used. 
The first approach is based on the Fourier-transformation 
method and results in GDO's containing the operators V(R) 
only. The second method utilizes commutation properties of 
operators and some integral transformations and leads to 
GDO's which are simpler in a form, their arguments, how
ever, containing not only the operators V(R), but differentia
tions by the scaling parameter UJ as well. 
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2. THE FOURIER-TRANSFORMATION METHOD 

Consider the general Fourier-transfonnation fonnulas 

F(k) = (21T)-3/2 J dr exp(ikor)F(r)=(YF Ik) , (7) 

F(r) = (21T)-3/2 J dk exp( - ikor)F(k)=(YF 1- r) . 

(8) 

Let 

F(k) = !P(k)4> (k) , (9) 

where 4> (k) is the Fourier transfonn of some known function 
f/J. Using the identity 

k exp( - ikor) = iV(r) exp( - ikor) , (10) 

we have 

!P(k)exp( - ikor) = !P(IV(r))exp( - ikor). (11) 

Thus, the substitution ofEq. (9) into Eq. (8) yields the follow
ing differential representation: 

F (r) = !P (IV(r))f/J (r) , 

wherefrom 

(12) 

F(r - R) =!P( -IV(R))f/J(r - R). (13) 

Obviously, Eq. (13) gives a certain form ofthe GDO for the 
function F. The practical value of the representation (13) 
depends on how simple the functions !P and f/J are. For 
example, if !P (k) is a polynomial in Cartesian coordinates of 
the vector k, then this eliminates the problem of analyzing 
the convergence of a series that would take place otherwise. 
Moreover, the function f/J should have a simpler form than 
the function F; otherwise we would have met with complica
tion rather than simplification of the initial problem. 

As the first step, we shall consider the Shavitt, Filter, 
and Steinborn functions (SFSF)2.3: 

Eom,m(r) = 5"m,(r)Y,m (r) = (wr)'K n++ 1/2(wr)Ylm (r) , (14) 

where K v+ (x) = xVKv(x), Kv(x) is the Macdonald function, 
and Ylm (r) is the spherical function. One may easily show4 

that the Fourier transform E is 
Ewn,m(k) = twn/(k )Y,m(k) 

= a(w,n,l)[k 'I(k 2 + w2t + 1+2] Y,m(k) , (15) 

where 

a(w,n,/) = 2/+n+ 1(/ + n + 1)!w2n +' + Iii. (16) 

Taking into account the corollary that follows from Eq. (15) 

in the case I = m = 0 (Y 00= 11 J41T), we obtain 

Ewn,m(k) = J41T(ilw)I E w•n+ ,.00(k)§I,m(k) , (17) 

where §1 1m (k) = k IYlm (k) is the homogeneous hannonic po
lynomial in kx' ky, k z • Writing down Eq. (17) in the fonn of 
Eq. (9) with !P(k) = §I(k), taking into account Eq. (13) and 
noting that §1 1m (ek) = e'§l'm (k), we obtain 

Ewn,m(r - R) = J41Tw-'§I'm(V(R))Ew.n+,.oo(r - R). 
(18) 

Thus, in the case of SF SF the simplest fonn ofGDO, §I(V), 
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allows us to relate the irreducible spherical tensor of rank I 
on the left-hand side ofEq. (18) with the spherical scalar, i.e., 
with the function with I = O. In its tum, using the standard 
differential properties of the function5 Kv(z) associated with 
the shift operator 

!P(w) = ~ ~ = a(~/2) , (19) 

the function EWNOO in Eq. (18) may be related to the simplest 
functions of this type with N = 0 or N = - 1. The case of 
N = - 1 is more preferable, since, by virtue of the relation 

Ew. _I.oo(r - R) = (1I23/2jw- IG",(r - R), (20) 

which involves the Green function 

Gw(r - R) = exp( - wlr - RI)/lr - RI (21) 

for the Helmholtz equation, it becomes possible to use the 
unique property 

.::1 (R)G",(r - R) = w 2Gw (r - R) - 41TC5(r - R) , (22) 

which is not inherent in the other functions of this type. The 
necessary reduction is given by the formula6 

E",NOO (r) = ( - l)N + IW2N + I [!P(w)] N + I [wE",. _ 1.00 (r)] (23) 

and, hence, 

E",n'm (r - R) = ~1T/2( - l)n + 1+ IW2n + 1+ I §1 1m 

x (V(R))[!P(wW + 1+ IGw(r - R). (24) 

Thus, integrals with the SFSF E may be obtained by 
means of GDO (24) from the simplest matrix elements with 
the functions G",. In its tum, Eq. (22) may be used for evalu
ating and analyzing the properties of these simplest ele
ments. For example, in the case of the overlap integral, 

JYW(R) = J dr Gy(r)G",(r - R) (25) 

by virtue of Eq. (21), we have 

.::1 (R)JY"'(R) = w2JYW(R) - 41TGy (R) . (26) 

On the other hand, after replacing r-r + R, we get 

.::1 (R)JY"'(R) = rJYW(R) - 41TG",(R) (27) 

since G",( - R) = G",(R). It follows from Eqs. (26) and (27) 
that 

JYW(R) = 41T G",(~ = ~;(R) 

41T 1 
.:2 - [exp( - wR) - exp( - yR)] . 
(r - w 2

) R 
(28) 

If w = 0, Eq. (28) yields the expression for the simplest inte
gral of attraction to the nucleus, into which the overlap inte
gral is transformed in this case. Thus, in special cases the 
Helmholtz equation (22) allows the immediate evaluation of 
the matrix elements. In the case of more complicated inte
grand functions, Eq. (22) can be used for deriving the recur
rence relations for molecular integrals, which should appar
ently result in the particular case of the Coulomb integrals 
with the Slater functions, in a more clear and compact alter
native to the Harris method.7 Note also that the relation 
between the matrix elements of exponential class and the 
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Helmholtz equation generalizes and supplements the rela
tion of the Coulomb integrals with the Laplace equation8 

[into which Eq. (22) is transformed in the case of w = 0] and, 
apparently, may offer some new possibilities for the evalua
tion of matrix elements following the general lines of the 
earlier approaches. 7-10 

Consider the other basis functions of exponential class. 
In the case of hydrogenlike functions (HLF), 

H"'nlm(r) = hwn/(r)Ylm(r) 

= (wr)IL ~I + l(2wr)exp( - wr) Y1m (r) , (29) 

the Fourier transform H can be written as follows4
; 

Hwn1m (k) = h",n/(k )Ylm (k) = b (w,n,/) 

XF( - n, - n -I-~; I +~; _ k 2
/(

2
) 

X '?Y 1m (k)/(k 2 + W 2r + 1+2, (30) 

b (w,n,/) = ( - W(n + 1+ 1)(l/vGT)21 + 3/21 !Wl + I 

X [(21 + 2)n/n!]/, (31) 

where F = 2Fl is the hypergeometric Gauss function. It fol
lows from comparison ofEq. (30) with Eq. (15) that thefunc
tion H is proportional to the product of the Fourier trans
form E: by the polynomial F ( _ k 2/ ( 2

). 

Therefore, using Eqs. (7)-(13), we have 

Hwnlm(r - R) 

= b (w,n,/) F( _ n, _ n _ 1- J..; 1+ 1.; _ .J (R)) 
a(w,n,1 ) 2 2 w2 

X":",nlm(r - R) (32) 

= J41i b (w,n,/) F ( _ n, _ n _ I _ J.. ; I + 1.; _ .J (R)) 
a(w,n,/ ) 2 2 w2 

X '?Y lm ( - iV(R))Ew.n + I.oo(r - R) . (33) 

Equations (32) and (33) yield the expressions for the GDO's 
which relate HLF H to SFSF E. With due respect to relation 
(23), we obtain, just as in the case of functions ..:, the reduc
tion of the functions H to the functions G", (r - R). Note that 
polynomials F ( - .J (R)/ ( 2)'?Y 1m ( - lV(R)), which enter into 
Eq. (33), by virtue of connection of the denominator param
eter e in F(a,b;e;z) with the rank I (e = I + i), possess some 
special properties, II which facilitate the handling of these 
functions. 

In the case of the Slater functions, 

!/I",nlm (r) = tP",nl(r)Ylm (r) = (wr)l(wrr exp( - wr)Ylm (r) 
(34) 

we have4 

W",nlm(k) 

=e(wn/)F -- ---'1+-· ( 
n n+l 3 

, , 2 ' 2' 2 ' 

'?Ylm(k) 
X------

(k 2 + w2r + 1 + 2 ' 
(35) 

1 2/+ 1/2/' 
c(wn/)=- . (n+2/+2)!w2n+l+lil. (36) 

" vGT (2/+ I)! 

Since the general structure ofthe expression (35) is quite 
similar to Eq. (30), we obtain 
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!/I",nlm(r - R) 

= c(w,n,/) F( _.!!.... , 
a(w,n,/) 2 

_ n + 1 .1 + 1.. _ .J (~)) 
2 ' 2' w" 

X':"nlm(r - R) 

= J41i c(w,n,/) 
a(w,n,/ ) 

XF(-.!!...., _n+I'I+1.. _.J(R)) 
2 2' 2 ' w 2 

(37) 

X '?Y 1m ( - lV(R))Ew.n + 1.00 (r - R) . (38) 

All the above remarks, including the special property of 
the polynomial F'?Y on the right-hand side ofEq. (38), are 
also valid for the GDO's (37) and (38). 

Thus, the Fourier-transformation method allows us to 
obtain, in a relatively regular and simple way, the expres
sions for GDO's relating any functions of exponential class 
to the simplest functions": or Gw belonging to the same 
class. All these GDO's have a form of irreducible tensor 
polynomials in Cartesian components of the gradient opera
tor VIR), the radial parts of these tensors being expressed in a 
class of standard special functions 2 F I , which satisfy the 
quadratic transformations. 12 

3. THE COMMUTATION RELATIONS METHOD: 
INTEGRAL REPRESENTATIONS OF GOO's 

Obviously, the Fourier transformation method, com
bined with the differential properties of the basis functions 
with respect to the parameter w, leads to the special GDO's 
which have a factorized form relative to the operators VIR) 
and fiJ (w). In this sense, the Fourier-transformation method 
is not flexible enough and does not provide a possibility of 
constructing the mixed, nonfactorized operators. We shall 
consider here an alternative method which is based on the 
commutation properties of operators and leads to GDO's of 
simpler form. 

Consider the function 

e = e(w;x,y,z) = exp( - wr) , 

r = r(x,y,z) = (x2 + y2 + Z2)l/2 . 

Since 

ae ar ar x 
- we-

ax ax' ax r 

then 

1 a 
xe= --r-e. 

w ax 

(39) 

(40) 

(41) 

(42) 

Using on the right-hand side ofEq. (42) the commutation 
relation 

x 
(43) 

r 

we have 

I a I x 
xe= ---re+--e. 

w ax w r 
(44) 

Writing down the expression re on the right-hand side ofEq. 
(44) as 
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a 
re= --e 

aw 
(45) 

and transforming the function xe/r by means ofEq. (42), we 
obtain 

xe = T(w) d (x) e , (46) 

where d (x)-a/ax and 

T(w) = ~~ - _1_=9(w) __ 1_. (47) 
w aw w Z w Z 

Obviously, 

a 1 
T(w) = --. (48) 

aw w 

Using Eq. (46), one may prove by induction that 

xne = [T(wW/zHn(d(x)~T(w))e, (49) 

where Hn (z) is the Hermite polynomial. 13 Indeed, since 
Ho(z) = 1 andHI(z) =zthenEq. (49)isvalidforn = O,n = 1 
[see Eq. (46)]. Multiplying Eq. (49) by the variable x from the 
left, taking into account the formal relation 

[xJ(d)] = - f'(d ) , (50) 

where d =d (x), using the identity l3 

H ~ (z) = nHn _ I (z) (51) 

and transforming the term xe arising after commuting x with 
Hn we obtain, by means ofEq. (46), 

xn + Ie = [T(w)]In+ 1)/2 [d (x)~ T(w)Hn(d (x)~ T(w)) 

- nHn _ I (d (x)~ T(w))] e . (52) 

By virtue of the recurrence relation for the Hermite polyno
mials,13 

Hn+ I (z) - zHn(z) + nHn_l(z) = 0, 

we obtain 

(53) 

xn+le= [T(w)]In+I)/ZHn+dd(x)~T(w))e, (54) 

which proves, by induction, the validity of Eq. (49). Since13 

Hn(z) = (217)-I/Z f: 00 dz' (z + iz't exp( - ¥,2) , (55) 

then it follows from Eq. (49) that 

xne = (217)-112 f: 00 dx' [d(x)T(w) + i~T(w)x']n 
X exp( - !X'Z) e . (56) 

Therefore, forthefunctionP(r) = P(x,y,z), which can be rep
resented by the series in powers of x,y,z, we have 

P(r)e = (217)-3/2 f dr' P(T(w)V(r) + i~T(w)r') 
Xexp( - VZ) e. (57) 

By formal change of the integration variable, Eq. (57) can be 
reduced to the form 

PIrIe = (217)-3/2 J dp exp[ - ~ [ p + i~ T(w)V(r)PJ 

XP(i~T(w)p)e. (58) 
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4. THE ALGEBRAIC EXPRESSION FOR GOO 

Any of two integral representations, Eq. (57) or Eq. (58), 
can be used for the derivation of the algebraic expression for 
the GDO which relates the function P (r)e to e. For this pur
pose in the case ofEq. (57) one should use the addition 
theorem for the integrand function P and, in the case of Eq. 
(58), the addition theorem for the Gaussian function. The 
latter case leads to a more general relation, since there is no 
need for the explicit form of an operator at the initial step. 

We present here the derivation of the addition theorem 
for the Gaussian function, which differs from that given in 
Ref. 14. Our proof is more strictly related to the one-dimen
sional case and allows an immediate generalization to the 
multidimensional case as well. Besides, we indicate here a 
more general addition theorem, which is absent in Ref. 14 
and which allows us to obtain the "exponential" addition 
theorem as a natural particular case. 

Writing down the Gaussian function in the form 

exp[ - ~(p - R)Z] = exp(Rpe - ~R Z)exp( _ !pZ), 
(59) 

where e=cos( p,R), and, taking into account that the first 
multiplier on the right-hand side ofEq. (59) as a form of the 
generating function for the Hermite polynomials H k' 13 we 
have 

00 1 
exp[ -!( p - R)Z] = r -R kHdpe)exp( _ ~pZ). 

k=O k! 
(60) 

Expanding the quantity H k (pe) in a series over the Legendre 
polynomials PI (e), 

Hdpe) = r Fktlp)P/(e) , (61) 
I 

and using the standard orthogonality relation for functions 
PI(e), we obtain 

Fk/(p) = (I + +) f~ I de Hdpe)p/(e). (62) 

Using the Rodrigues formula for the function PI (e), integrat
ing by parts 1 times, and taking into consideration that 

d
l 

H () k! IH ( ) 
del k pe = (k-I)! P k-I pe , (63) 

we have 

F ( )-2- /(/+ 1) I k! 
kiP - 2 P /!(k -I)! 

xf~ I de H k_ /(pe)(l - eZ)/. (64) 

Any classical polynomial is orthogonal, with the proper de
finition of a scalar product, to any polynomial of a lesser 
order. Thus, the polynomial PI in Eq. (62) is orthogonal to 
Hk(pe), ifk d. Thus, it follows thatFkl #0, if I<.k. Besides, 
since Hq( - x) = ( - l)qHq(x), it results from Eq. (64) that 
the quantity k - 1 assumes only even values, i.e., k - 1 = 2n, 
where n;;;'O. Under these conditions, the Uspensky formula 15 
is valid for the integral in Eq. (64). As a result, we have 
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F (P)=[ii(/+~)(-2)-(k-l)/2 k! 
kl 2 F((k + 1+3)/2) 

X (i Y L i/-I;~/2 (,;2) . (65) 

Substituting Eq. (65) into Eq. (61) and introducing the new 
variable, n = (k - I )/2, we obtain 

exp[ - ~( p - R)2] 

= '" ( _ lr [ii(21 + 1) IL 1+ 112 
fr 2n+I+IF(n+I+~)P n 

X (,;2)exp( _ ~p2)R 1+ 2nPI(C). (66) 

Evidently, Eq. (66) is valid for vectors p and R of any dimen
sion. The addition theorem 

41T 
PI [cost p,R)] = ~ 21 + 1 Ylm ( p)Yi':.,(R) 

41T ( _ 1)/{Y/( p) ® Y/(R)}oo (67) 
~21 + 1 

takes place in the three-dimensional case. Here the symbol 
{ ® 1 denotes the irreducible tensor product of two spheri
cal tensors. 16 Introducing Eq. (67) into Eq. (66) and denoting 

'?Y'/m ( p) = p2n '?Y 1m ( p) , (68) 

X''/m( p) = L ~+ lI2(p2)'?Y lm ( p), (69) 

A 1m ( p) = X''/m ( p)exp( - p2) , (70) 

we obtain a completely factorized, in p and R, expansion of 
the Gaussian function in the form 

exp[ - ~( p - R)2] 

= L a(n,/){ '?YI(R/~) ® A I( p/~)}()(), (71) 
n.l 

where 

a(n,l) = ( - 1)/+ n2r/2~21 + l/F(n + I +~). (72) 

The polynomials X', appearing in the definition of the func
tion A, are closely related to the eigenfunctions of the iso
tropic harmonic oscillator, 

F nlm ( p) = X'lm( p)exp( - !p2) 

(73) 

Note that the expansion (71) is a particular case of a more 
general addition theorem for functions A: 

AN (P-R) 
LM ~ 

= L a(n,l)_I_(/OLOIA 0)( _ 1)"'+1 (N + v)! 
n.l.A ,J4ii v! 

(74) 

where (aab/3lcy) is the Clebsch-Gordan coefficiene6 and 

v = n + (I + L - A )/2, (75) 

w = n + (I + A - L )/2 . (76) 
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The numbers I, A, L satisfy the triangle condition 

IA-/I<L<A+I, (77) 

with the quantity A + 1 - L assuming only even values. 
Equation (74) can be derived with the help of a general meth
od outlined in Ref. 11. If N = L = M = 0, Eq. (74) transfers 
into Eq. (71), since the sum over A is reduced to one term with 
A = I, the equalities v = n, w = n + I, and (/0001/0) = 1 be
ing satisfied in this case. 

Since the basis functions in the LCAO method have a 
form of irreducible spherical tensors, the function P(r) in 
Eqs. (57) and (58) is expressed asP(r) = p(r)Ylm(r), wherep(r) 
is some polynomial in r. Substituting this expression into Eq. 
(58) and using also the expansion (71), we obtain, after inte
gration in spherical coordinates, 

P(r)e = '?Y lm ( - i~T(w)V(r)) '" [T(wjL1 (rW 
~ 2/+n+lI2F(n+I+3/2) 

xL'" dp/+2L ~+ 1I2(~p2)exp( - !p2)p(p) e. (78) 

5. GENERATING OPERATORS FOR THE SLATER AND 
THE GAUSSIAN FUNCTIONS 

Consider the Slater function in Eq. (34). If n = 2k, 
where k is a nonnegative integer, then 

1{I",.2k.lm(r) = '?Y7m(r)exp( -wr), 

so that we have in Eqs. (57), (58), and (78) 

P (r) = '?Yt (r), p(r) = r I + 2k • 

(79) 

(80) 

Calculating the coefficients in the expansion (78) or using the 
addition theorem for polynomials l7

•
18 '?Y7m (a + b) directly in 

Eq. (57), we obtain 

'?Y7m(r)exp( -wr) 

= ( _ 1 )kk !2k [T(w)] I + kL ~ + 1/2BT(w).:! (r)) 

X '?Y 1m (V(r))exp( - wr) , (81) 

which yields, with due respect to Eqs. (12) and (13), the nec
essary expression for the GDO which relates an arbitrary 
Slater function with the Is state e. In the particular cases of 
k = 0 and I = m = 0 we have, respectively, 

'?Ylm(r)exp( -wr) = [T(w)]/'?Ylm(V(r))exp( -wr), (82) 

rk exp( -wr) = ( - l)kk !2k [T(wW 

(83) 

In the case n = 2k - 1 in Eq. (34) we shall write down the 
function I{I in the form 

1{I,,,.2k _ I.lm (r) = '?Y7m (r)exp( - wr)/r 

- '?Y7m (r)G", (r) . 

By analogy with Eq. (46), we have 

xG",(r) = 9"(w) d (x) G,,,(r) . 

(84) 

(85) 

Applying exactly the same reasoning, as in Secs. 3 and 4, we 
obtain 

~7m(r)G",(r) 
= ( _ l)kk!2k [9"(W)]/+ kL ~+ lI2(!9"(wjL1 (r)) 

X ~/m(V(r))G",(r). (86) 
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Thus, just as in Sec. 2, we get a possibility of generating the 
basis function from the Green function for the Helmholtz 
equation. The function G OJ can also be introduced onto the 
right-hand side of Eq. (81). Indeed, taking into account the 
identity 

d 
exp( -wr) = - dw GOJ(r) , 

noting that 

P(w) d (w) = d (w) ~q(w) 

and then using the equality 

d (w) = w ~(w) , 

we have 

§'~m (r)exp( - wr) 
=w(-1)k+lk!2k[~(wW+k+IL~+I/2 

X(~~(w)L1 (r)) §' 1m (V(r))GOJ(r) . 

(87) 

(88) 

(89) 

(90) 

Exactly the same reasoning is applicable to the case of 
the Gaussian basis functions. Indeed, introducing the func
tion g instead of the function e in Eq. (39) 

g g(w;x,y,z) = exp( - ~wr), (91) 

we obtain, instead of Eq. (42), 

1 a 
xg= ---g, 

w ax 
and instead ofEq. (49) we have 

(92) 

xng=w-nI2Mn(-d(x)W-1/2)g, (93) 

where Mn (x) = i - "Hn (ix) is the modified Hermite polyno
mial. By means of the arguments which were used in the 
proof of the Eq. (57), we get 

P(r)g = (21T)-3/2 f dp p( - ~ VIr) + Jw p) 
xexp(-~p2)g. 

In its tum, this gives, by analogy with Eq. (81), 

§'~m (r)exp( -wr/2) 
= ( - l)lk !2kw -1- kL ~+ 1I2( - ~(l/w)L1 (r)) 

(94) 

X §'Im (V(r))exp( -wr/2). (95) 

Since in variational calculations only the Gaussian functions 
covered by Eq. (95) are exclusively used, there is no necessity 
in considering the case of the odd values of k. 

The comparison ofEqs. (81) and (95) reveals the remar
kable analogy between the Slater and the Gaussian GDO's. 
Indeed, in both these cases the general structure of G DO is 
described by the function .2"~m ( p), i.e., by the polynomial 
part of the harmonic oscillator eigenfunction (73). 

6. SOME PROPERTIES OF POLYNOMIALS .!f 

We consider here some properties of the polynomials 
.2" which may occur to be useful in applying the GDO meth
od for calculating matrix elements with the Slater and Gaus
sian functions. 

First, the action of the operator sPIV) on some function 
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lP(r) of the scalar argument is described by the equation 

L ~ + 1I2(tL1 (r))§' 1m (V(r))tp (r) 

= §'lm(r)L ~+ 1/2(~ ~2(r) ) 

1 - 2t~(r) 
I 

X(l - 2t~(r))k~l(r)lP(r), (96) 

where the operator r in the argument of the polynomial L 
and the operators ~ (r) should be considered to be ordered in 
such a way, that the operators ~ (r) should be applied to the 
function lP(r) prior to multiplication by powers of r. In ac
cordance with the Feinmann and Maslov l9 notations, the 
operator ordering is indicated in Eq. (96) by indexes under 
operators. For example, we have 

~r = r~, (~r)" = r"~n (97) 
I 2 I 2 

and so on. We shall not present here the proof of the formula 
(96) confining ourselves to the observation that Eqs. (81) and 
(95) are the particular cases of the more general equation 
(96). To deduce these corollaries, one should bear in mind, 
both in the Slater and Gaussian cases, that the application of 
the operator 1 - 2t~(r), where t = !T(w) or t = - ~(l/w), 
respectively, to the function e or g gives a zero value. There
fore, in both cases it is sufficient to take into account only the 
term with the highest power in the Laguerre polynomial on 
the right-hand side of Eq. (96). 

Second, consider the action of the operator .2" (V) on the 
product offunctions/lP. Generalizing the Leibnitz rule, we 
have the following formal relation: 

(98) 

where the subscripts/and lP indicate the function to which 
the corresponding gradient operator should be applied. It 
follows from this relation that, to formulate the generalized 
Leibnitz rule in an explicit way, one should make use of some 
addition theorem which would allow us to represent the 
function .2"(a + b) as a superposition of contributions fac
torized in a and b. To this end, rewrite the expansion (71) in 
the form 

exp[y(a,r)] = I a(n,l H §'7(a) ® .2"7(bll oo , (99) 
".l 

where y(a,r) = - a2 + 2ar. Note, that 

exp[y(a,rl + r2)] = exp[y(a la,rJaJ!]exp[y(a28,r2Ia2 )] , 

(100) 

where a 1 and a 2 are arbitrary numbers satisfying the condi
tion ai + a~ = 1. Using the expansion (99) for each of the 
three exponents in Eq. (100), by means of algebraic transfor
mations, equivalent to those used in Ref. 18 for the deriva
tion of the addition theorem for polynomials §'(rl + r2 ), we 
obtain 

.2";:"(rl + r
2

) = I a(n l ,ll)a(n2,l2) _1_ (/10/201/0) 
"'/'"2/2 a(n,/) {4iT 

X 
2", + /, 2n2 + 12 a l a 2 
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Obviously, the case ofa l = a2 = !1eads to a symmetric form 
of an expansion. In the case of a I = a and a 2 = 1, using the 
limiting transition in Eq. (101), 

lim a 2n , + I,.'?n, (.!:l) = ( - It' ?1In, (r) 
111m, ,'1m} 1, 

a,-Q a l n l . 
(102) 

we have 

(103) 

Summations in nl' II' n2, 12 in Eqs. (102) and (103) are re
stricted by the triangle condition, 11 + 12 = 1 (/1 + 12 - 1 is 
even), as well as by the relation 

2nl+/I+2n2+/2=2n+l. (104) 

Finally, we establish here another important property of the 
functions .'?(r), viz., an addition theorem of the Clebsch
Gordan type. For this purpose, it is expedient to use the 
integral representation 

.'?;:" ((i/~)tr) = (i1/n!2n + 1/2)(21T) ~ 3/2 

X J dp?1l7m( p)exp[ -!( P - tr)2], (105) 

which follows, for example, by comparison ofEq. (5S) with 
Eq. (SI) for the case P = ?11. The multiplier i/v'1 on the left
hand side ofEq. (105) is introduced to simplify the structure 
of the right-hand side of the equation. Introducing the irre
ducible tensor product of functions .'? and using, on one 
hand, the addition theorem for spherical functions 16 appear
ing in the definition (69), 

{YI,(r) ® YI2 (r)}/m 

= H(/p/2'/)Ylm(r) = (1!..}41T)~(2/1 + 1)(212 + 1)1(21 + 1) 

X (/10/201/0) Ylm (r) , 

we have 

{.'?7,'((i/~)tlr) ® .'?~2((i/~)t2r)}/m 
= (i/~)/, + 12t ;'t ~2H (/1'/2,1 )(,-2)(1, + 12 ~ 1)12 

(106) 

xL ~,+ 1I2( - !t i ,-2)L ~2 + 1I2( - !d ,-2)?1Ilm (r). (107) 

On the other hand, using for each multiplier on the left-hand 
side ofEq. (107) the integral representation (105), we obtain 

X J J dpi dp2{ ?117,'( PI) ® ?11722 (P2)}/m 

xexp[ -!( P - tlrf -!( P - t2rf] . 

Denoting 

t=~t~ +t~, 7 1=tl/t, 72 = t2/t 

and introducing new integration variables 
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(lOS) 

(109) 

r l = 71 PI + 72 P2, r2 = 72 PI - 71 P2' (110) 

we obtain, with due respect to the orthogonality of the trans
formation (110), the following expression for the integral I 
on the right-hand side ofEq. (lOS): 

1= J J dr l dr2 {?1I7,'(7Ir l + 72r2) ® ?1I~2(72rl - 7 I r 2 )}/m 

(111 ) 

The tensor polynomial in the integrand expression (III) can 
be expressed as a linear combination of polynomials 
{?1I(rl) ® ?1I(r2) J 1m with some coefficients depending on 
continuous parameters 71 and 72 , Such a procedure corre
sponds to the standard Talmi transformation: 

{?1I7,'(7Ir l + 72f 2 ) ® ?1I~2(72rl - 7l r2 )j/m 

(112) 

The coefficients of this transformation have been calculated 
in the general case by Smimov.20 Various definitions for 
such coefficients are used, which differ, mainly, in phase and 
normalizing multipliers. Besides, various algebraic and re
currence formulas have been derived for these coefficients 
(see, for example, Refs. 21 and 22). The coefficients Tin Eq. 
(112) may be easily related to a more standard definition of 
the Talmi-Smimov coefficients. 21 .22 One may also use the 
special representation for these coefficients,23 which takes 
into account the specific features inherent in the molecular 
case in a more thorough way. 

Substituting Eq. (112) into Eq. (111), performing the 
explicit integration in r 2, and representing the integral by r l, 
with the help ofEq. (105), we obtain the following addition 
theorem: 

Note that the summation variables NI and N2 are interrelat
ed by the condition 

NI + N2 = nl + n2 + WI + 12 -I) . (114) 

The particular type of coefficients T with L I = I, L2 = a in 
Eq. (113) has a more simple form in comparison with the 
general case (see, for example, Refs. 22 and 24). Note that 
these particular formulas allow us to express the coefficients 
Tin Eq. (113) in the form of the standard hypergeometric 
functions. 24 

7. CONCLUSIONS 

Thus, to derive algebraic representations for GDO's, 
one may use either the Fourier-transformation method, or 
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the commutation relations method, which leads to a conven
ient integral representation for GOO. The Fourier-transfor
mation method is more simple in handling; however, it leads 
to specific GOO's which are factorized in operators VIR) and 
d (m). In this case the radial part of the GOO for two impor
tant types of basis functions-the Slater and hydrogenlike 
ones-is expressed in the form of hypergeometric functions 
2 F I , which satisfy the quadratic transformations. The rela
tions, obtained in Ref. 4, allow us to extend such an approach 
to more general basis functions of exponential class. The 
commutation relations method allows us to introduce the 
mixed, nonfactorized GOO's, whose radial part has a more 
simple analytic structure. In the case of the Slater and the 
Gaussian functions, for example, the radial part of GOO is 
associated with the Laguerre polynomials, and the GOO's 
have a form of polynomial parts, :Z, of the harmonic oscilla
tor eigenfunctions. First, it leads to a remarkable analogy 
between two important classes of basis functions. Second, it 
allows us to use in calculations a number of important rela
tions for functions :Z, which have been established in Sec. 6. 
Apparently, it is worth noting that there exists the remarka
ble relation between the coefficients of the Clebsch-Gordan 
series for functions :z and the particular type of the Talmi
Smirnov coefficients T. Note also that Eq. (107) allows one, 
with due respect of the addition theorems for the Laguerre 
polynomials,25 to obtain an alternative expression for the 
corresponding coefficients in the form of the generalized hy
pergeometric functions, NF 26 of two variables, which, there
fore, turn out to be related to the particular type of coeffi
cients T, mentioned above. 

The reduction of the basis functions in the integrand 
expressions for matrix elements to the functions Gw allows 
us to use for calculating and analyzing the properties of mo
lecular integrals, along with the Laplace equation for the 
Coulomb potential, S also the Helmholtz equation for func
tions G w' which makes it possible to improve some earlier 
approaches.7

-
1O 

Note that the possibility of generating basis functions 
from the simplest ones through differentiating by param
eters has been indicated by Boys.27 Shavite had used this 
possibility for some simple functions with small values of 
quantum numbers and had pointed out also the possibility of 
utilizing computer techniques for the generation of more 
complicated functions. The proposed method, which is the 
direct extension of the earlier work,2s yields a far reaching 
generalization of such an approach to the case of any basis 
function and any quantum number and may be used in var
ious methods associated with the procedure of differentiat-
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ing functions by parameters (see, for example, Refs. 2 and 
29). 
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The equation of motion of a classical charged particle in a homogeneous, static electromagnetic 
field is solved exactly in terms of a Lorentz transformation. All higher-order corrections to the 
motion follow from the Baker-Campbell-Hausdorff formula. Some of these terms, as well as 
corrections to the Thomas precession, are calculated here for the first time. The derivation is 
based on an intrinsic formulation of the Lorentz group using differential forms and the Clifford 
algebra in Minkowski space-time. 

PACS numbers: 41.70. + t, 02.10. + w, 02.20. + h, 03.30. + p, 

1. INTRODUCTION 

In this paper, we show how the classical motion of a 
charged particle in an external electromagnetic field can be 
derived directly from the space-time structure. Our treat
ment does not involve curvature or gravitation, but is strictly 
concerned with flat four-dimensional space-time with the 
Lorentz-Minkowski metric. The only assumption is an anti
symmetric tensor structure in terms of the differential form 
basis, I and an algebraic product between the forms which 
realizes a Clifford algebra.2--{; This geometrical matrix-free 
field description was previously discussed in Refs. 7 and 8, 
and is reviewed in Sec. 2 of this paper. 

In Sec. 3, we derive the Lorentz group9-12 from the in
trinsic algebraic structure. We review some standard results 
cast in this particular formalism, and then describe a conven
ient method of performing finite Lorentz transformations 
and spatial rotations (Sec. 4). This is more general than the 
usual infinitesimal treatments. 13-16 

In Sec. 5 we present a general solution of the equation 
da/ dt = [p',a], where a and f3 are elements in the Clifford 
algebra. This equation includes the Heisenberg and rotation 
equations, and hence describes the behavior of a large class 
of physical systems. As an illustration, we discuss the spin 
precession of a particle in a magnetic field in the nonrelativis
tic case. 

The Lorentz force law is derived directly in the Clifford 
algebra in Sec. 6. Our key result is in showing that the Lor
entz force law is a special case of the equation of Sec. 5, and 
that the general solution is a Lorentz transformation of the 
initial particle velocity. Hence, the motion of a charged par
ticle in an external electromagnetic field can be written down 
directly (Sec. 7). The separation of the rotational motion 
from the linear motion follows from an application of the 
Baker-Campbell-Hausdorff formula. 17.18 Here, we display 
terms up to third order explicitly; terms of order three and 
higher are not usually calculated in the standard treat
ments.14.19.20 When they have been calculated by other 
methods,21.22 the expressions do not appear as general as 
those obtained here. 

Finally, in an entirely distinct application of the Baker
Campbell-Hausdorff formula, we give a simple derivation of 

the Thomas precession. 15.16 Because of the generality of the 
formalism, we can calculate the next-order term explicitly 
and show that it is a small correction to the net Lorentz boost 
which does not affect the rotation (Sec. 8). A related but 
distinct discussion of the topics in this paper is given in Refs. 
23 and 24. 

It is appropriate at this point to recall the differential 
form basis of space-time as used in the text. 7

•
8 Space-time is 

described by the four coordinates Xl, x 2
, x 3

, and X4 = t. The 
differentiall-forms l dxl'-, IL = 1, ... ,4, define an orthogonal 
basis frame for vectors. The Grassmann (or exterior) prod uct 
A is used to construct area elements and volume elements in 
space-time from the basis I-forms. I The collection of all pos
sible geometrical objects is the following set of 16 basis 
forms: 

! I,dxl'-,dxl'- A dxv,dxl'- A dx v A dx\ 

dx l Adx2 Adx3 Adx4 = UJ j, 

IL,V,A = 1,2,3,4, WI=V=/=A. (1.1) 

We have included the scalar unit 1 as the zero-rank 
basis form. The rank of each type of form in (1.1) is, respec
tively,O, 1,2,3, and 4, and there are 1,4,6,4,1 basis forms of 
each corresponding rank. It is convenient to label the basis 1-
forms by the symbol u, and also to label the three-dimension
al and four-dimensional volume elements as 17 and UJ, respec
tively: 

ul'-=dxl'-, 

1] = dx l Adx2 Adx3
, 

UJ = dx l Adx2 Adx3 Adx4
• 

(1.2a) 

(1.2b) 

(1.2c) 

An inner (scalar) product can be defined in this space in 
terms of the Lorentz-Minkowski metric: 

gil" = (ul',u") = 0, IL=/=v, 

gl'-I' = (uI',u1') = { - 1, IL = 1,2,3, 
+1, IL=4. 

(1.3a) 

(1.3b) 

Using the differential form basis (1.1) and the metric 
(1.3), we construct a geometrical realization of the Clifford 
algebra in Minkowski space-time. This is detailed in Ref. 7 
and 8. Here, we will need to manipulate tensor fields defined 
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in the Clifford algebra, which is reviewed in the following 
section. 

A note on units: We employ the physicist's convention 
of setting the speed of light e equal to 1. One may rewrite 
equations given in these "natural" units by inserting factors 
of e as follows: the Thomas precession [Eq. (8.10)] acquires a 
factor of 1/e2 on the right-hand side, and the angular fre
quencies [Eqs. (S.9b) and (7.4)] a factor of 1/e. 

2. PROPERTIES OF THE V ALGEBRA IN SPACE-TIME 

In this section, we review briefly the description of 
fields in four-dimensional space-time introduced in Ref. 7 
and discussed in detail in Ref. 8. The elements of this alge
braic framework are called "tensor types." They are real, 
antisymmetric, tensor fields, which are expanded on the dif
ferential form basis (1.1). Since the rank of antisymmetric 
tensors in four dimensions can be either zero, one, two, three, 
or four, these are precisely the "types" that are possible in 
space-time. We can display representative tensor types as 
follows: 

aD, scalar (2.1a) 

a = Ia l1cr l1 , vector type, (2.1b) 

F = !IFl1vcr 111\ crv, tensor type 2, (2.1c) 

1 M = - IMl1v).cr l1 l\cr v I\cr). tensor type 3, (2.1d) 
3! ' 

b = bo w = bo cr1 1\ cr 2 1\ cr 3 1\ cr4, tensor type 4, (2.1e) 

J1,V,A = 1, ... ,4, J1=/=V=/=A. 

The components of tensor types aD, all, F I1V
, M I1V)., and bo are 

all real scalars. 
The tensor types correspond directly to the physical 

fields in space-time which we wish to describe. For example, 
the particle 4-momentum p, the electromagnetic potential a, 
and the electromagnetic currentj are all vector types, as in 
(2.1 b). The electromagnetic field F is a tensor of type 2 as in 
(2.1c). The 4-dual of the current Vis a tensor of type 3. The 4-
duals are defined in the usual way using the Levi-Civita en
tirely antisymmetric index symbol. Indices are lowered us
ing the metric g I1 V = gl1v [(1.3)]: 

tu I1cr 11) = (1/3!li I1E 11 VApcr v 1\ cr AI\ cr P, (2.2a) 

t(Fl1vcr 111\ crV) = !Fl1vE I1VApcr ).1\ crp. (2.2b) 

(See Refs. 1 and 8 for a full discussion of duality in both three 
and four dimensions.) 

It is possible to describe the tensor types (2.1) using ordi
nary vector algebra, by means of the following decomposi
tion. 7

•
8 The usual notation for vectors in the three-dimen

sional Euclidean subspace of space-time can be utilized to 
write a tensor type 1, or vector type, (2.1 b) as 

(2.3) 

In the case of a tensor type 2, we can decompose the 
components of F [(2.1c)] using two spatial vectors e and b, 
and duality in the three-dimensional spatial subspace. This is 
entirely analogous to separating the electromagnetic field 

707 J. Math. Phys., Vol. 25, No.3, March 1984 

tensor into the electric and magnetic field vectors5
,7 

F = e 1\ cr4 - !b, ei = F i4, b i = - ~IEijkFjk. (2.4) 

An important and useful property of the V product is 
the ability to express the duality operation algebraically. We 
recall the "duality theorem" from Ref. S. For any tensor type 
a, the 3- and 4-duals are obtained by V multiplication with 
the three- and four-dimensional volume elements, respec
tively: 

!a = (±) TjVa, ta = (± )wVa. (2.5) 

The signs in (2.5) are determined by the type of the ten
sor in each case. The cases of immediate interest are the 
tensor types in (2.3) and (2.4), whose duals are given as fol
lows: 

!a = - TjVa, 

ta = wVa, 

tF=wVF. 

(2.6a) 

(2.6b) 

(2.6c) 

The product V establishes an "algebra of tensor types" 
that is both associative and has an inverse.5

•
8 We recall from 

Refs. 7 and 8 the V product rules between tensor types 
which will be needed in the sequel. First, the V product of a 
vector type a with another vector type b as in (2.1 b) and (2.3) 
is given in the usual vector notation as 

a V b = (a,b ) + a 1\ b 
= a4b 4 _ (a.b) - Tj VaXb + (b 4a - a4b) V cr4

, 

(2.7) 

The square of a vector type in the V algebra is just the 
Minkowski quadratic form 

a Va = (a,a) = (a4)2 - (aoa). (2.8) 

These expressions demonstrate how the V product general
izes the ordinary vector algebra from three to four dimen
sions. The use of the traditional vector notation in describing 
the V products of arbitrary tensor types is made possible by 
the consistent use of the space-time decomposition (2.3), 
(2.4). 

The V product of a vector type a with a tensor of type-2 
F is given in terms of the decomposition (2.4) with (2.6a) as 

aV F= aV (eV cr4 + TjVb) 

= - a4e - axb - (aoe)cr4 

+ w V [ - (aob)cr4 + aXe - a4b]. (2.9) 

The V product of two tensors of type 2, F and G, is 
similarly obtained. We have decomposed both F and G as in 
(2.4) and applied (2.6a). (Full details may be found in Ref. 8.) 

FV G = (e V cr4 + Tj V b) V (g V cr4 + Tj V b) 

= (eog) - (bob) + ( - exb - bXg) V cr4 

+ TjV(exg - bXb) - w[(eob) + (bog)]. (2.10) 

A special product which is useful is that of Fwith itself. 
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TABLE I. Commutators and anticommutators of tensor types. 

{a,b I = 2(a,b) = 2[a4b 4 - (a·b)] 
(a,b] = 2a 1\ b = 2( - TJ Vaxb + (b 4a - a4b) V IT4) 

{a,F} = 2[ - (a·b)TJ+ (a4b-axe)Vw] 
[a,F) = 2[ - (a· e)IT4 - a4

e - axb] 
r F,G I = 2 ((e-g) - (b'h) - w[(e·h) + (b.g)]} 
[F,G) = 2[ - (eXh + bXg) V IT4 + TJ V (eXg - bXh)] 

a = a + a4
IT\ b = b + b 4er4 

F = e V u 4 + TJ V b. G = g V IT4 + TJ V h 

From (2.10), we have 

FV F = lel z - Ibl 2 
- 2tu(e·b), 

lei =.,Je.e. 
(2.11) 

In the case of the electromagnetic field, the two parts (scalar 
and pseudoscalar) of this product (2.11) are precisely the two 
combinations of the electric and magnetic fields which are 
invariant under Lorentz transformations. 14,16 

It can be seen that the manipulations of tensor types in 
space-time reduce to vector rules (2,7), and extensive appli
cations of the duality theorem (2.6). For this reason, all that 
one needs in practice are the above multiplication rules for 
the fields, along with rules for manipulating the volume ele
ments. These are summarized in the following theorem: 

Theorem 1: (a) 1] commutes with all spatial tensor types 
and anticommutes with 0'4 and w. 

(b) w commutes with tensors or even type, and anticom
mutes with tensors of odd type. 

(C)1]V0'4=W, 1]V1]= 1, wVw= -1. 

(d) [0'1,0' 2,0' 3,0'4,W l mutuallyanticommute. (2.12) 

In the later sections, it will be necessary to calculate 
commutator V products of particular tensor types. Com
mutators and anticommutators can be defined in terms of 
the V product as follows: 

Definition J: 

la"B) =aV/3+/3Va, 

[a,/31 =aV/3-/3Va. 

(2.13a) 

(2.13b) 

Here a and /3 are arbitrary tensor types. For conve
nience, we have included some identities for commutator 
and anticommutator V products in Table I, which will be 
useful later. This concludes the review of tensor types and 
their algebra. 

3. AUTOMORPHISMS OF TENSOR TYPES AND THE 
LORENTZ GROUP 

In this section, we will use exponentials of tensor types 
to define the automorphisms of tensor types. We can define 
the exponential function on the tensor types by using the 
standard expression for the exponential interpreted in the V 
algebra: 

exp( /3 ) = f (/3 r . 
n=O n! 

(3.1) 

Here, /3 is any tensor type. The nth power of /3 is defined to be 
the V product of n copies of /3 (which is associative): 

708 J. Math. Phys., Vol. 25, No.3, March 1984 

Definition 2: 

(/3 t = /3V /3V '" V /3 (n times). (3.2) 

From the closure of the V algebra, lf3 r will always be a sum 
of tensor types. One can therefore use (3.2) explicitly to cal
culate the exponential of any tensor type /3. (The conver
gence of this expression will not be discussed here.) 

In order to evaluate the exponentials of the tensor types 
a [(2.3)] andF [(2.4)], we use the products (2,8) and (2.11), We 
calculate the exponentials of the vector type a (as well as for 
the space vector a). and the exponentials of the two parts ofF 
[(2,4)]e 1\ 0'4 and ~b. separately, A straightforward calcula
tion gives closed-form expressions in terms oftrigonometric 
or hyperbolic functions. The notation used is lal = (a al")I/2 

and lal = (a iai )1I2, " 

Theorem 2: 

exp(a) = coshlal + (a/lal)sinhlal, (3,3a) 

exp(a) = coslal + (a/laJ)sinlal. (3,3b) 

exp(eI\0'4) = coshlel + [(e 1\ 0'4)1lellsinhlel. (3,3c) 

exp(!bj = coslbl + (!b/lbl)sinlbl, (3,3d) 

These calculations show that the exponentials of these 
types are expressible as the sum of a scalar with a tensor of 
the same type, The above expressions are analogous to the 
Euler formula for the exponential of a complex number-the 
analogy follows since the V algebra is a generalization of the 
complex algebra,5,6 [Note also that the distinction between 
three- and four-dimensional vectors (3.3a) and (3,3b) gener
ates an extra minus sign due to the metric. changing the 
hyperbolic functions to trigonometric functions.] 

We list some useful identities for the exponentials in the 
algebra, They are easily verified using expressions (3.3); a 
and/3 are any tensor types; the commutator and anticommu
tator are defined as in (2.13). 

Lemma: 

exp( /3) V exp( - /3) = exp( - /3) Vexp( /3) = 1. (3.4a) 

[a,/3] = 0 q exp( /3) V a = a V exp( /3), (3.4b) 

(a./3 J = 0 q explf3) Va = aVexp( - /3), (3.4c) 

The object of this section is to define the automor-
phisms of the tensor types. using exponentials such as (3.3), 
By analogy to the definition of a similarity transformation in 
the matrix language. we write an expression for the transfor
mation of a as: 

Definition 3: 

a' = exp(/3)VaVexp( -/3). (3.5) 

This general expression will be an automorphism if, and 
only if, it is type-preserving. The determination of which 
fields a and/3 satisfy (3.5) such that the type of a and a' is the 
same can be accomplished by direct substitution of all possi
ble tensor types into (3,5), The type-preserving condition dis
tinguishes the following cases: /3 can only be a tensor of type 
two; a can be either a vector type. a tensor type 2. or a combi
nation of vector and tensor type 3. This is an exhaustive 
result in four-dimensional space-time, Identity (3,4a) guar
antees that they are indeed inner automorphisms, 

What we have actually done is to obtain the Lorentz 
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group directly from four-dimensional space-time. More
over, this is the unique inner automorphism of fields in 
space-time, as may be verified from the Clifford group auto
morphism theorem.2.3.6.12 

Theorem 3: (i) The basis 2-forms of a Clifford algebra in 
the space M P.q define a Lie algebra via a commutator pro
duct which is locally isomorphic to sol p,q). 

(ii) The group of (inner) automorphisms of this Clifford 
algebra is the Lie group associated with the Lie algebra 
so(p,q). 

In the case of space-tim eM 1.3, the automorphism group 
is the Lie group corresponding to the Lie algebra so(1,3). 
This is precisely the Lorentz group with elements exp(f3 ), 
where f3 is a tensor type 2. 

We now proceed to relate our derivation to the usual 
treatments of the Lorentz group.9-12 The six basis 2-forms 
a'" A a v in (1.1) can be shown to satisfy the following com
mutation relations in the V algebra, by labeling them 
J'"V = la'" A a" 5: 

2 

[J ,"v,JAP] = g vA J ,"P _ g ,"AJ VP _ gYp J,"A + g"P JvA, 

f1'V,A,p = 1,2,3,4. (3.6) 

Here, g"v is the Lorentz-Minkowski metric (1.3), and 
relations (3.6) define the Lie algebra so(1,3). The space 2-
forms J ij = 20'" A d define the closed subalgebra 
so(0,3):::::so(3) when the commutation relations (3.6) are re
stricted to the three space indices. To see this, label the spa
tial basis 2-forms as L 1 = J 23, L 2 = J 3 t, L 3 = J 12; i.e., 
L k = ~r~. We can then rewrite the spatial part of (3.6) as 

[L i,Lj] = ~jkL k, i,j,k = 1,2,3. (3.7) 

These commutation relations describe the rotation algebra 
in three dimensions. The physical consequence of this result 
is that the exponentials of f3 = rb in the automorphism (3.5) 
describe spatial rotations in three-dimensional space. The 
other transformations, involving exponentials of f3 = e A a4

, 

mix the space with the time components of tensor fields, and 
therefore describe Lorentz boosts, as we show in the next 
section. 

We note that the basis forms J i4 = ~d A a4 correspond
ing to pure Lorentz boosts do not define a closed subalgebra. 
Hence, an algebraic combination of two Lorentz boost oper
ators will in general create an additional spatial rotation 
term. This is physically manifested in the Thomas preces
sion, which is discussed in detail in Sec. 8. 

For completeness, we can relabel the space-time 2-
forms as K i = J i4 = ~d A a4

, in order to write the commuta
tion relations of the Lorentz Lie algebra (3.6) in the standard 
manner.9- 12 Note that, in contrast to other treatments, the 
commutation relations as given here are strictly real: 

[L ',L j] = ~jkL \ 

[L i,K j] = ~jkK\ 

[K'X j] = - ~jkL k. 

(3.8) 

These results demonstrate that the Lorentz group is a 
consequence of a Clifford algebraic structure in four-dimen
sional space-time and does not have to be an additional as-
sumption. 
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4. ROTATIONS AND LORENTZ TRANSFORMATIONS 

In this section, spatial rotations and Lorentz transfor
mations are described in some detail. The algebraic manipu
lations are simple and straightforward and lead to quite gen
eral results. Our description is finite, and is valid for 
transformations along any axes. This stands in contrast to 
other treatments which examine only infinitesimal transfor
mations, or finite transformations along one particular axis 
only. 

Following the discussion in the preceding section, we 
define a rotation operator JR as the exponential of the space
dual of a three-dimensional vector a. The three components 
() l,() 2,e 3 are the three spatial rotation parameters. 

Definition 4: 

JR(O) = exp(! rO). (4.1) 

The definition of automorphisms in the V algebra im-
plies that a tensor type a is transformed under a spatial rota
tion according to (3.5): 

Theorem 4: 

a' = JR(O) Va V JR -1(0). (4.2) 

The inverse rotation operator is JR -1(0) = JR( - a) [(3.5) 
and (3.4a)]. An algebraic expression for the rotation operator 
(4.1) can be obtained from (3.3d). We proceed to write down 
the explicit forms that transformation (4.2) assumes in the 
different cases of interest. In the case of a vector type (neces
sarily in three dimensions) a = aid, Eq. (4.2) becomes the 
usual formula for the conical rotation of a vector a about a, 
by an angle 101. 13

•
25 This is illustrated in Fig. 1. Using (3.3d), 

(4.1), (4.2), and some V algebra, one obtains 

a' = a coslOI + [(OXa)/IOI ]sinlOI 
+ (0/1012)(Ooa)(1 - coslOIl. (4.3) 

What is important to note is that spatial rotations of a 
type 2 field are also described by the transformation (4.2). 

--1---,-------\ Cif 

FIG. 1. Conical rotation of the vector a about 6. 
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For the type 2 field F = e /\ (74 - rb (2.4), the rotation of the 
field about 0 by an angle 101 is obtained from (3.3d), (4.1), 
(4.2), and V algebra as 

F' = (e coslOI + [(OXe)/IOI ]sinlOI 
+ 0 [(Ooe)lIOI2l[ 1 - cosIOI]) /\ (74 

- rib coslOI + [(OXb)lIOI ]sinlOI 
+ 9[(9ob)l/oI2J[1- coslOI])' (4.4) 

It is instructive to consider the space-time decomposi
tion of the transformed field F ' in terms of two new vectors e' 
and b' such that F' = e' /\ (74 - rb' (2.4). We can set this 
expression equal to (4.4) and then separate the components 
of e' and b'. As a result, one sees that e and b transform 
independently, each as in (4.3). The physical consequence of 
this point is clear if one identifies e with the electric field E 
and b with the magnetic field B: It is an experimental fact 
that E and B transform independently under spatial rota
tions. They do mix, however, under Lorentz transforma
tions (see below). 

A rotation in four dimensions will in general be a Lor
entz transformation. By analogy to (4.1), in which a spatial 
tensor type two defines the rotation operator in 3-space, a 
space-time tensor type 2 is used to describe a pure Lorentz 
boost. Define, therefore, a Lorentz boost operator 1. as: 

Definition 5: 

1.(b) = exp( - !b /\ (74). (4.5) 

The boost vector b is in the direction of the relative 
frame velocity V, and its components are the three boost 
parameters b I, b 2, b 3. In the Appendix, we provide a deriva
tion of these identities: 

y = (1 - IVI2)-1!2 = coshlbl, IVI = tanhlbl, 

ylVI = sinhlbl. (4.6) 

The Lorentz boost of any tensor type a to a frame mov-
ing with relative velocity V is accomplished by the transfor
mation [l. -I(b) = 1.( - b)]: 

Theorem 5: 

a' = 1.(b) Va V 1. -I(b). (4.7) 

Our notation is the standard one: Primed fields are 
moving with respect to the unprimed observer's frame with 
velocity V. As a first case, consider the boost of the vector 
field a = a!J.d'. An expression for (4.7) is obtained from (2.3), 
(3.3c), (4.5), and V algebra: 

a' = a - ~ a4 sinhlbl + (boal b(coshlbl - 1) 
Ibl Ibl 

+ a4(74 coshlbl - (boa) (74 sinhlbl. (4.8) 
ibi 

One can conveniently separate the space and time com
ponents of the vector field a in order to write Eq. (4.8) in the 
familiar component form. 13-15 Using identities (4.6), we have 

ai' = a i - yV ia4 
- Vi[(Voa)lIVI2](1 - y) 

(4.9) 
a4

' = ya4 
- y(Voa). 

As in the case of spatial rotations, the Lorentz boost 
equation (4.7) can also be used to describe transformations of 
type 2 fields. This is particularly useful in the case of the 
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electromagnetic field! = E /\ (74 - rB. The transformation 
of! described by (4.7) becomes, after some V algebra, 

/' = (E coshlbl + [(bXB)/lbl ]sinhlbl 
+ b[(boE)/lbI 2J[ 1 - coshlbl]) /\ (74 

- rIB coshlbl - [(bXE)llbl ]sinhlbl 

+ b[(boB)llbI 2J[1 - coshlbl]). (4.10) 

If one proceeds as in the case of rotations, and decom
poses the transformed electromagnetic field as 
/' = E' /\ (74 - rB', one can then separate the transforma
tion of the electric and magnetic field components. Using 
identities (4.6), we obtain the well-known transformation 
rules for the electric and magnetic fields 13

-
15

: 

E il = yEi + y(V xE V + Vi[(VoE)/IVI2](1 - y), 

(4.11) 
E i

' = yEi - y(V XE)i + Vi[(VoB)lIVI2](I - y). 

The electric and magnetic fields do not transform inde
pendently, because electromagnetism is an intrinsically rela
tivistic phenomenon. 

The novelty of the above description of rotations and 
Lorentz transformations lies in the use of a single formula to 
describe transformations of tensors of any rank. This is in 
contrast to the more traditional index description, where a 
distinct transformation operator is required for each tensor 
index. 

5. CANONICAL SOLUTIONS OF THE EQUATIONS OF 
MOTION 

In this section, we use the result established so far to 
give a general formulation of a class of differential equations, 
along with their solutions. These include equations of mo
tion of both classical and quantum systems. The mathemat
ical framework is the connection between a Lie group and its 
Lie algebra, or the relationship between the Lie automor
phism group and its derivation. 18 While the general theory is 
well known, methods of obtaining explicit solutions have to 
be developed separately. 

Consider the automorphisms of a field a, described by 
Eq. (3.5). Assume, moreover, that the tensor type a is a func
tion of the scalar parameter t (not necessarily the time). We 
propose the following result: 

Theorem 6: The canonical solution to the system of 
equations 

da 
- = [p,a] IS 
dt 

a(/) = exp(1'p dt ) V a(O) V exp( - 1'13 dt ). 

(5.1 ) 

The commutator is understood to be defined in the V 
algebra. The proof is easily obtained by direct differentiation 
with respect to t, and using the commutation rules for the 
exponentials in the vee product (3.4). In the special case 
when 13 is not explicitly dependent on the parameter I, the 
canonical solution assumes the simpler form: 

da = [p,a ] <=>a (I ) = exp(fJt) V a(O) Vexp( - pt). (5.2) 
dl 

As an illustrative example, we can apply this theorem to 
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solve the rotation equation in three dimensions, which de
scribes the rotation of any vector a = ai(J' i about a direction 
given by the angular velocity O. In this case, t is indeed the 
ordinary time25: 

da 
-=OXa. (5.3) 
dt 

From the V product rules (2.9) and Table I, we can 
express the vector cross product as a commutator, 

Oxa = U fO,a]. (5.4) 

(The asterisk denotes the three-dimensional dual. 8) Ap
plying Theorem 6, Eq. (5.2) to (5.3), (5.4) immediately gives 
the canonical solution: 

a(t) = exp(~fOt) Va(O) V exp( - ! fOt). (5.5) 

From the discussion in Sec. 4, we see that Eq. (5.5) expli
citly describes the conical rotation of the vector a about the 
angle 0 = Ot (Fig. 1). This is precisely what was expected, 
but we have obtained here the rotation as a solution of the 
equation of motion (5.3), rather than the usual other way 
around. Moreover, this is an exact and finite result. 

As an example of the motion of a quantum system, con
sider the precession of a particle with spin S in a uniform 
magnetic field B.26 Neglecting any orbital motion of the par
ticle, the Hamiltonian JY is given as the scalar product of the 
intrinsic magnetic moment M of the particle with the mag
netic field B: 

JY= -M·B, 

M = (gq/2m)S. 

(5.6a) 

(5.6b) 

Here, q is the charge of the particle, m its mass, and g a 
numerical constant, the "Lande g factor," characteristic of 
each particle. The motion of the particle is given by the Hei
senberg equation of motion for the components of the spin, 
as follows: 

(5.7) 

The three components of the spin Si, i = 1,2,3, satisfy 
the usual spin commutation relations,IO·26 enabling us to 
translate (5.7) into the V algebra by treating the S i as scalar 
components of a vector type S in three dimensions: 

[Si,S j] = ifl~jkSk (5.8a) 

=?dS=_RBXS, S=Si(J'i. (5.8b) 
dt 2m 

The canonical solution ofEq. (5.8b) is obtained in exact
ly the same way as in the first example. It describes a rotation 
about the direction ofB, with angular frequency 0 given as 
follows: 

S(t) = R(Ot) V S(O) V R -1(Ot), 

0= - (qg/2m)B. 

(5.9a) 

(5.9b) 

This rotation is in the positive sense (counterclockwise, as in 
Fig. 1) for negatively charged particles; for positiVely 
charged particles it is clockwise about the magnetic field 
direction.25.26 These two examples illustrate the application 
of the differential formulation of automorphisms to obtain
ing direct solutions to physical problems in two simple cases. 
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We now proceed to apply this method to an intrinsically 
relativistic problem in four dimensions. 

6. CHARGED PARTICLE IN AN ELECTROMAGNETIC 
FIELD: DERIVATION OF THE EQUATIONS OF MOTION 

We consider the motion of a particle in an external elec
tromagnetic field. In this section, we derive the classical 
equations of motion using the formalism of the V algebra, 
and then obtain a general solution by applying the method of 
the previous section. 

As a first step, we calculate the Lie derivative of a field 
in the direction of motion as follows: Consider the tensor 
type a, which is a function of all space-time variables, and 
take its derivative with respect to the time t = X4. The total 
derivative is given by the chain rule as 14 

da _ dxl'- Ja _ [(V V) J 1 ----- . + 4 a , 
dt dt Jxl'-

(6.1a) 

. . dr . 
r = X'(J", V = -, V = Ji(J' '. 

dt 
(6.1b) 

It is convenient to introduce the relativistic factor y as 
the derivative of the ordinary time t with respect to the invar-

iant line element Irl = ~xl'-xl'- = ~t 2 - (r·r)14 (see Appen
dix). 

Definition 6: 

y=~= (1_IVI2)-1I2. 
d Irl 

(6.2) 

Using the relativistic factor y given as above, we can 
define the relativistic four-dimensional velocity u 14.15 as a 
vector type in four dimensions which has unit length (2.8) 
(also see Appendix): 

dr 4 
u = -- = y(V + (J'), r = xl'-d'", (6.3a) 

d Irl 
uVu = (u,u) = 1. (6.3b) 

The intrinsic differential operator acting on tensor 
types in four-dimensional space-time is the Dirac operator 
D = J I'-(J' 1'-. This was constructed and studied as a vector 
type operator in the V algebra in Ref. 7. 

We apply the operator D here to compute the Lie deri
vative of the field a along the relativistic velocity u. Using 
(6.1), (6.2), and (6.3), we have: 

Theorem 7: 
da da dt 

d Irl = dt d Irl = y(V + (J'4,D)a = (u,D la, (6.4a) 

(6.4b) 

This result (6.4) shows that the Lie derivative in the 
direction of the relativistic motion is equivalent to the total 
derivative with respect to the line element Irl. 

Now consider the motion of an electron with a four
dimensional relativistic momentum p = mu in an external 
electromagnetic field. The Minkowski relativistic force ex
erted on the particle is defined as the derivative of the mo
mentum with respect to the line element I4.15 : 

Definition 7: 

y = dp . (6.5) 
d Irl 

Nikos Salingaros 711 



                                                                                                                                    

The electromagnetic interaction can be obtained by us
ing minimal coupling, i.e., the gauge identification between 
the particle momentum p and the electromagnetic vector 
potential a as in quantum electrodynamics. 14.20 (Here, q is 
the charge of the particle, which for an electron equals - e.) 

p(total) = p(original) + p(electromagnetic) 

= p(original) - qa. (6.6) 

The force due to just the external electromagnetic field 
corresponds to the derivative of the vector potential in (6.6). 
From (6.4), (6.5), and (6.6) we obtain 

.'7 = dd~1 = - q(u,D)a. (6.7) 

The relativistic Minkowski force can be written in 
terms of the commutator of u with the electromagnetic field/ 
as follows: In the V algebra, the field/is the D derivative of 
the electromagnetic potential a,f = D V a, along with the 
Lorentz condition (D,a) = 0. 7 The Lie derivative of the elec
tromagnetic potential is written in terms of the field/as 

(u,D)a = Hu,f], (6.8) 

The commutator can be calculated using the formulas 
given in Sec. 2. The Minkowski relativistic force (6.7) due to 
the external electromagnetic field is therefore equal toI4.15.20 

.'7 = - !q[u/] = - qUJ-l rAe!' (6.9a) 

=:}.'7A = q/AJ-lUW (6.9b) 

We may use the space-time decomposition of the elec
tromagnetic field (2.4) and the relativistic velocity u [(6.3a)] 
to write the Minkowski force (6.9a) in vector form, from the 
commutators of Table I. 

.'7 = qy[E + VXB + (E·V)a4
]. (6.10) 

We note that the measured force on a moving particle is 
given by Newton's law as the ordinary time derivative of the 
momentum; it is given by expression (6.10) without the fac
tor of y. Decomposing the particle's four-dimensional mo
mentum into the three-dimensional momentum p and the 
energy E as p = p + Ea4, the usual Lorentz force law is ob
tained from (6.2), (6.4a), (6.5), and (6.10) as l4 

~=q(E+ VXB), dE =q(E.V). (6.11) 
dt dt 

In this manner, the classical electrodynamic equations 
of motion arise in the formalism of the V algebra. 

7. CHARGED PARTICLE IN AN ELECTROMAGNETIC 
FIELD: SOLUTION OF THE EQUATIONS OF MOTION 

In this section, we apply the results of Sec. 5 to solve the 
electromagnetic equations of motion derived in the previous 
section. The solution follows immediately, once we express 
the Lorentz force law in the commutator form (5.1). 

The classical equation of motion can be written from 
Eqs. (6.5) and (6.9a) as a commutator of tensor types (using 
p = mu) as follows: 

du q 1) -=-If,u]. (7. 
dlrl 2m 
We assume for this discussion that the electromagnetic 
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field/is static, homogeneous, and ignore any self-interaction 
effects. In that case, the equation of motion (7.1) has a ca
nonical solution given by Eq. (5.2), where the parameter is 

the line element Irl = ~xJ-lxJ-l. 
Theorem 8: 

u(lr!) = exp[(qlrI/2mlf] Vu(O) Vexp[ - (qlrI/2mlf]. 
(7.2) 

This is a general solution of the motion of a charged particle 
in a static, homogeneous electromagnetic field, given in 
terms of the line element Irl. We proceed to discuss the phys
ical meaning of this result. 

Since/is a tensor oftype 2, the canonical solution (7.2) is 
in the form of a general Lorentz transformation (3.5). The 
motion of a charged particle is given by a simultaneous boost 
and rotation of the initial velocity. The simplest case is that 
of a pure magnetic field. The canonical solution (7.2) then 
describes a rotation of the space part of the velocity about the 
magnetic field direction. Therefore, the particle describes a 
helical path which twists about the magnetic field line (Fig
ure 2). From (4.1), (4.2), (7.2), and the decomposition 
/ = E 1\ a4 

- rB we have, when E = 0: 

u(lrl) = R(9)Vu(0)VR-I(9), 

9 = - (qlrllm)B. 

(7.3a) 

(7.3b) 

The angular velocity of the rotation is obtained as the 
time derivative of the angle by using (6.2) and the chain rule: 

n = ~ = - qB . (7.4) 
dt ym 

This is a standard resule4.19,20 [note that Fig. 1-I(a) in 
Ref. 20 describes the motion of a negatively charged parti
cle]. 

In the presence of both electric and magnetic fields, Eq. 
(7.2) gives a general description of the motion. It is instruc-

I 
I 

/ 
/ 

",-

, 

--- -

\ 
\ 
\ 

FIG. 2. Trajectory of positively charged 
particle in a magnetic field: (i) Initial veloc
ity with component along magnetic field; (ii) 
initial velocity with component anti parallel 
to magnetic field. 
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tive to discuss the rotation and boost components of the ca
nonical solution separately, even though they are acting si
multaneously. To this effect, we separate the exponential 
operator in (7.2) into space and space-time components. We 
use the following identity, which is easily verified via the 
Baker-Campbell-Hausdorff formula 17.18: 

exp(x + y):::::exp(x - Hx,y] + i[[x,y],y) 

Xexp(y + -b[[x,y],x]). (7.5) 

With the identification x = (q I rl 12m)E /\ u4 and 
y = - (qlrI/2m)rB, we have the separation of the exponen
tial operator in (7.2) into Lorentz boost and spatial rotation 
operators (4.1) and (4.5) as follows: 

exp( ;~f) = L( - h) V R(O), (7.6a) 

{

h = ME + q21rl2 EXB + ~ q31rl3 (EXB)XB + "', 
m 2m2 6 m3 

I I 
1 31 13 (7.6b) 

0= -~B+-L:.-(EXB)XE+ .... (7.6c) 
m 12 m 3 

We can evaluate the gyration frequency in the presence 
of an electric field; this is the ordinary time derivative of the 
rotational angle (7.6c) and is equal to (up to third order): 

n:::::~[( _.!L + q3 1r 121E12)B _ q31rl2 (EoB)E] . (7.7) 
Y m 4m3 4m3 

We see that the magnitude of the frequency as well as 
the direction of the axis of rotation depend upon the line 
element Irl. This implies a continuously changing helical 
motion. In the absence of an electric field, expression (7.7) 
reduces to (7.4), as it should. The magnitude of the gyration 
frequency is given by (again, to third order): 

Inl :::::...!L[IBI 2 + (q41r141E12 _ q2IrI2)IEXBI2]1I2. 
ym 16m4 2m2 

(7.8) 

A distinct expression for I n I is given in Refs. 21, 22, and 
27 from a solution ofthe scalar coefficent equation (6.9b). 
This is a system oflinear ordinary differential equations with 
constant coefficients, for which one assumes solutions of the 
form exp( ± vlrl) and exp( ± iAlrlJ. We have instead solved 
Eq. (7.1), which is an algebraic-differential equation in the 
Lorentz group basis, and have, in contrast, obtained an infi
nite series in Irl in the exponent. Using the congruent identi
ty to (7.5), 

exp(x + y):::::exp(y + -b[[x,y],x]) 

Xexp(x + Ux,y] + i[[x,y],y]), (7.9) 

we can verify that the inverse operator to (7.6a) separates as 

exp[ - (qlrl12mlf] = R-I(O)VL -I( - h). (7.10) 

Hence, the complete solution (7.2) becomes, with (7.6b) and 
(7.6c): 

u(lrl) = L( - h)VR(O)Vu(O)VR-I(O)VL -It - h). (7.11) 

Now, we can apply the transformation equations from 
Sec. 4 to write down (7.11) in vector form. Denote the initial 
velocity as 

(7.12) 
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The canonical solution (7.11) is written down in two 
steps. First, the rotation ofthe space part of the initial veloc
ity Vo [(7.12)] is described by a vector K, which is obtained 
from (7.2), (7.11), and (4.3) as a function of 0 and Vo: 

K(Vo,O) = Vo coslOI + [(OXVo)/IOI]sinIOI 
+ [0(OoVo)/101 2](1 - cosIOI). (7.13) 

After the rotation (7.13), the initial velocity (7.12) be
comes YolK + ( 4

). The other part ofthe motion is a Lorentz 
boost of this 4-vector. Using (7.12), (7.13), and (4.8) gives an 
expression which may be separated into space and time com
ponents using (6.3a) to obtain 

u(lrl) = YolK + (h/lhl)(sinhlhl 
+ [(hoK)/lhl](coshlhl- 1))1, 

y(lrl) = Yol coshlhl + [(hoK)/lhl]sinhlhll· (7.14) 

This expression describes the velocity of a charged par
ticle as a function of the initial velocity, the line element Irl, 
and the external electric and magnetic fields, via (7.6b), 
(7.6c), (7.12), and (7.13). The boost vector h and the gyration 
angle 0 are in general given as an infinite series in the electric 
and magnetic fields (7.6). The only case when the series is 
finite is when E is parallel to B: then, EXB = 0 and all the 
higher-order terms in (7.6) which necessarily contain EXB 
are automatically zero. In that case, Eq. (7.14) is an exact 
solution of the equation of motion. 

An expression may be obtained directly from the ca
nonical solution (7.11) in the case of a particle which is ini
tially at rest. The initial relativistic velocity (7.12) is then 
equal to u(O) = u4

, and the velocity is given by 

u(lrl) = L( - h)VR(0)VU4VJR- I(0)VL -II - h). (7.15) 

The commutation rules (3.4) applied to the rotation and Lor
entz boost operators (4.1) and (4.5) give the following expres
sion: 

u(lrl) = L( - 2h)Vu4 = exp(h/\u4)Vu4. (7.16) 

Hence, the velocity of a particle initially at rest in a 
constant, homogeneous electromagnetic field is given in 
terms of the boost vector h (7.6b) [cf. Appendix, Eq. (AI)]. 
Using identity (3.3c) gives 

u = (h/lhl)sinhlhl, V = uly = (h/lhl)tanhlhl, 

u4 
= Y = coshlhl· 

(7.17) 

We should point out that even though (7.17) is written 
down in closed form, it is not an exact expression, since h is in 
general given as a series (7.6b). Expression (7.17) can alter
nately be obtained by setting K = 0 and Yo = 1 in the general 
velocity (7.14). It is instructive to write down the velocity 
(7.17) in polynomial form. The velocity components are 

functions ofthe line element Irl = ~t2 - (ror), and the elec
tric and magnetic field components, and are given as follows: 

u(lrl):::::(qlrl/m)E + (q2IrI2/2m2)EXB 
+ i(q3IrI3Im3)[(IEI2 _ IBI2)E + (EoB)B], 

(7.18a) 
Y = u4(lrl)::::: 1 + (q2IrI2/2m2)IEI2 

+ (q4IrI4124m4)(IEI4 - IEXBI2). (7.18b) 

The first term in the velocity (7.18a) is due to the Lorentz 
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force; the second term is the "drift velocity," which, since it 
involves q2, is independent of the sign of the charge. 14.19.20 
Expression (7.18) is given to second order in Ref. 20. The 
third and fourth order terms are, to our knowledge, new. 

8. THE THOMAS PRECESSION 

In this section, we present a simple derivation of the 
Thomas precession, which is a well-known consequence of 
relativity. In contrast to the usual derivations given in text
books, we do not resort to an infinitesimal description, but 
derive a finite result. The generality of this result allows the 
calculation of a higher-order term for the first time. This new 
term is a very small correction to the boost, and is not a 
correction to the rotational (precessional) motion. We em
phasize that these are not actual physical effects at all, yet are 
genuinely perceived by an observer in another frame of refer
ence. 

We essentially wish to evaluate the net result of two 
consecutive Lorentz boosts in different directions. This can 
be done as follows: Consider a physical system described by a 
tensor type a' that is moving with a velocity V with respect to 
an observer. The observed tensor type a in the laboratory 
system is described by an inverse Lorentz transformation, 
obtained from (4.7) as 

a = lL -l(b) Va' V lL(b), (8.la) 

tanhlbl = lVI, coshlbl = (1 - IVI2)-1/2 = y(V). 
(8.lb) 

Now suppose that the first observer is moving with a 
velocity W with respect to a second observer. How does the 
physical tensor type a appear to the second observer? This is 
a result of two consecutive Lorentz transformations in the 
different directions V and W, described as follows: 

a(observedl = lL -I(d) V [lL -l(b) Va' V lL(b)] V lL(d), (8.2a) 

tanhldl = IWI, coshldl = (1 _IWI2)-1/2 = y(W). 
(8.2b) 

The physics of the system a(observed) should be the result 
of a Lorentz transformation by the combined boost b + d. A 
correction term which corresponds to a rotation in three
dimensional space arises naturally from the algebraic struc
ture, as can be seen below. First observe that the combina
tion of the two boosts (8.2a) can be written using associativity 
as 

a(observed) = [lL -I(d) V lL -I(b)] Va' V [lL(b) V lL(d)]. (8.3) 

The net Lorentz boost operator corresponds to the ex
plicit expression: 

lL -l(d) V lL -l(b) = exp(!d /\ (]"4) V exp(!b /\ (]"4). (8.4) 

We now apply another identity derived from the Ba
ker-Campbell-Hausdorffformuia to evaluate (8.4). In a pro
cedure akin to that in the previous section, we combine the 
commutator terms in the following manner: 

exp(x)exp(y);::::exp(x + y + iHx,y],x] 

+ ~ [[x,y],y]).exp(Hx,y]). (8.5) 

Substituting x = !d/\ (]"4 andy = !b /\ (]"4 in (8.5) gives, to sec-
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ond order, 

lL -I(d) V lL -I(b) 

;::::exp[!(d + b)/\(]"4] V exp(Hd/\ (]"4,b/\ (]"4]). (8.6) 

The correction term is easily evaluated from Table I to 
be 

(8.7) 

From (4.1) and (4.2) we see that this correction term 
describes a spatial rotation in the three-dimensional sub
space of space-time. The derivation is now complete, and the 
net result of two consecutive Lorentz transformations is 
shown to be a boost by the sum of the two separate boosts, 
along with a spatial rotation in the plane defined by the two 
boosts. From (8.6), (8.7), (4.1), and (4.5) we have, to second 
order 

lL-l(d) V lL -1(b);::::lL -l(d + b) V R-1(!dXb). (8.8) 

The rotation part of(8.8) is important because in the 
limit of nonrelativistic velocities, b;:::: V and d;:::: W, the angle 
of rotation is given by 

1};::::!WxV (nonrelativistic). (8.9) 

The Thomas precession is the result of observing a sys
tem moving with a velocity V, which is continually changing 
in direction. At each point in time, the system moving with 
velocity V is further boosted by the velocity W = Vt where 
V = d V / dt. The net result is a boost by the sum of the two 
velocities, combined with a time-dependent rotation. The 
(nonrelativistic) angle of the rotation is given by (8.9) as 
I};::::! V X V t. If one assumes a constant rate of rotation, this 
angle is equal to nt, where n is called the Thomas preces
sion I5.16: 

(8.10) 

A related, but distinct derivation is given in Refs. 28 and 
29. 

Note that the rotation effect in (8.8) is correct to third 
order, since the operator expansion of(8.5) gives not an addi
tional correction to the rotation, but a small correction to the 
boost. We can calculate the next-order corrections to (8.4) as 
exponentials of the two terms [[x,y],x] and [[x,y],y], as fol
lows: 

[[x,y],x] = WbXd)Xd] /\(]"4, 

[[x,y],y] = WbXd)Xb] /\(]"4. 

(8.11 ) 

Following (8.5), the net Lorentz boost ofa system which 
is a result of two successive boosts in different directions is 
obtained from (8.11) and (4.5) as 

lL -l(b + d + H21bl 2d - Idl2b + (b·d)(d - 2b)]). (8.12) 

The third-order finite boost correction in (8.12) appears here 
explicitly for the first time. It is interesting that this expres
sion is not symmetrical between the two consecutive boosts b 
and d. This concludes our derivation of the Thomas preces-
sion. 

9. DISCUSSION 

In this paper we have constructed an intrinsic algebraic 
setting for the Lorentz group using differential forms and the 
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Clifford algebra. We then used this formalism to perform 
spatial rotations and Lorentz transformations. As a practi
cal method, it is easier to use and is more general than the 
traditional methods. Contrast, for example, the description 
of rotations in three dimensions in terms of Euler angles or 
the Cayley-Klein parameters given in Ref. 25. Also, con
trast the usual treatments of Lorentz transformations for 
motion along only one particular coordinate axis with our 
general description. 

The Thomas precession effect is usually either omitted 
from discussions of Lorentz transformations, or is given a 
somewhat disconnected treatment, always in terms of infini
tesimal parameters. 15,16 We were able to derive the Thomas 
precession as a direct consequence of the Lorentz group 
structure. Furthermore, we obtained a finite description, en
abling us to calculate all the previously overlooked correc
tion terms. The term which is next higher in order after the 
usual Thomas precession term was shown to be a boost cor
rection, and not a correction to the rotational motion. 

Our key contribution in this paper is that we have treat
ed the Lorentz group as a finite Lie transformation group. 
By this, we mean manipulating the exponentials which are 
the elements of the Lie group, as opposed to just the infinite
simal generators, which are the elements of the Lie algebra. 18 

The formalism obtained by combining the Clifford algebra 
with the differential form basis enabled us to realize the ex
ponentials in closed form, and to use them to calculate re
sults of physical interest. All our results followed essentially 
from evaluating combinations of exponentials using the Ba
ker-Campbell-Hausdorff formula. The utilization of a glo
bal instead of a local description of the Lorentz group in 
physical applications gives results of greater generality. 

As a consequence of the above formulation, we were 
able to write down the solution to the canonical system of 
equations dal dt = [B,a], where a and f3 are tensor fields in 
the Clifford algebra. This equation includes the rotation, 
Heisenberg, and Lorentz force equations as special cases. 
Three cases were solved explicitly by this method: (i) a rotat
ing system in space, (ii) the precession of a spin in a homogen
eous magnetic field, and (iii) the motion of a charged particle 
in a constant homogeneous electromagnetic field. 

This paper supplied a mathematical framework in 
which to solve case (iii) in general. Our results are in agree
ment with the relativistic velocity of a charged particle in a 
constant, homogeneous electromagnetic field given to sec
ond order in Refs. 19 and 20. We were able to include all the 
higher-order terms in a straightforward manner; the closed
form expressions were given in this paper, and some special 
cases were exhibited to fourth order, 

We also obtained an expression for the gyration fre
quency of a particle's orbit, which, however, differs from the 
usual one. 21,22.27 The reason for this discrepancy is that the 
usual derivation assumes a solution which is linear in the 
exponent, We, in contrast, made no such assumption, and 
were forced by the Lorentz group structure into a power 
series in the exponent. Therefore, while the usual solution is 
a perfectly valid one, it does not appear to be the most gen
eral solution of the problem which takes into account the 
Lorentz group and the geometry of the Minkowski space. 
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Our method is strictly distinct from the usual "guiding 
center" or "adiabatic" approximation to the motion of a par
ticle in an electromagnetic field. 19,21,22 Nevertheless, the mo
tivation of separating the gyrational motion of the particle 
from the total motion is shared by both methods. We believe 
that the results obtained in this paper indicate the applicabi
lity of this mathematical formalism to the description of 
physics in four-dimensional space-time. 

APPENDIX: DERIVATION OF THE RELATIVISTIC 
PARAMETERS 

For completeness, we review some elementary results 
in order to show how the relativistic parameters are obtained 
in the algebraic framework of this paper. The velocity of a 
particle in its own rest frame is equal to (74. To an observer, 
its relativistic velocity u is just the inverse Lorentz transfor
mation of (74 to his frame, described by (4.5), (4.7), and (3.4c): 

u = lL -1(b) V (74 V lL(b) = lL( - 2b)V(74. (AI) 

Using (3.4a), (3.4c) and the identity (74 V (74 = 1, we ver
ify the unit norm of the 4-velocity u: 

u Vu = lL( - 2b)V (74 V lL( - 2b)V (74 

= lL( - 2b) V lL(2b) = 1. (A2) 

The relativistic velocity is alternately defined as the der
ivative of the position 4-vector r with respect to the line ele
ment Irl, with r = dt Id Irl: 

u = ~ = dr..!!!...-. ..!!!...-.u4 = V (74 
d Irl dt d Irl + d Irl r( + ). (A3) 

The usualformula for r is obtained from (A2), (A3), and 
V algebra, as follows: 

u V u = r(V + (74) Vr(V + (74) = y(l - IVI2) = 1. (A4) 

Finally, the parametrization of the Lorentz boost in 
terms of hyperbolic functions is obtained from (AI). Using 
(3.3c), (4.5), (AI), and (A3), we have 

u = {coshlbl + [(bJ\(74)/lbIJsinhlbll V (74 

= (74 cosh lbl + (b/lbl)sinhlbl 
= r(V + (74) 

=> r = coshlbl, rV = (b/lbllsinhlbl. (AS) 
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Constitutive equations are derived for nonlinear and linear, nonlocal piezoelectric elastic solids. 
Restrictions arising from the second law of thermodynamics are determined. The theory of 
nonlocal em elastic solids is introduced and applied to the discussion of Debye screening of an 
electron in an elastic solid with defect and dispersion of optical and piezoelectric waves. 

PACS numbers: 77.60. + v, 05.70. - a, 78.90. + t 

1. INTRODUCTION 

According to Maxwell's electromagnetic theory, plane 
waves are nondispersive. Therefore, the refractive index in 
an isotropic nondissipative medium is constant. Yet experi
ments show that the refractive index depends on frequency 
and wavelength. Consequently, the dispersion is the rule 
rather than the exception. Electromagnetic dispersive phe
nomena are felt strongly in the high frequency region. For 
most media, as the frequency approaches 1014 Hz, the elec
tron clouds lag in the adaptation to the electric field. In the 
region between microwaves and infrared frequencies, atomic 
distortions cause dispersion. 

At transition frequencies to exciton states in a crystal, 
the dependence of exciton energy on the wave vector cannot 
be neglected. In this case, corresponding resonant frequen
cies depend on the wave number. Even for the static fields of 
stationary electrons, we have the Debye screening resulting 
from nonlocal interactions. 

In plasma physics, at low temperature, it has been ob
served that the effect of the spatial dispersion on electromag
netic properties of metals is considerable. 

In classical electromagnetism, to take care of the fre
quency dependence of the refractive index, usually, excur
sions are made to spring and dashpot models. 1 In this way, 
an admixture of continuum and atomic models are brought 
together. While this curve-fitting process gives satisfactory 
results for the refractive index in various frequency ranges, it 
is not based on a fundamental theory which can explain oth
er physical phenomena without further modifications. More 
satisfactory quantum mechanical approaches, on the other 
hand, present major mathematical difficulties. 

In the prediction of magnetic phenomena, similar situa
tions are encountered. For example, the effects of magnetic 
domains and spin waves cannot be explained by means of 
classical electromagnetism. Much of the published work in 
this area makes use of the ideas of inner structure and do
mains that exist in materials, either in the form of multi poles, 
microstructures, or atomic structure (cf. Brown,2 Maugin 
and Eringen,3 KitteV and Bloch5). 

There exists a large literature on the subject of wave
number-dependent dielectric functions which is based on 
quantum and statistical mechanical consideration (Pines,6 

Lindhard,1 Ehrenreich and Cohen,s Adler,9 Penn,1O and 
Wiserll ). These works are concerned only with the dielectric 
function of nondeformable solids. A survey on the electrody
namics of media with spatial dispersion was also published 

by Rukhadze and Silin. 12 This study is also concerned with 
the linear theory of nondeformable media, and it has some 
contacts with the present approach for the case of rigid so
lids. However, thermodynamical considerations were not 
studied. Moreover, the Fourier domain formalism used 
there fail to apply for nonlinear theory. 

Recently, we gave a general theory of non local, nonlin
ear electromagnetic theory of elastic solids. 13 Specific consti
tutive equations were not developed, however, to discuss pie
zoelectricity and piezomagnetism. In the case of 
non-heat- and electric-conducting materials, the theory can 
be simplified a great deal. 

Although nonlinear theory is difficult to deal with, it 
should have significant applications on surface phenomena 
and in phase transition. Linear theory, however, has many 
practical applications and can be used to study a large class 
of phenomena in the molecular scale. In other works, 14,15 we 
have shown that, by means of non local elasticity theory, the 
dispersion of elastic waves can be predicted in the entire Bril
louin zone. Moreover, nonlocality eliminates unphysical 
stress singularity at crack tips l6,17 so that a natural fracture 
criterion based on the cohesive stress can be used to predict 
the crack instability. The present paper is intended for the 
construction of a theory of nonlocal piezoelectricity which 
has similar possibilities for waves and for electromagnetic 
singularities. 

While any theory involving electromagnetic interac
tions should be relativistic, it is possible to construct a ration
al theory on nonrelativistic grounds for small material veloc
ities v as compared to the speed of light c in a vacuum 
(v2/c2<1). 

In Sec. 2, we present local balance laws which were 
obtained before. 13 The second law of thermodynamics essen
tial to our development is presented in Sec. 3. In Sec. 4, we 
begin the development ofthe nonlocal constitutive theory. 
Section 5 employs a special representation for the response 
functionals. The linear theory is presented in Sec. 6. Consti
tutive equations of isotropic, uniaxial, and anisotropic elas
tic dielectrics are the subject of Sec. 7. 

With Sec. 8, we begin the treatment of some problems. 
The Debye screening of the field of a stationary electron in 
an elastic solid with defect is obtained in Sec. 8. Section 9 
discusses dispersion of optical modes, and Sec. 10, piezoelec
tric waves. It is shown that nonlocal theory leads to disper
sive waves, and there is no necessity for recourse to any dis
crete spring models. In fact, once the nonlocal material 
moduli are determined, the theory can be used to solve prob-
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lems without any further adjustment. 
The theory in the long-wave limit naturally converts to 

the classical theory and, in the short wavelength limit, it can 
account for the local distortions and dispersions arising from 
the discrete nature of the atomic structure. In the last sec
tion, we make some remarks on the subject of memory-de
pendent materials. 

2. BALANCE LAWS 

The body at the natural state occupies a region V -~, 
the volume V excluding a discontinuity surface~. The mo
tion carries a material point XE V - ~ to a spatial place 
XEr - (7, where r - (7 is the image of V - ~ at time t. The 
motion is a bijective mapping expressed by 

x = x(X,t )~X = X(x,t ). (2.1) 

We employ a rectangular frame of reference so that rectan
gular coordinates of x and X are denoted by x k and X K' 

respectively (k, K = 1,2,3). Since (2.1) is bijective, the Jacobi
an must be positive, 

J = det(x k,K ) > 0 . (2.2) 

Henceforth, we employ a comma to denote partial derivative 
and a dot to express the material derivative. The usual sum
mation convention on repeated indices is also assumed, e.g., 

aXk . aXk I 
Xk,K =--, x k =-- =vdx,t), aXK at x 

(2.3) 
. aVk 

ak = Vk = - + Vk IVI . at . 
Elastic dielectrics are nonconductors and carry no free 

charge. Therefore, for piezoelectric solids, electromagnetic 
(em) balance laws are identical to those of the classical (local) 
theory, since the free-charge density, current, and the pole 
strength (local and nonlocal) vanish. We have, therefore, 
Maxwell's equations, expressed in Lorentz-Heaviside units, 
in r - (7: 

V·D=O, 

1 aB 
VXE+--=O, 

c at 

(2.4) 

(2.5) 

v . B = 0 , (2.6) 

VXH_~aD=o, (2.7) 
c at 

where D, E, B, and H are, respectively, the electric displace
ment vector, electric vector, magnetic induction vector, and 
magnetic field vector. c is the speed of light in vacuum. 

Maxwell's equations are supplemented with the me
chanical balance laws. We assume that the body is inert, and 
gravitation force and couple residuals are negligible. Conse
quently, mechanical balance laws (conservation of mass, ba
lance of momenta and energy) are expressed as 13,18 

718 

polp = det(xk .K ), 

t kl.k +p(1t - VI) + Mit = 0, 

(2.8) 

(2.9) 

tkl +Pk~1 + JikBI =tlk +PI~k + JiIBk=EtW 
(2.10) 
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pE - tk/VI•k - qk,k - ph - p'l/. (P/p)" +..A'. B = 0, 
(2.11) 

where Po is the mass density in V - ~ andp, twit, VI' E, qk' 

and h are, respectively, the mass density, stress tensor, body 
force density, velocity vector, internal energy density, heat 
vector, and the heat source in r - (7. 'l/ and..A' are the 
electric and magnetization vectors in the proper (comoving) 
frame as defined by 

'l/ = E + (l/c)vXB, ..A' = M + (l/c)vXP. (2.12) 

Here, M and P are, respectively, the magnetization and po
larization vectors in the fixed frame so that 

D=E+P, B=H+M. (2.13) 

The em body force M f, in the absence of the charge and 
current, is given byl8 

M f= (VE)' P + (VB)' M + ~ [(PXB)vk 1.k 
C 

1 a 
+ - - (PXB) . (2.14) 

c at 
Accompanying Maxwell's equations and mechanical ba
lance laws, we have thejump conditions across (7. These con
ditions give boundary conditions when (7 is made to coincide 
with the surface of the body. For brevity, we do not list these 
conditions here. They can be found in Ref. 18, Sec. 10.17. 

3. SECOND LAW OF THERMODYNAMICS 

In classical field theories (local continuum theories), the 
local form of the entropy inequality plays a central role. The 
second law of thermodynamics is a statement about the dissi
pative process that takes place in the entire body. The local
ization used in continuum physics is a reinterpretation of 
this law, which produces severe restrictions to the thermo
dynamic process. This fact has come to the surface clearly in 
the case of contemporary mixture theories, where often the 
mixture law is used instead of the entropy production law for 
each species. While this question still remains open, it is clear 
that the global entropy production must be nonnegative in 
any case. It is also less restrictive, allowing possible entropy 
exchanges among various points of the body. 

For chemically inert bodies, the second law of thermo
dynamics can be expressed as 

.!!...- ( P17 dv - ( ~ q • n da - ( ph dv-;.O, 
dtJ, --a Ja7-a 0 J~-a 0 

(3.1) 

where 17 is the entropy density and 0> 0 is the absolute tem
perature. From this, by means of Green-Gauss and the 
transport theorems, we derive l8 

I-a [pi] - V' (q/O) - (ph/O)] dv 

+ 1 [P17(V - v) - q/O] • n da-;'O , (3.2) 

where v is the velocity of (7 and a boldface bracket is used to 
indicate the jump across (7. These expressions are equivalent 
to 
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pi] - v . (q/O) - (ph 10) - ps>O, in r - u, (3.3) 

[p1](v - v) - q/O] • n = N, on u, (3.3') 

where sand N are called body and surface entropy residuals 
which are subject to the restrictions 

i-a ps dv = 0, i N da = 0 . (3.4) 

If we eliminate h between (3.3) and (2.11), we obtain 

p' . 1 I - fi (t/! + 1]0) + fi tk/V1.k fi2 qkO.k 

+E...If'(Plp), -~J('B-ps>O, o 0 
(3.5) 

where we introduced the Helmholtz free energy by 

t/! = E - 01] . (3.6) 

We now introduce various fields in the reference frame 
by 

TKL = JXK,kXL,ltkl , QK = JXK,kqk , 

IlK = JXK.kPk , MK = JXK,kvll K , 

CKL = Xk,KXk.L, If K = If kXk.K , 

O.K = O.kXk,K' BK = Bkxk,K . 

With these, (3.5) can be transformed into 

- Po(1p + 1]8) +! ETKL CKL + (lIO )QKO,K 

- IlK 'if K - MKBK - Po(fS>O, 

where we use J = polp and 

CKL = (Vk.1 + V1.k)xk.KXI,L , 

and set 

(3.7) 

(3.8) 

4ft = t/! - Po-1IlK If K = E - 01] - Po-IJIK If K . (3.9) 

Since we assume that the heat and electric conduction are 
negligible, QK = 0, and 0 is uniform throughout V - ~, the 
volume integral of (3.8), upon using (3.4), gives 

f [ - Pol Ip + 1]{) ) + ! E T KL C KL 
JV-I 

- IlK 'if K - MKBK ] dV>O. (3.10) 

It is posited that the inequality (3.10) must not be violat
ed for any thermodynamic process that is physically admis
sable. In Sec. 4, we employ this axiom to derive the constitu
tive equations of nonlocal piezoelectric solids. 

4. CONSTITUTIVE EQUATIONS 

In accordance with the axiom of causality, 18.19 all phys
ical processes that take place in a body are the result of mo
tions (deformations). When the intrinsic motions of subbo
dies in a volume element are taken into account, this implies 
centroidal motions of the volume element and dependence 
on temperature, polarization, and magnetization. Ignoring 
the memory dependence and conduction, this is equivalent 
to the selection of the independent constitutive variables. 

cy' ! xIX'), If K(X') , BK(X'); 0 J , (4.1) 

where xIX'), If K(X'), BK(X') represents the motions, electric 
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fields, and magnetic inductions of all points X' of the body at 
time t. The dependence on t is suppressed for brevity. Simi
larly, when X' is taken to be the fixed reference point X, we 
suppress it, e.g., we write 0 =0 (X,t ). 

Constitutive equations express the functional depen
dence of the set 

z = {4ft,1]'ETKL , IlK' MK J (4.2) 

at a reference point X at time t to the set (4.1), e.g., 

4ft (X,t) = Y[x(X'), If(X') , B(X'); 0], (4.3) 

where Y is a functional of the first three functions and a 
function of O. Expressions of this type are written for all 
members of Z. Response functionals (such as Y) must be 
form-invariant under arbitrary spatial translations and rota
tion. This implies that Y will depend on xIX') only through 
I xIX') - xIX) I. Since the distance can be expressed as a func
tional of C KL' for the elastic bodies, it proves to be helpful to 
replace Eq. (4.3) by 

4ft(X,t) = Y[G(X'); G,O], (4.4) 

where 

G'=G(X')=[CKL(X'), I&' K(X') , BK(X')j , 
(4.5) 

G-[CKL , I&'K' BKJ· 

We assume that G (X') and G possess continuous partial de
rivatives with respect to their arguments. 

In order to introduce a topology to the space of func
tions G (X'), we define the inner product of two such sets by 

(G; ,G ;)H = L-I H(IX' - XI)G1(X')· G2(X') dV(X') , (4.6) 

where 

G1(X')· G2(X') = tr(C; C;) + If; • If; + B; • B; (4.7) 

and the influence function H (I X' - X I) is a positive, decreas
ing function of I X' - X I such that H (0) = 1. It emphasizes 
the influence of motions and em fields near the reference 
point X over the distant points from X. This is in accordance 
with the attenuating neighborhood hypothesis 18,19 based on 
the nature oflong-range intermolecular forces. The norm of 
the set G ' is defined by 

IIG'· G'II = (G',G')j;2. (4.8) 

The space of functions G ' is now a Hilbert space. 
There exist many choices for the influence function. We 

mention two such functions as examples: 

H(IX' - Xi) = [1 + a(X)IX' - XI] -1/2, 

(4.9) 
H(IX' - XI) = exp[ - a(X)IX' - XI], a(X»O. 

It is now possible to calculate 

Ip = J4ft 8 J4ft G f 84ft G' dV' , 
JO + JG + )V-I 8G' 

(4.10) 

where the term 84ft 18G' denotes the Frechet partial deriva
tive. We express (4.10) in the equivalent form 

Ip=J4ft 8 [J4ft f (~)* dV']G+~, 
JO + JG + )V-I 8G' 

(4.11) 
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where 

g~ f [ 8Cf1, iT - (~)* G] dV' . (4.12) Jv-x 8G 8G 
Here, an asterisk is used to indicate the interchange of X' and 
X, i.e., 

A (X' ,X) = A (X,X') . (4.13) 

Note that, because of anti symmetry of g in X and X', we 
have 

f g dV=O. 
JV-I 

(4.14) 

Substituting (4.11) into (3.10) and using (4.5) and (4.14), we 
obtain 

Since (}, C KL' ~ K' and iJ K can be varied independently and 
arbitrarily throughout V - I from a theorem of calculus, it 
follows that inequality (4.15) will not be violated if and only if 

(4.16) 

ETKL =2Po--+2po -- dV,(4.17) aCfl I (8Cf1)* , 
aCKL V-I 8CiL 

ilK = -Po~-Po f (~)* dV', (4.18) 
a1lK JV-I 811i 

MK = -Po---Po -- dV. aCfl I ( 8Cf1 )* , 
aBK V-I 8Bi 

(4.19) 

These are the nonlinear constitutive equations for nonlocal 
piezoelectric solids. The spatial forms of these equations fol
low from Eq. (3.7): 

Etkl =.!!-. ETKLXk.KXl.L , 
Po 

Pk = .!!-.ilKxk.K , 
Po 

vii k =.!!-. MKxk.K . 
Po 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

Since the entropy production vanishes, we conclude that 
nonconducting piezoelectric solids are in thermodynamic 
equilibrium. Equations (4.17) to (4.23) provide the source for 
approximate theories. 
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5. ADDITIVE FUNCTIONALS 

For most materials, it is not necessary to consider a 
general functional, for the description of free energy. Addi
tive junctionais, in the sense of Friedman and Katz,20 are 
adequate to characterize most piezoelectric substances. For 
such functionals, we have the representation 

PoCfl = ~ f S(E iL,1Ii,B i;EKL ,1I K,BK,e) dV' , 
2 JV-I 

(5.1) 

where we also introduced Lagrangian strain tensor EKL by 

2EKL = CKL - 8KL . (5.2) 

The total free energy of the body is given by 

f I dV = ~ f f S dV' dV. (5.3) 
JV-I 2 JV-IJV-I 

From Eq. (5.3), it is clear that only the symmetric part of 
S in X and X' contributes to the total energy. Thus, we may 

* select S = S and we have 

rJ= __ 1_ f as dV', 
2po JV-I ae 

ETKL = f ~dV', 
JV-I aEKL 

ilK=_f ~dV', 
JV-I a1l K 

MK = - f as dV'. 
JV-I aBK 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

Polynomial constitutive equations of various degree may be 
derived from Eqs. (5.4)-( 5. 7) by expressing S as a polynomial 
in the vector and tensor variables. 

6. LINEAR CONSTITUTIVE EQUATIONS 

To obtain linear constitutive equations, we express S as 
a second-degree polynomial in the variables (E KL' 11 K,B K ) 

and (E iL,1Ii,B i): 

* S=S'+S' 

S' = ~o +I~LEKL + ~~LMNEKLEMN 
+ ~ iLMNEKLE ~N - E~LM1I KELM 

-EiLM1IKEiM -H~LMBKELM 

- H 'x.LMBKE iM - xOf1l K - k~~ 11 K 11 L 

(6.1) 

- ki~ 11 K 1Ii - XO:BK - k~BKBL - ktr.BKB i 

(6.2) 

where the material moduli I 0 ,I ~L , ... ,A iL are functions of 
e, X, and X' and they possess the following symmetry rela
tions: 
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~~LMN =~~KMN =~~LNM =~~NKL' 

• 
~KLMN =~LKMN =~KLNM =~~NKL' 

• 
EKLM =EKML =EKLM , 

• • 
HKLM = H KML = H KLM'XK~ = XL~ , 

• 
X;/t = XL~ . 

Substituting (6.1) into (5.4) to (5.7), we obtain 

(6.3) 

= __ I_(a~ + a~KL E _ aXE ~ _ arl B ) 
'TJ 2po ae ae KL ae K ae K 

. . .) a'~O a OE a OB 1 ~ KL ~K ~K / __ r (--EKL+-~K--BKdV' 
2po JV-I ae ae ae 

(6.4) 

ETKL = ~KL + ~KLMNEMN - EMKL ~ M - HMKLBM 

+ r (~KLMNE~N -E~KL~~ -H~KLB~)dV', JV-I 
(6.5) 

JIK = xi + xiL ~ L + EKLMELM + AKLBL 

+ r tx~~L +EKLMELM +AKLBL)dV', JV-I 
(6.6) 

MK =x: +rlLBL +HKLMELM +ALK~L 

+ r tx;/tB L + H KLME LM + A LK ~L) dV' , JV-I 

where we set 

{~~ KL ~ KLMN,E MKL ,H MKL ,xi ,rl ,xiL ,X:L,A KL J 

= r {~O~h~~LMN,E~KL' JV-I 
H o OE OB OE OB,A ° J dV' MKUX K ,x K ,x KL ,x KL KL 

and, in Eq. (6.4), we dropped quadratic terms. 

(6.7) 

(6.8) 

To obtain the spatial forms of these equations, we em
ploy Eqs. (4.20) to (4.23) and use 

(6.9) 
po!p=1 - err' X k.K = (c5MK + EMK + RMK )c5Mk , 

where c5 Mk is the Kronecker delta, when the spatial and ma
terial frames are coincident, and ek1 and r k1 are, respectively, 
the linear strain and rotation measures which are defined, in 
terms ofthe spatial displacement vector Uk' by 
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ek1 = !(Uk,l + U1,k) , r k1 = !(Uk,l - ul,d· 

We also introduce spatial material moduli by 

(6.10) 

~ KL = Uklc5kKc51L' ~ KLMN = Uklm"c5kKc51Lc5mMc5"N' 
(6.11) 

E ' I i) i) i) IE lEi) 
KLM = eklmUkKUILUmM' XK = Xk UkK"" 

and drop nonlinear terms in the expressions of 'TJ, E t kl' P k , 
and JI k' resulting in 

S'=~O+~I[ekl +2ekm (em1 +rm1 )] +!~lm"eklem" 

- e~lm ~ kelm - h ~lmBkelm 

_X~E[~k + ~I(elk +rlk )] 

- !t~f~ k ~I - X~B[Bk + BI(elk + r lk )] 

- !t~fBkBI - A. ~I ~ kBI 

+ ~Uklm"ekle;"" - eklm ~ kelm 

- h klmBkelm - !xkf~ k ~I 

- !xkfBkB I-A. kl~ kB I' 
(6.12) 

( . . .) 1 a~l, aX~E , aX~B, / --- r --ekl --- ~k ---Bk dv, 
2po Jr-O' ae ae ae 

(6.13) 

+ 1-0' (Uklm"e;"n -e;"kl~;" -h;"kIB;")dv',(6.14) 

Pk = (1 - err)xf + xf(ekl + rkl ) + xfl~1 + eklmelm 

+A.kIBI + fr-u txkf~1 +eklmelm +A.kIB/)dv', 

(6.15) 

Jlk = (1- err)xf + xf(ekl + rkl ) + XflBI + hklmelm 

+A.lk~1 + 1--0' txkfBI +hklmelm +A.lk~/)dv'. 
(6.16) 

Local (unprimed) material moduli (~,ukl,eklm"") are func
tions ofx and e and the nonlocal (primed) moduli 
(ukl,eklm ,UkE, ... ) are functions of x, x', and e. For homogen
eous materials the local moduli are independent ofx and the 
nonlocal moduli are functions ofx' - x. Physical meaning of 
various nonlocal moduli are the same as in the local theory, 18 

except that they are volume densities, i.e., 

Uklmn = elastic moduli volume density, 

eklm = piezoelectric moduli volume density, 

h kim = piezomagnetic moduli volume density, 

X kf = dielectric susceptibility density, 

X kf = magnetic susceptibility density, 

A. kl = magnetic polarizability density. 
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If the natural state is stress-free, unpolarized, and unmagne

tized, then a kl = xf = xf = O. In this case, we can absorb 
the local terms into nonlocal ones by redefining them, and 
then Eqs. (6.12)-(6.16) may be expressed as 

(6.18) 

Etkl = L-o- (a"lmne;"n - e;"k11f?;" - h ;"kIB ;") dv', 

(6.19) 

Pk = 1'-0- fx"TIf?; +e"lme;m +A"IB;)dv', (6.20) 

J( k = L _ 0- fx"fB; + h "lme;m + A;k If?;) dv', (6.21) 

where now the nonlocal moduli must be a Dirac-delta func
tion sequence, so that, in the limit when the nonlocality van
ishes, these equations must revert to classical (local) forms. 

If the material possesses certain symmetry represented 
by a group of orthogonal transformations [S J , then the ma
terial moduli must obey the following types of functional 
relations: 

SkpSlqX;;(K,e) = X"T(SK,e) , 

(6.22) 

SkpSlqSmrSnsa;qrs(K,e) = a"lmn (SK,e) , 

where K = x' - x, for all members of the group [S J. As a 
consequence of these, the material moduli will be restricted 
in their dependence on x' - x. For example, for the isotropic 
dielectrics, these imply that 

X kf = X; Okl + X; (x" - xk)(x; - xI!, 

e"lm = e; (x" - xdD'm + e; [(x; - XI )Dkm + (x;" - Xm )okd 

+ e;(x" - xk)(x; - xl)(x;" - xm), 

a"lmn = A 'DklDmn + 1l'(DkmD'n + DknD,m ) 

+ a; [(x;" - Xm )(x~ - Xn )Dkl 

+ (xl, - Xk )(x; - XI )Dmn ] 

+a; [(x" -xk)(x;" -xm)Dnl 

+ (xl, - Xk )(x~ - Xn )Dml 

(6.23) 

+ (x; - Xl )(x;" - Xm )Dkn + (x; - Xl )(X~ - Xn )Dkm ] 

+ a; (x" - xk)(x; - xI)(x;" -xm)(x~ - xn). 

Similar expressions are valid for other moduli. Here the coef
ficients X; ,X;, e;, ei, e; ,A ',11', a;, ai, and a; are functions 
of lx' - xl and e, e.g., 

X; = x;(lx' - xl,e), a~ = a~(lx' - xl,e), a = 1,2,3. 
(6.24) 

The appearance of the material moduli X;, e~, and a~ indi
cates that, even though the material may be considered iso
tropic in the macroscopic scale (as in the classical theory of 
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isotropic dielectrics), the atomic and molecular orientation 
may induce directional dependence. These additional terms, 
however, are expected to be small when macroscopic charac
teristic lengths guide the physical phenomena. It must be 
noted that, for other microscopic symmetry, Eqs. (6.22) lead 
to more complicated anisotropies and the consequence of 
Eqs. (6.22) requires more detailed study. For vector and sec
ond-order tensor functions, these restrictions are known for 
32 crystal classes. 21 

Finally, we note that when the material moduli become 
Dirac-delta measure, all constitutive equations revert to 
their classical forms. Thus, we expect that the material mo
duli must be delta sequence in an internal length parameter 
so that when this parameter approaches zero, classical local 
field theories are obtained, e.g., 

A' = A '(x' - x,a) , lim A' = AD(x' - x) . (6.25) 
a--<J 

If we also recall the attenuating neighborhood hypothesis as 
formalized by an influence function, we may use such forms 
as 

A' = A exp[ - (k 2/a2)(x' - x)· (x' - x)] , (6.26) 

where k and A are constants and a is an internal characteris
tic length (e.g., lattice parameter, granular distance, distance 
of fibers, etc.). The constant A may be obtained by the nor
malization 

L _ 0- A ' dv' = A . (6.27) 

For instance, for a body of infinite extent in N dimensions, 
Eq. (6.26) and (6.27) give 

(6.28) 

Of course, other possibilities exist. We may, for example, 
determine A' by comparing the dispersion curves obtained 
in lattice dynamics with those calculated by means of nonlo
cal theory (cf. Eringen I4

•
15

; see also Sec. 11). 

7. DIELECTRICS 

Most dielectric materials are nonmagnetizable. For 
these materials, the effect of the B-field can be discarded. 
Since the free energy'/! is now independent of B, the entropy 
inequality (4.15) gives 

(7.1) 

and constitutive equations (5.1) and (5.4), (5.5), and (5.6) do 
not contain B. We list below linear constitutive equations for 
the case when the natural state is free of stress and em fields 

(i.e., akl = 0, X f = 0, rl = 0). 

Po'/! = ~ + 1. r [aklmnekle;"n 
2 Jr-o-

- eklm(l!?"elm + If? ke;m) - XkTIf? k I!?;] dv' , 
(7.2) 

1 a~ 
1]= ---, 

Po ae 
(7.3) 

Etkl = r (a"lmne;"n - e;,.k11f?;,.) dv' , J7/- a 

(7.4) 
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(7.5) 

For rigid dielectric, the dependence on the strain tensor is 
eliminated and we have for the polarization, the linear con
stitutive equation 

Pk = L_<7X~TW;dV" (7.6) 

For unbounded solids, the Fourier transforms ofEqs. (7.4) 
and (7.5) are useful: 

(7.7) 

Pk = X/J~; + e/dm e;m . 

The nonlocal moduli U~/mn , e;"kl' and XkT, are functions of ~ 
and () only, where ~ is the wave vector and a superposed bar 
indicates the Fourier transform, e.g., 

F(~) = (217r3/2 I'" 00 I'o = I'" 00 F(x)ej~·X dX I dX2 dx3 • 

(7.8) 

The general forms of the nonlocal moduli can be ob
tained in terms of ~ by using the invariant theory for each 
class of crystal symmetry. Below, we give these expressions 
for isotropic and uniaxial crystals. 

A. Isotropic dielectrics 

For isotropic solids, the non local moduli are in the 
forms as given by Eqs. (6.23) with (x' - x) replaced by~. 
Consequently, 

Ek/(~'()) = Dkl + X"T = (Dkl - Sdl/S 2)ET(S2,()) 

+ (Sdl/S 2)EL(S2,()) , (7.9) 

e"lm(~,())=S-I(YISkDlm +Y~/Dkm +Y~mDk/) 
+ Y3S -3Sd/Sm , (7.10) 

Uklmn (~,()) =,x 'DklDmn + Ji'(DkmDln + DknDlm ) 

+ A;s -2(SmSn Dkl + SkSIDmn ) 

+ A ~S -2(SkSm Dln + SkSnDlm 

+ S/SmDkn + S/SnDkm) 

+ A is -4SkS/SmSn , (7.11) 

where ET and EL represent the transverse and longitudinal 
dielectric moduli. These and Ya ,,x " Ji', and A ~ are functions 
of S 2 and () only. The dependence of €kl on the wave vector 
indicates the spatial dispersion of optical waves. The pres
ence of E L can be shown to lead to the Debye screening of the 
field of a stationary point charge in the medium (see Sec. 8). 

From Eq. (7.10), it is clear that elastic strains can cause 
polarization in an isotropic solid. Moreover, since Eq. (7.10) 
is an odd function of~, the polarization is reversed by revers
ing the direction of the wave vector. Thus, an isotropic non
local electromagnetic elastic solid can display piezoelectric 
effect. 

Similarly, Eq. (7.11) indicates that, in an isotropic solid, 
the stress at a point depends on orientation. This fact is in 
accordance with the physics of matter at the atomic scale. 
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According to classical theory of piezoelectricity, for 
isotropic solids e;"kl = 0 so that the electric field cannot con
tribute to the stress E t kl' From Eq. (7.10), it is clear that there 
will be a contribution to the elastic stress field from the elec
tric field for small wavelengths, i.e., near the boundary of the 
Brillouin zone. At this region, Brillouin scattering from an 
exciton has been observed. Such an effect can be explained in 
terms of€k' alone. However, optical activity, anisotropic 
stress-optic effects, in an isotropic solid requires the interac
tion of the strain field with the polarization, i.e., the presence 
of the material moduli eklm . 

B. Uniaxial crystals 

For uniaxial crystals, the material moduli can be ob
tained by determining the general form of a second-order 
symmetric isotropic tensor that depends on ~ and a unit vec
tor (say i3) directed along the optic axis, i.e., 

€kl = €k/(~,i3). (7.12) 

To determine e"lm and u~/mn' we form 

Jk/(~,i3;V) = e"lm (~,i3)Vm , 

Uk/(~,i3;Tmn) = Uklmn(~,i3)Tmn . 

(7.13) 

Generators of€k,,]k,' and Ukl can be read from tables avail
able (cf. Eringen, 18 p. 534), retaining only the linear terms in 
Vm and T mn' Once this is done, it follows that 

-, aJkl I ek1m =-- , 
aVm Urn =0 

-, aUkl I (7 klmn = -- = 0 . 
a'Tmn rmn 

(7.14) 

Resulting expressions are 

€kl = (Dkl - SkSI/S2)ET + (SdJS 2)EL 

+ EaD3kD31 + ERS -1(SkD31 + SID3k ) , (7.15) 

ek1m =S-I[YISkDlm +Y2(SIDkm +SmDkI)] 

+ Y3S -3SkS/Sm + Y4Dk3Dlm + Y5(DklDm3 

+ okmDd + Y6Dk3D13 0m3 + S -1(Y7Sk DI3Dm3 

+ YsSDk3Dm3 + YsSm Dk3D13) + S -2(Y9S/Sm Dk3 

(7klmn ='x'DkIDmn +Ji'(DkmOln + DknD1m ) 

+ A; S -2(SmSn Dkl + SkSIDmn ) 

(7.16) 

+A ~S -2(Sdm Dln + SdnD,m + S/SmDkn + S/SnDkm) 

+A is -4SkS/SmSn + A ;(DkIDm3Dn3 + DmnDk3DI3) 

+A ; (Dim Dk3Dn3 + DkmDI30n3 + Din Dk30m3 

+ DknDI3Dm3) +A ~Dk3DI3Dm3Dn3 + S -IA ;(SIDmnDk3 

+ Sk Dmn DI3 + Sn Dkl Dm3 + Sm Dk1 Dn3) 

+S-IA~(SIOk3Dm3Dn3 +Sk0I3Dm3Dn3 

+ Sm 0k30130n3 + SnOk 30130m 3) , 
(7.17) 

whereET , EL, Eo, ER, Ya ,'x ',Ji', and A ~ are functions ofs 2, S3' 
and (). 
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8. POINT CHARGE IN AN ELASTIC DIELECTRIC 

Consider a point charge e located at x = 0 in an isotrop
ic elastic dielectric of infinite extent. We would like to deter
mine the electric field E and the elastic displacement caused 
by this charge. Two of the surviving Maxwell's equations are 

V'(E+P)=q, VXE=O, 

where 

q = e8(x). 

In addition, we need equations of equilibrium (2.9), 

Etkl•k = 0, 

(8.1) 

(8.2) 

(8.3) 

in which we have dropped the nonlinear em terms. From 
(8.1 b we have 

E = - V¢, (8.4) 

where ¢ is the electric potential. First, we take the Fourier 
transform of (8.2) and (8.4) and then substitute these and the 
Fourier transform of ekl given by (6.10) into (7.7). Carrying 
(7.7) into the Fourier transforms of(8.1) and (8.3) leads to 

(8.5) 

where 

€kl = 8kl + XiT· (8.6) 

For isotropic materials using (7.9)-(7.11), Eqs. (8.5) can be 
reduced to the forms 

yS'-I~'U-EL¢= -qS'-2, 
(8.7) 

ass' U + PS' 2U + y~S'¢ = 0, 

where 

y(S'2,B) = YI + 2Y2 + Y3' 

a(S'2,B)=A'+iL'+U; +3..1.; +..1.;, (8.8) 

P(S'2,B) =/L' + A ~ . 
The scalar product of Eq. (8.7h by ~ gives 

~'u= - [yS'/(a+p)]¢ (8.9) 

provided S' 2(a + P) #0. Substituting this into Eq. (8.7)1' we 
obtain 

¢ = qS' - 2 [ E L + r I(a + P ) ] - I , 

(8.10) 
U= - [y/(a+p)](~/S')¢. 

The inverse Fourier transforms of these give ¢ and u. We 
consider the following two special cases. 

A. Rigid dielectric 

In this case, y = O. To simplify the matter, we also se-
lect 

(8.11) 

This implies that the field of the point charge in the medium 
differs from the Coulomb field. The inverse Fourier trans
form of (8.1% gives 

¢ (x) = (eI41TEor)e - rlr, , (8.12) 
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where r = I x I is the radial distance. The fact that such a 
potential corresponds to the Debye screening of the field is 
well known. 

B. Elastic dielectric 

Suppose that, again, E L is given by (8.11) and the piezoe
lectric moduli y, a, andp are constants. The elastic displace
men t field will be in the direction of the electric field if y I 
(a + P) is a positive, imaginary scalar, i.e., 

y/(a +P) = ibiS', (8.13) 

where, in general, b = b (S' 2,B). Further, if we take b real and 
positive constant and use (8.11), then (8.10)1 reduces to 

¢=qIEO(S'2+ r,,-;-2) , (8.14) 

where 

(8.15) 

Assuming that b 2(a + P )/S'0 < rs- 2, the inverse Fourier 
transform of (8.14) is found to be 

A. ( - rlr 
'I' = eI41TEor)e m. (8.16) 

Compared to (8.12), this result indicates that the elastic de
formations due to the electric field of the point charge in
creases the Debye screening radius rs. By measuring this 
change, it should be possible to determine the material mo
duli b 2(a + P )1 Eo. It appears that the Debye screening radius 
may be made very large if b 2(a + P )1 Eo = rs- 2. Whether this 
is possible or not, depends on the magnitudes of material 
moduli. 

The elastic displacement field is obtained by inverting 
(8.lOh. To this end, we employ (8.9) and (8.13), i.e., 

Ii;; = - b¢, 

which gives 

V'u= -b¢. 

This can be integrated to give 

(8.17) 

(8.18) 

(8.19) 

where C is a constant of integration. Substituting for ¢ from 
(8.16), we obtain 

_ be r m (1 + r m) - rlrm + C U r ----- -- e -. 
41TEo r r ~ 

(8.20) 

If we assume that the point charge is in a small spherical 
inclusion with radius r = ro, then the volume change due to 
the inclusion is given by 41TroUr(ro) = 8u. This determines 
the "strength" of singularity C introduced by the point de
fect. As ro-o, we have 

(ber;" I Eol + 41TC = 8v , (8.21) 

which indicates a decrease (ber;" I Eo) in the strength of singu
larity over the case of point defect with no charge. 

Employing (8.16) and (8.20), it is not difficult to deter
mine the stress, strain, and electric fields. 

It is clear from this analysis that nonloca1 effects are 
important even for static problems. In the discussion of point 
defects, impurities, dislocations, cracks, space charge singu
larities, and magnetic dipoles, clearly nonlocal theory can be 
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an effective tool circumventing major difficulties due to the 
discrete nature of materials. Especially for imperfect materi
als, this model should bear much fruit. 

9. DISPERSION OF OPTICAL MODES 

Here, we consider the propagation of plane harmonic 
waves in an anisotropic nonmagnetizable crystal of infinite 
extent. In this case, Mk = 0 and the three-dimensional Four
ier transform of P is given by 

- -,E"'D , 
Pds,t)=XklEI' (9.1) 

The Fourier transform of the two Maxwell equations (2.5) 
and (2.7) with M = 0 read 

sXE + (wle)" = 0 , 
(9.2) 

SXH - (wle)(E + P) = O. 

Eliminating" between these two equations and using (9.1), 
we will have 

[S2bk1 - SkSI - (W2le2)EkdEI = O. 

A nontrivial solution ofEq. (9.3) exists if 

det [S 2bk1 - SkSI - (W2/C2)Ekl] = 0 . 

(9.3) 

(9.4) 

This is the dispersion relation for optical modes. We examine 
two special cases. 

A. Isotropic solids 

In this case, Ekl is given by (7.9) and (9.4) leads to the 
roots 

S2c2/w2 = ET(S2,O) , 

S2c2/w 2 = ET(S2,O) - EL(S2,O). 

Ifwe substitute (7.9) into (9.3), we obtain 

[S2 - (WzleZ)ET]E - s(s· E) 

X [1 + (W2le2S2)(EL - ET)] = O. 

(9.5) 

(9.6) 

(9.7) 

From this, it is clear that (9.5) corresponds to S . E = 0, indi
cating that the waves are transverse to the direction of prop a
gation. The root (9.6), on the other hand, is not possible for 
E#O, unless (9.5) is also satisfied. This leads to 

EL(SZ,O)=O. (9.8) 

From (9.5), it is clear that optical waves are dispersive. 
By matching the index of refraction n = sclw = clv, where 
v = w/s is the phase velocity, with experimental results or 
theoretical formulas based on atomic models, we can deter
mine the dielectric function ET as a function of wavelength 
21Tls· 

B. Uniaxial crystals 

Substituting (7.15) into (9.3), we have 

[SZ - (W2le2)ET]E - s(s· E)[ 1 + (EL - ET)w2leZS2] 

+ EoE3i3 + (ERIS )[E3S + (s· E)i3] = 0 . (9.9) 

From this, for the transverse waves (s • E = 0), we have ei
ther 

(9.10) 

or 
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EOS3 + ERS = 0 (E3#0). 

For longitudinal waves (sXE = 0) and we have 

i3XS[ EoE3 + (ERls)s' E] = O. 

(9.11) 

(9.12) 

Hence, either i3 X S = 0 and the propagation is in the i3 direc
tion, or else 

EoS3 + ERS = O. (9.13) 

Equations (9.9)-(9.13) acquire particularly important 
significance when the memory effects are included in Ek1 , i.e., 
where Ekl depends on sand w. This will be the case when the 
nonlocal moduli are considered to depend on the past times 
as well, e.g., 

E~l = E~Llx' - x,t - t ') , - 00 <,1' <,1 . (9.14) 

For a few remarks on the topic, see Sec. 11. 

C. A special anisotropic solid 

Suppose that the dependence of the nonlocal moduli on 
the direction of the wave vector is small. In this case, we may 
write 

(9.15) 

where X ~l is the classical susceptibility tensor, I is an exter
nal characteristic length, and 

E=/3all, (9.16) 

in which/3 is a constant appropriate to each material, a is an 
internal characteristic length, e.g., lattice parameter, granu
lar distance. We know that 1](lx' - xl/EI) must be a delta 
sequence, which is invariant under translation and rotations. 
Such a sequence may be obtained by solving 

(1 - cI 2V2)1] = b(lx' - xl). (9.17) 

For example, in two-dimensional space extending to infinity, 
an appropriate solution of Eq. (9.17) is 

1] = (21TI 1E2)-IKo(lx' - X I liE) , (9.18) 

where Ko is the modified Bessel function. 
Note that Eq. (9.18) satisfies the translational invar

iance and leads to solutions which are delta sequence. More
over, as E-o, Eq. (9.18) reverts to the classical (local) consti
tutive equation. 

The Fourier transform ofEq. (9.15), with the use ofEq. 
(9.17), gives 

X ~f = X~I(1 + ~/2S2)-I. (9.19) 

Equation (9.4) now takes a special form: 

(9.20) 

where 

E~l = bk1 + X~l' Sk = skis, n = sclw = clv. 
(9.21) 

Equation (9.20) has the classical (local) form22 with equiva
lent dielectric constants defined by 

E
eq = EO/(1 + c/ ZS2

). (9.22) 

Note that, unlike classical theory, E
eq depends on the wave 

number S. We can now borrow all the classical results with 
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the provision equation (9.22), e.g., the orthogonality rela
tions 

EO • EeqEO - {) 
a '{3- up, 

the dispersion relations 

1 3 Sk 
2= 2. 2 €,;q n k~ln-kk 

An alternative form ofEq. (9.24) is 

3 S2 
2. 2 k 2 =0, 
k~IV-Vk 

(9.23) 

(9.24) 

(9.25) 

where Vk are called principal speeds, which do not form a 
vector. They are given by 

Vk = cI.J?J, k = 1,2,3. (9.26) 

The phase velocity v is obtained by solving Eq. (9.25) for v: 

v = n [c i ± (ci - 4c2W/2}1I\ (9.27) 

where 

cl=siM +vj)+s~(v~ +vi)+sj(vi +v~), 
(9.28) 

Cz =siv~v~ +~v~vi +~viv~. 

Note that vk and Ck depend on the wave number 5; conse
quently, the phase velocity is a function ofthe wavelength. 
The space dispersion is then clearly indicated. 

10. PIEZOELECTRIC WAVES 

Field equations of linear piezoelectric waves are ob
tained by substituting Eqs. (7.4) and (7.5) into Eqs. (2.4) and 
(2.9), with B = 0, and the electric field is determined by a 
potential tP, Le., 

E = - VtP. (10.1) 

Upon writing 

aX kf(x' - x) atP' 
~~--~--= 

aXkf(x' - x) atP' 

ax; ax;" ax; 

in the volume integrals, we can convert the first term to a 
surface integral by means of the Green-Gauss theorem. Em
ploying this procedure for the other terms and substituting 
for the linear strain measures 

ekl = !(Uk,1 + UI,k)' 

we obtain the field equations of piezoelectricity 

- V2tP - L Ix kftP :Ik - eklm U;",lk) dv' 

+ J Ix kftPi - eklmu;",I)nk da' = 0, Tar 
fr (Uklmn U;",nk + e;"kltP :mk) dv' 

(10.2) 

(10.3) 

- J (UklmnU;",n + e;"kltP:m ink da' + p(J; - iiti = o. Tar 
(10.4) 

These two integro-partial-differential equations must be 
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solved to determine the electric potential tP (x,t) and the dis
placement field udx,t). It is interesting to note that these 
equations contain surface integrals over ar. These are the 
effects of "surface electric field" and "surface tensions" 
which are not included in the classical (local) theory of pie
zoelectricity. Therefore, nonlocal theory accounts for the 
surface phenomena, and it presents interesting possibilities 
for the discussion of surface physics. 

We now consider a solid of infinite extent and investi
gate plane wave propagations. In this case, the surface terms 
will vanish at infinity, and the Fourier transforms of (10.3) 
and (10.4) give 

(52 + x£fsdtl¢ - eklmSkSIUm = 0, (10.5) 

(Tklm Sdm um + e;"klSm Sk ¢ - PCU2UI = 0 , (10.6) 

where a superposed bar represents the Fourier transform, as 
defined by Eq. (7.8). From Eq. (10.5), we solve 

¢ = (eklmSkS/EpqSpSq)um , (10.7) 

where we have introduced dielectric moduli Epq = {)pq 

+ -,E 
XPq , 

Carrying (10.7) into (10.6), we obtain 

(Qlm - PC2t)lm )um = 0, (10.8) 

where c2 = cu2 Is 2 is the phase velocity and 

Qlm = 7klmnSkSn' Sk skis, (10.9) 

is the acoustical tensor expressed in terms of the piezoelectri
cally stiffened stiffness tensor :r defined 

(10.10) 

Nontrivial solutions of Eq. (10.8) exists if 

det(Q - pc21) = 0 . (10.11) 

The three roots c of this bicubic equation determine c2
• 

Equations (10.7) and (10.8) are familiar to us from clas
sical piezoelectricity (cf. Ref. 11, p. 488). The main difference 
is in that c is a function of the wavelength vector, i.e., 

c = c(~), (10.12) 

while, in classical theory, the dependence on the wave vector 
is missing. The dispersion of waves having short wave
lengths is, of course, well known in the atomic theory of 
lattices. 

Uniaxial crystals 

As a special case, consider the antiplane elastic dis
placement field in the direction of the XI axis in which u \ 
depends only on X3 and t, with X3 being the optic axis of a 
uniaxial crystal. The electric field has the only non vanishing 
component E I • In this case, Eqs. (10.5) and (10.6) reduce to 

e\u\ - €¢ = 0, 

uti + e2¢ - (pcu2/s~) = 0, 

where from (7.9)-(7.11) 
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E (1 - SVSZ)ET + (S~/SZ)EL + Eo + 2ER S3/S, 

e l = (rl + r7)S -lSI + 2rlOS -ZSIS3 + r3S -3SIS~ , 
(10.14) 

ez = (rz + rs)S -lSI + (r9 + rlO)S -2SIS3 + r3S -3S1S~ , 
U=jT'+A; +A;S-2(s7 +s~)+Ais-4S7s~. 

From (10.13), the dispersion relations follow: 

(10.15) 

By measuring the index of refraction, the combined piezoe
lectric moduli appearing in these equations can be deter
mined as functions of the wave number. 

Dispersion of elastic waves is well known and observed 
for many crystals. The fact that significant deviations which 
occur from the classical results as the wavelength becomes 
shorter, approaching the boundaries of the Brillouin zone, is 
a clear indication of the fact that piezoelectric waves are also 
dispersive. Importance of the dispersion in the microwave 
region needs no comment. 

11. MEMORY-DEPENDENT MATERIALS 

A thorough discussion of electrodynamics of nonlocal 
continua that possess memory, requires a separate study, 
which is under preparation. For the linear theory, we can 
state a few results by inspection. As in the case of viscoelastic 
solids, clearly the nonlocal moduli will depend also on past 
history, i.e., the time interval, t - t', e.g., 

X r, = xr,(x' - x,t - t') , - 00 <,t' <J . (1l.l) 

Consequently, constitutive equations will also involve inte
grals over the time domain, e.g., 

P k = J~ co dt' 1. X if(x' - x,t - t ')E ;(x',t') du(x') . 

(11.2) 

The four-dimensional Fourier transform of (11.2) replaces 
(9.1) by 

(11.3) 

This situation is valid for all other constitutive equations. 
We note, however, that the complex susceptibility tensor xif 
must satisfy certain symmetry requirements, since the time 
domain is cut off at t, i.e., - 00 <,t' <to This emanates from 
the fact that X r,(x' - x,t - t') must be a real function. 

By considering all material functions as functions of w 
also, we obtain, from our previous results, equations that are 
valid for memory-dependent materials. Consider, for in
stance, Eqs. (9.5) and (9.8): 

S2C2/W2 = ET(S2,W) (transverse optical modes), 
( 11.4) 

EL(S2,W)=O (longitudinal optical modes). (11.5) 

Both wavelength and frequency dispersion are now account
ed for. 
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According to an atomic theory, the dielectric constant 
is given by the classical formula (cf. HodgsonZ3) 

E(S,W) = E( (0) + a(w~ - w2 + Bs 2)-1 , (11.6) 

where E( 00 ) is the dielectric constant for frequencies well 
above Eo and a and B are known constants. Equation (11.6) is 
valid when S 4 is negligible as compared to S 2 in the parenthe-
sis. 

Ifwe now equate (11.6) to (11.3), we determine ET(S 2,W). 
Once this is done, other problems can be solved by using ET 
or its inverse Fourier transform. 

From these and other considerations, as discussed in 
our various previous works, it is clear that the nonlocal con
tinuum theory of electromagnetism can be used to discuss 
problems all the way from atomic to macroscopic scale phe
nomena. The nonlinear theory can be used for nonlinear op
tics, magnetism, and electromagneto-elasticity. In the non
linear case, however, the Fourier-domain formalism is no 
longer valid, and we must employ the full constitutive equa
tions such as (5.4)-(5.7), in the domain of space-time. 

A systematic study of conduction and nonlinear elec
tromagnetic theory of memory-dependent nonlocal con
tinua is left to future work. 
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